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K Y B E R N E T I K A — V O L U M E 5 4 ( 2 0 1 8 ) , N U M B E R 4 , P A G E S 7 6 5 – 7 7 7

GAUSSIAN APPROXIMATION FOR FUNCTIONALS
OF GIBBS PARTICLE PROCESSES

Daniela Flimmel and Viktor Beneš

In the paper asymptotic properties of functionals of stationary Gibbs particle processes
are derived. Two known techniques from the point process theory in the Euclidean space
Rd are extended to the space of compact sets on Rd equipped with the Hausdorff metric.
First, conditions for the existence of the stationary Gibbs point process with given conditional
intensity have been simplified recently. Secondly, the Malliavin-Stein method was applied to the
estimation of Wasserstein distance between the Gibbs input and standard Gaussian distribution.
We transform these theories to the space of compact sets and use them to derive a Gaussian
approximation for functionals of a planar Gibbs segment process.

Keywords: asymptotics of functionals, innovation, stationary Gibbs particle process,
Wasserstein distance

Classification: 60D05, 60G55

1. INTRODUCTION

Recently several papers paid attention to the limit theory of functionals of Gibbs point
processes in the Euclidean space, cf. [2, 10, 13, 15]. In the present paper we are dealing
with the question how to develop these results to Gibbs processes of geometrical objects
(particles). There are at least three ways how to do it. One natural approach is to
extend asymptotic results to Gibbs marked point processes, see e. g. [7]. In applications
marks correspond to the geometrical properties of particles, they can be either scalar or
vector or particles themselves. In the literature it is often just mentioned that asymptotic
results from point process theory can be easily generalized to the marked point processes.
This is typically so for processes with independent marks, which may not be the case of
Gibbs processes. Another approach is to parametrize some particle attributes and deal
with the point process on the parametric space, see e. g. [14].

In the present paper we are trying to deal directly with particle processes in the sense
of [9], defined on the space of compact sets equipped with the Hausdorff distance. Our
aim is first to verify that the existence of a stationary Gibbs particle process is guaranteed
under analogous conditions as stated by [4] for Gibbs point processes. Secondly we find
that the methodology of [13] based on Malliavin–Stein method can be developed to
Gibbs particle processes. The general background in that paper is formulated on Polish
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766 D. FLIMMEL AND V. BENEŠ

spaces, which covers the space of compact sets. However, the part devoted to Gibbs
process is discussed in the Euclidean space only.

Finally we present examples of two functionals of segment processes in the plane where
the Gaussian approximation can be derived using additionally an integral geometric
argument.

2. PRELIMINARIES

Let (Rd,Bd) be the Euclidean space with Borel σ-algebra. Let Cd be the space of compact
subsets (particles) of Rd with Borel σ-algebra B(Cd) generated by the Fell topology on
the space of closed subsets of Rd restricted to Cd. Let the space C(d) = Cd \ {∅} be
equipped with the Hausdorff metric. The corresponding Borel σ-algebra B(C(d)) is a
trace of B(Cd), cf. [9, Theorem 2.4.1]. Moreover, it can be shown that C(d) is a Polish
space (cf. [6, Theorem A.26]). Let Nd denote the space of all locally finite subsets x on
C(d), i. e. cardinality

card{L ∈ x : L ∩K 6= ∅} <∞

for all K ∈ C(d). We equip this space with the σ-algebra

N d = σ({x ∈ Nd : card{K ∈ x : K ∈ B} = m}, B ∈ B(C(d)) bounded, m ∈ N).

Let Nd
f be a subsystem of Nd consisting of finite sets.

A point process on C(d) (also called particle process) is a random element

ξ : (Ω,A,P) −→ (Nd, N d),

its distribution is Pξ = Pξ−1. A particle process ξ is called stationary if Pθxξ = Pξ for
each x ∈ Rd, where for any x ∈ Nd we set

θxx = {K + x : K ∈ x}, K + x = {y + x : y ∈ K}.

Let Q be a probability measure on C(d) such that

Q({K ∈ C(d) : c(K) = 0}) = 1, (1)

where c(K) is the centre of the circumscribed ball B(K) of K and 0 denotes the origin
in Rd. Define a measure λ on C(d) by

λ(B) =

∫
C(d)

∫
Rd

1[K+x∈B] dxQ(dK), B ∈ B(C(d)), (2)

where the inner integration is with respect to the d-dimensional Lebesgue measure Leb.
The measure λ is invariant under shifts, i. e. λ(B) = λ(B + x), x ∈ Rd. We call λ the
reference measure and Q the reference particle distribution. In the following we make
an assumption that there is some R > 0 such that

Q({K ∈ C(d) : B(K) ⊂ B(0, R)}) = 1, (3)

where B(x,R) is the closed Euclidean ball with radius R centered at x ∈ Rd.



Gaussian approximation for functionals of Gibbs particle processes 767

2.1. Finite volume Gibbs particle process

In Gibbs process theory we deal with an energy function as a measurable function

H : Nd
f −→ R+ ∪ {+∞} (4)

which will be assumed to be
(i) invariant under shifts (stationary), i. e. H(x) = H(θxx), x ∈ Rd,
(ii) hereditary, i. e. for x ∈ Nd

f , K ∈ x,

H(x) < +∞ =⇒ H(x \ {K}) < +∞,

(iii) satisfying H(∅) < +∞.
In the following we consider a bounded set Λ ∈ Bd with Leb(Λ) > 0. We denote

C(d)
Λ = {K ∈ C(d); c(K) ∈ Λ}.

Let Nd
Λ be the system of finite subsets of C(d)

Λ equipped with the trace σ-algebra N d
Λ.

Further let

λΛ(B) =

∫
C(d)

∫
Λ

1[K+x∈B]dxQ(dK), B ∈ B(C(d)
Λ )

and ηΛ be the Poisson process on C(d)
Λ with intensity measure λΛ and distribution πΛ.

We define a finite volume Gibbs particle process µΛ on Λ with activity τ > 0, inverse
temperature β ≥ 0 and energy function H as a particle process with distribution P τ,βΛ

on Nd
Λ given by the Radon-Nikodym density p with respect to πΛ, where

p(x) =
1

Zτ,βΛ

τNΛ(x) exp(−βH(x)), x ∈ Nd
Λ, (5)

NΛ(x) is the number of particles K ∈ x with c(K) ∈ Λ,

Zτ,βΛ =

∫
Nd

Λ

τNΛ(x) exp(−βH(x))πΛ(dx)

is the normalizing constant.
For any bounded set ∆ ⊂ Λ, ∆ ∈ Bd, Leb(∆) > 0, ∆c is its complement in Λ and

for x ∈ N
(d)
Λ let x∆ = {K ∈ x; c(K) ∈ ∆}. We define

H∆(x) = H(x)−H(x∆c).

The following are Dobrushin-Lanford-Ruelle (DLR) equations for P τ,βΛ -a.a. x∆c we have

P τ,βΛ (dx∆|x∆c) =
1

Zτ,β∆ (x∆c)
τN∆(x) exp(−βH∆(x))π∆(dx∆), (6)

where

Zτ,β∆ (x∆c) =

∫
N

(d)
∆

τN∆(x)e−βH∆(x)π∆(dx∆).
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The local energy h : C(d) ×Nd
f → R is defined as

h(K,x) = H(x ∪ {K})−H(x).

The Georgii-Nguyen-Zessin (GNZ) equations follow for any measurable function f :
C(d) ×Nd

f −→ R+∫
Nd
f

∑
K∈x

f(K,x\{K})P τ,βΛ (dx) = τ

∫
Nd
f

∫
C(d)

Λ

f(K,x) exp(−βh(K,x))λΛ(dK)P τ,βΛ (dx).

(7)
The GNZ equations characterize the finite volume Gibbs particle process, i. e. if any
probability measure on Nd

Λ satisfies (7) for any f as stated, then it is equal to P τ,βΛ . The
function

λ∗(K,x) = τ exp(−βh(K,x)), K ∈ C(d)
Λ , x ∈ Nd

Λ

is called the (Papangelou) conditional intensity.

2.2. Infinite volume Gibbs particle process

It is verified that the results obtained for point processes in Rd in [4] hold in the particle
process case as well. Consider the sequence of windows

Λn = [−n, n]d ⊂ Rd,

spaces C(d)
Λn
, intensity measures λn(.) =

∫ ∫
Λn

1[K+x∈.]dxQ(dK) (for a fixed probability

measure Q satisfying (1) and (3)), Poisson particle processes ηΛn with distributions πΛn ,

Gibbs particle processes µΛn with distributions P τ,βΛn
, n ∈ N. A measurable function

f : Nd −→ R is called local if there is a bounded set ∆ ⊂ Rd such that for all x ∈ Nd

we have f(x) = f(x∆). The local convergence topology on the space of probability
measures P on Nd is the smallest topology such that for any local and bounded function
f : Nd −→ R the map P 7→

∫
fdP is continuous. Define a probability measure P̄ τ,βΛn

such that for any n ≥ 1 and any measurable test function f1 : Nd −→ R it holds∫
Nd

f1(x)P̄ τ,βΛn
(dx) = (2n)−d

∫
Λn

∫
Nd

f1(θux)P τ,βΛn
(dx)du. (8)

It can be shown that the sequence (P̄ τ,βΛn
)n≥1 is tight for the local convergence topology

(cf. [5, Chapter 15]). We denote P τ,β one of its cluster points. Due to the stationariza-
tion (8) P τ,β is the distribution of a stationary particle process, in order to show that
it satisfies the DLR and GNZ equations one needs to add an assumption.

The energy function H has a finite range r > 0 if for every bounded set ∆ ⊂ Rd the
energy H∆ is a local function on ∆ ⊕ B(0, r), where ⊕ is the Minkowski sum of sets.
The finite range property allows to extend the domain of H∆ from the space Nd

f to Nd,

since for x ∈ Nd we put
H∆(x) = H∆(x∆⊕B(0,r)). (9)

For the stationary and finite range energy function the cluster point P τ,β then satisfies
DLR equations (6) and is thus the distribution of an infinite volume Gibbs particle
process. We have outlined the following assertion:
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Proposition 2.1. There exists a stationary Gibbs particle process if the energy H in
(4) satisfies (i) – (iii) and moreover has finite range property.

The stationary Gibbs particle process also satisfies GNZ equations for any measurable
function f : C(d) ×Nd −→ R+ :∫

Nd

∑
K∈x

f(K,x \ {K})P τ,β(dx) =

∫
Nd

∫
C(d)

f(K,x)λ∗(K,x)λ(dK)P τ,β(dx), (10)

where λ comes from (2). Conversely, any measure P on Nd which satisfies (10) is a
distribution of a stationary Gibbs particle process. The uniqueness issue is not investi-
gated in this paper, generally there is a belief that the infinite volume Gibbs process is
unique when the parameters τ and β are small enough.

A class of energy functions we will deal with is of the form

H(x) =

6=∑
{K,L}⊂x

g(K ∩ L), x ∈ Nd
f , (11)

where the sum is over pairs of different sets, g : Cd −→ R+ is a measurable function, we
assume that it is invariant under shifts and g(∅) = 0. The expression g(K ∩ L) in (11)
plays a role of pair potential. Under these assumptions the energy (11) is nonnegative
and satisfies conditions (i) – (iii). When we restrict to bounded particles K ∈ C(d) :
B(K) ⊂ B(0, R) for some R > 0, cf. (3), then H has finite range r = 2R. This is
because to the right side of (9) exactly intersections of those pairs of particles contribute,
which have either both centers c(.) in ∆ or one centre in ∆ and the other centre in
(∆⊕B(0, r)) ∩∆c.

The conditional intensity corresponding to (11) is of the form

λ∗(K,x) := τ exp

{
−β

∑
L∈x

g(K ∩ L)

}
, K ∈ C(d), x ∈ Nd, (12)

where τ > 0, β ≥ 0.

Example 2.2. (Planar segment process) Denote by S ⊂ C(2) the space of all seg-
ments in R2, S0 be the subsystem of segments centered in the origin. Fix a reference
probability measure Q on S0, which corresponds to Qφ ⊗ QL, where Qφ, QL is the
reference distribution of directions, lengths of segments, respectively. Thanks to the
assumption (3) QL has support (0, 2R]. Set H as a special case in (11) with

g(K) = 1{K 6= ∅}, K ∈ C2, (13)

and from Proposition 2.1 there exists a stationary Gibbs segment process (special case
of particle process) ξ in R2 with conditional intensity

λ∗(K,x) = τe−βNx(K), K ∈ S, x ∈ N2, τ > 0, β ≥ 0,

where Nx(K) denotes the number of intersections of K with the segments in x. It has
to be mentioned that the reference distribution Q need not coincide with the observed
joint length-direction distribution of the process, cf. [1].
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3. GENERALIZATION OF SOME ASYMPTOTIC RESULTS
FOR GIBBS PARTICLE PROCESSES

Our aim is to extend the result [13, Theorem 5.3] concerning estimates of the bound of
the Wasserstein distance between standard Gaussian random variable and functionals
of stationary Gibbs point processes in Rd given by conditional intensity. To do so we
will use the general bound given by [13, Corrolary 3.5] that is formulated for wider class
of point processes having conditional intensity. We consider the space C(d) of compact
sets, conditional intensity (12) and a stationary Gibbs particle process µ from Definition
2.1, satisfying (10). Behind the presented model there is a probability measure Q on
C(d) satisfying (1) and (3), defining the reference measure λ in (2). In the following we
always mean that a stationary Gibbs particle process has activity τ, inverse temperature
β, pair potential g and particle distribution Q. Thanks to (3), (11) and assumptions laid
on g the finite range property holds.

3.1. Bounds on Wasserstein distance for functionals of Gibbs particle pro-
cesses

The mean value E [λ∗(K,µ)], K ∈ C(d), is called a correlation function. Sharp lower and
upper bound for the correlation function of a Gibbs point process on Rd can be found
in [12]. For our purpose the following simple bounds for the correlation function of a
stationary Gibbs particle process are sufficient.

Lemma 3.1. Let µ be a stationary Gibbs particle process given by the conditional
intensity of the form (12) with activity τ > 0, inverse temperature β ≥ 0, reference
particle distribution Q satisfying (3), and with pair potential g which is bounded from
above by some positive constant a. Then there exists b ∈ [0,∞) such that it holds

τ(1− βb) ≤ E[λ∗(K,µ)] ≤ τ (14)

for λ-a.a. K ∈ C(d).

P r o o f . The stationary process µ has some intensity measure θ and particle distribution
Q1 (typically not equal to Q). Using the Campbell theorem and the disintegration ([9])
we obtain

E[λ∗(K,µ)] = τE[exp{−β
∑
L∈µ

g(K ∩ L)}] ≥ τ

1− βE
∑
L∈µ

g(K ∩ L)


= τ

(
1− β

∫
C(d)

g(K ∩ L)θ(dL)

)
= τ

(
1− β

∫
C(d)

∫
Rd
g(K ∩ (L+ x)) dxQ1(dL)

)
≥ τ

(
1− βa

∫
C(d)

Leb(K ⊕ Ľ)Q1(dL)

)
≥ τ(1− βb),
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where we denote Ľ = {−l : l ∈ L}. The support suppQ1 ⊂ suppQ, cf. [1], therefore
using (3) we can choose b = a(2R)dωd, where ωd is the volume of the unit ball in Rd.
The upper bound follows from (12). �

Definition 3.2. We define the innovation of a Gibbs particle process µ as a random
variable

Iµ(ϕ) =
∑
K∈µ

ϕ(K,µ \ {K})−
∫
C(d)

ϕ(K,µ)λ∗(K,µ)λ(dK)

for any measurable ϕ : C(d)×Nd → R, for which Ix(ϕ) is defined and finite µ-a.e. on Nd.

We are interested in estimates of the Wasserstein distance dW , cf. [13] between an
innovation Iµ and a standard Gaussian random variable Z.

Theorem 3.3. Let µ be a stationary Gibbs particle process given by the conditional
intensity of the form (12) with activity τ > 0, inverse temperature β ≥ 0, reference
particle distribution Q satisfying (3), and with pair potential g which is bounded from
above by some positive constant a. Let ϕ : C(d) → R be a measurable function that does
not depend on x ∈ Nd and

ϕ ∈ L1(C(d), λ) ∩ L2(C(d), λ).

Then

dW (Iµ(ϕ), Z) ≤
√

2

π

√
1− 2τ(1− βb)||ϕ||2

L2(C(d),λ)
+ τ2||ϕ||4

L2(C(d),λ)

+ τ ||ϕ||3L3(C(d),λ) +

√
2

π
τ2||ϕ||2L1(C(d),λ)|1− e−βa|

+ 2τ2||ϕ||2L2(C(d),λ)||ϕ||L1(C(d),λ)|1− e−βa|

+ τ3||ϕ||3L1(C(d),λ)|1− e−βa|2.

P r o o f . First note that in this setting the finite range property holds. We would like
to estimate individually terms of the bound in Corollary 3.5 in [13] (valid on a Polish
space). First of all, we need to verify the assumptions of this result. By using the upper
bound from Lemma 3.1 and the integrability assumptions on ϕ, we can write∫

C(d)

|ϕ(K)|E[λ∗(K,µ)]λ(dK) ≤ τ ||ϕ||L1(C(d),λ) <∞

and ∫
C(d)

|ϕ(K)|2E [λ∗(K,µ)]λ(dK) ≤ τ ||ϕ||2L2(C(d),λ) <∞

and hence, the assumptions are verified.
For simplicity, denote

α2(K,L, µ) := E[λ∗(K,µ)λ∗(L, µ)],
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α3(K,L,M, µ) := E[λ∗(K,µ)λ∗(L, µ)λ∗(M,µ)]

for K,L,M ∈ C(d). Then due to (12), we can estimate α2 and α3 as

α2(K,L, µ) ≤ τ2,

α3(K,L,M, µ) ≤ τ3,
(15)

for λ-a.a. K,L,M ∈ C(d).
If we investigate the term DKλ

∗(L,x) in Corollary 3.5 in [13], we obtain

DKλ
∗(L,x) = λ∗(L,x ∪ {K})− λ∗(L,x) =

= τ exp

−β ∑
M∈x∪{K}

g(L ∩M)

− τ exp

{
−β

∑
M∈x

g(L ∩M)

}

= τ exp

{
−β

∑
M∈x

g(L ∩M)

}(
e−βg(L∩K) − 1

)
= λ∗(L,x)

(
e−βg(L∩K) − 1

)
.

Using this expression, we can compute the individual terms. In the first term, we
will use estimates (14) and (15) to obtain the bound√

2

π

√
1− 2

∫
C(d)

|ϕ(K)|2E[λ∗(K,µ)]λ(dK) +

∫
(C(d))2

|ϕ(K)ϕ(L)|2α2(K,L, µ)λ(dK)λ(dL)

≤
√

2

π

√
1− 2τ(1− βb)

∫
C(d)

|ϕ(K)|2λ(dK) + τ2

∫
(C(d))2

|ϕ(K)ϕ(L)|2λ(dK)λ(dL)

=

√
2

π

√
1− 2τ(1− βb)||ϕ||2

L2(C(d),λ)
+ τ2||ϕ||4

L2(C(d),λ)
.

The second term can be estimated analogously:∫
C(d)

|ϕ(K)|3E[λ∗(K,µ)]λ(dK) ≤ τ
∫
C(d)

|ϕ(K)|3λ(dK) = τ ||ϕ||3L3(C(d),λ).

In the following terms, we will use additionally the boundedness of the pair potential g.
Thus, √

2

π

∫
(C(d))2

|ϕ(K)ϕ(L)|E[|DKλ
∗(L, µ)|λ∗(K,µ)]λ(dK)λ(dL)

=

√
2

π

∫
(C(d))2

|ϕ(K)ϕ(L)||1− e−βg(K∩L)|α2(K,L, µ)λ(dK)λ(dL)

≤ τ2|1− e−βa|
√

2

π

∫
(C(d))2

|ϕ(K)ϕ(L)|λ(dK)λ(dL)

= τ2|1− e−βa|
√

2

π
||ϕ||2L1(C(d),λ)
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and

2

∫
(C(d))2

|ϕ(K)|2|ϕ(L)|E[|DKλ
∗(L, µ)|λ∗(K,µ)]λ(dK)λ(dL)

= 2

∫
(C(d))2

|ϕ(K)|2|ϕ(L)||1− e−βg(K∩L)|α2(K,L, µ)λ(dK)λ(dL)

≤ 2τ2|1− e−βa|
∫

(C(d))2

|ϕ(K)|2|ϕ(L)|λ(dK)λ(dL)

= 2τ2|1− e−βa|||ϕ||2L2(C(d),λ)||ϕ||L1(C(d),λ)

and∫
(C(d))3

|ϕ(K)ϕ(L)ϕ(M)|E[|DKλ
∗(L, µ)DKλ

∗(M,µ)|λ∗(K,µ)]λ(dK)λ(dL)λ(dM)

=

∫
(C(d))3

|ϕ(K)ϕ(L)ϕ(M)||1− e−βg(K∩L)||1− e−βg(K∩M)|α3(K,L,M, µ)λ(dK)λ(dL)λ(dM)

≤ τ3|1− e−βa|2
∫

(C(d))3

|ϕ(K)ϕ(L)ϕ(M)|λ(dK)λ(dL)λ(dM)

= τ3|1− e−βa|2||ϕ||3L1(C(d),λ).

Adding these estimates together yields the theorem. �

3.2. Gaussian approximation for a functional of a stationary Gibbs planar
segment process

As an example of an application of Theorem 3.3, we will derive a Gaussian approximation
for an innovation of a stationary Gibbs planar segment process defined in Example 2.2.
Two functionals are investigated: the normalized number of segments observed in a
window and normalized total length of segments hitting the window. We take windows
forming a convex averaging sequence (cf. [3]), i. e. monotone increasing sequence of
convex bounded Borel sets converging to R2.

Theorem 3.4. Consider for each n ∈ N a stationary Gibbs planar segment process ξ(n)

with the conditional intensity

λ∗n(K,x) = τn exp

{
−βn

∑
L∈x

1{K ∩ L 6= ∅}

}
, K ∈ S,x ∈ N2,

where τn > 0 and βn ≥ 0. Moreover, suppose that βn → 0 and 0 < c1 < τn < c2 <
∞, n ∈ N, for some constants c1, c2 and that the common reference particle distribution
Q for all ξ(n) has the uniform directional distribution. Let {Wn, n ∈ N} be a convex
averaging sequence in R2 such that Leb(Wn) = o(β−1

n ) (i. e. Leb(Wn)βn tends to zero
with growing n). For n ∈ N and K ∈ S, define

ϕn(K) =
1√

τnLeb(Wn)
· 1{K ∩Wn 6= ∅}.
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Further

ψn(K) =
l(K)√
ELl2

ϕn(K),

where l(K) denotes the length of the segment K, l is a random variable that follows the
law of QL and EL denotes the expectation with respect to QL. Then

dW (Iξ(n)(ϕn), Z)→ 0, dW (Iξ(n)(ψn), Z)→ 0

as n→∞, where Z is a standard Gaussian random variable.

P r o o f . We prove the theorem for the functions ψn. The result for ϕn is then a special
case taking l(K) = 1, K ∈ S, and ELl2 = 1. We want to use Theorem 3.3 for S ⊂ C(2).
First, we have to verify the assumptions. In Lemma 3.1, we can set b = 4πR2 and a = 1.
Further, for every n ∈ N,∫

C(2)

|ψn(K)|λ(dK) =

∫
C(2)

l(K)
1{K ∩Wn 6= ∅}√
τnLeb(Wn)ELl2

λ(dK)

=
1√

τnLeb(Wn)ELl2

∫
S0

∫
R2

l(K + x)1{(K + x) ∩Wn 6= ∅}dxQ(dK)

=
1√

τnLeb(Wn)ELl2

∫
S0

l(K)

∫
R2

1{(K + x) ∩Wn 6= ∅}dxQ(dK)

=
1√

τnLeb(Wn)ELl2

∫
S0

l(K)Leb(Ǩ ⊕Wn)Q(dK) <∞,

since Wn is bounded and K is the segment of the length less than or equal to 2R.
Similarly,∫
C(2)

|ψn(K)|2λ(dK) =

∫
C(2)

l(K)2 1{K ∩Wn 6= ∅}
τnLeb(Wn)ELl2

λ(dK)

=
1

τnLeb(Wn)ELl2

∫
S0

l(K)2

∫
R2

1{(K + x) ∩Wn 6= ∅}dxQ(dK)

=
1

τnLeb(Wn)ELl2

∫
S0

l(K)2Leb(Ǩ ⊕Wn)Q(dK) <∞.

Hence, the assumptions of Theorem 3.3 are satisfied and so we can compute the explicit
bounds on the Wasserstein distance between a Gaussian random variable Z and the
innovation Iξ(n)(ψn) for each n ∈ N.

Take some fixed n ∈ N and α > 1. Using definition of the measure λ and Steiner
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theorem (cf. [11], p. 111), we obtain

||ψn||Lα(C(2),λ) =

(∫
C(2)

∣∣∣∣∣l(K)
1{K ∩Wn 6= ∅}√
τnLeb(Wn)ELl2

∣∣∣∣∣
α

λ(dK)

) 1
α

=
1√

τnLeb(Wn)ELl2

(∫
S0

l(K)αLeb(Ǩ ⊕Wn)Q(dK)

) 1
α

=
1√

τnLeb(Wn)ELl2

(∫ 2R

0

∫
S1

rαLeb(Ǩ ⊕Wn)Qφ(dφ)QL(dr)

) 1
α

=
1√

τnLeb(Wn)ELl2

(∫ 2R

0

rα
(
Leb(Wn) +

r

π
U(Wn)

)
QL(dr)

) 1
α

=
1√

τnLeb(Wn)ELl2

(
Leb(Wn)ELlα +

U(Wn)

π
ELlα+1

) 1
α

,

where U(Wn) denotes the perimeter of the set Wn. Note that since QL has a compact
support, it has all moments finite. Then the bound in Theorem 3.3 can be evaluated as

dW (Iξ(n)(ψn), Z) ≤
√

2

π

√
1− 2τn(1− βnb)||ψn||2L2(C(2),λ)

+ τ2
n||ψn||4L2(C(2),λ)

+ τn||ψn||3L3(C(2),λ) +

√
2

π
τ2
n||ψn||2L1(C(2),λ)|1− e−βn |

+ 2τ2
n||ψn||2L2(C(2),λ)||ψn||L1(C(2),λ)|1− e−βn |+ τ3

n||ψn||3L1(C(2),λ)|1− e−βn |2

=

√
2

π

√
1− 2(1− βnb)

(
1 +

1

π

U(Wn)

Leb(Wn)

ELl3

ELl2

)
+

(
1 +

1

π

U(Wn)

Leb(Wn)

ELl3

ELl2

)2

+
1√

τn(ELl2)3

(
1√

Leb(Wn)
ELl3 +

1

π

U(Wn)

Leb(Wn)3/2
ELl4

)

+

√
2

π

τn
ELl2

|1− e−βn |

(√
Leb(Wn)ELl +

1

π

U(Wn)ELl2√
Leb(Wn)

)2

+ 2
√
τn|1− e−βn |

(
1 +

1

π

U(Wn)

Leb(Wn)

ELl3

ELl2

)(√
Leb(Wn)

ELl√
ELl2

+
1

π

U(Wn)
√
ELl2√

Leb(Wn)

)

+ τ3/2
n |1− e−βn |2

(√
Leb(Wn)

ELl√
ELl2

+
1

π

U(Wn)√
Leb(Wn)

√
ELl2

)3

.

The convexity of Wn implies U(Wn)/Leb(Wn) → 0 as n → ∞. Combined with the
assumed growth of Leb(Wn), also dW (Iξ(n)(ψn), Z)→ 0 as n approaches +∞. �
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The assumption of βn → 0 as n → ∞ in Theorem 3.4 is limiting, analogously to
the assumption of r = 1/n in Example 5.9 in [13], where r was the hard-core distance.
It says that the interactions tend to zero in the sequence of processes investigated.
Up to our opinion the presented methodology does not enable to relax the assumption
βn → 0. Also we are not able to provide Gaussian approximation for the general form
of innovation in Definition 3.2, but only with the restriction in Theorem 3.3 that ϕ does
not depend on the second variable. Thus e. g. the functional giving the total number of
intersections of segments in the window cannot be well approximated. Generalization of
other approaches, e. g. that of [2], to the space of compact sets, seems to be promising
to solve the mentioned open problems.
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