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ON A SPECIAL CLASS OF LEFT-CONTINUOUS UNINORMS

Gang Li

This paper is devoted to the study of a class of left-continuous uninorms locally internal in the
region A(e) and the residual implications derived from them. It is shown that such uninorm can
be represented as an ordinal sum of semigroups in the sense of Clifford. Moreover, the explicit
expressions for the residual implication derived from this special class of uninorms are given.
A set of axioms is presented that characterizes those binary functions I : [0, 1]2 → [0, 1] for
which a uninorm U of this special class exists in such a way that I is the residual implications
derived from U .

Keywords: uninorm, internal operator, ordinal sum, residual implication, triangular sub-
norm

Classification: 06F05, 03E72, 03B52

1. INTRODUCTION

Triangular norms (t-norms) were originally introduced within the framework of prob-
abilistic metric spaces. Triangular norms and related fuzzy implications also play the
important role in the semantics of the fuzzy logics [17, 22]. For example, the continuous
t-norms play the role of the logical conjunction in the semantics of BL (basic logic)
and left-continuous t-norms in the semantics of MTL (monoidal t-norm based logic).
It is well known that the continuous t-norm can be characterized via the ordinal sum
construction of Clifford [10]. However, a full characterization of left-continuous t-norms
is still not known. Many different classes of left-continuous t-norms are constructed
in [21, 35]. Axiomatic characterization for the residual implications derived from left-
continuous t-norms have appeared along the time (see the monograph [3]).

Uninorms were introduced by Yager and Rybalov [45] as a generalization of t-norms
and t-conorms. Uninorms allows for a neutral element lying anywhere in the unit in-
terval rather than at one or zero as in the case of t-norms and t-conorms. Since the
introduction in 1996, uninorms have been studied by many authors from both theoreti-
cal and application points of view. The first deep study by Fodor et al. [18] revealed the
structure of uninorms. Uninorms and the residual implications derived from them have
been successfully used in many application fields where t-norms or t-conorms apply, for
example, expert systems [6, 47], decision making [32, 46], fuzzy integrals [23] and fuzzy
morphology [8]. On the other hand, the theoretical study of uninorms has been even
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more extensive [1, 5, 7, 11, 19, 20, 25, 26, 32, 36, 38, 40, 43]. It is well known that there
exists no continuous proper uninorms. Hence, it is essential and important to study
the class of left-continuous uninorms and the residual implications derived from them.
In [1], Aguiló et al. have given characterizations for the class of residual implications
derived from left-continuous conjunctive uninorms in a similar way as it done for left-
continuous t-norms. Moreover, a characterization for the particular cases when uninorm
U is representable, when U is continuous in ]0, 1[2 and when U is idempotent has also
been included in [1].

In this paper, we focus on a special class of left-continuous uninorms locally internal
in A(e) (see Definition 2.4). In section 2, we recall some basic results about uninorms
and the residual implications derived from them. In section 3, some properties of this
class of uninorms are presented and it is shown that the uninorms can be represented
as an ordinal sum of semigroups in the sense of Clifford (see Theorem 3.5). In section 4,
we concentrate on the residual implications derived from uninorms and give the explicit
expressions for the residual implications derived from this class of uninorms (see Theorem
4.1). Moreover, a set of axioms is presented that characterizes those binary functions
I : [0, 1]2 → [0, 1] for which a uninorm U of this class exists in such a way that I is the
residual implications derived from U (see Theorem 4.2). Hence, the results presented
here can be viewed as the complements to those appeared in [1].

2. PRELIMINARIES

In this section we will give some basic facts about triangular norms, triangular conorms
and uninorms. More details can be found in [2, 22].

Definition 2.1. (Alsina et al. [2], Klement et al. [22]) A triangular subnorm (t-
subnorm for short) is a commutative, associative, increasing function M : [0, 1]2 → [0, 1]
such that M(x, y) ≤ min(x, y) for all (x, y) ∈ [0, 1]2. Moreover, if 1 is the neutral element
of the t-subnorm, i. e., M(1, x) = x for all x ∈ [0, 1] then M is called triangular norm
(t-norm for short). The t-norm often is denoted by T . It is obvious that for t-norm T ,
T (x, y) ≤ min(x, y) for all (x, y) ∈ [0, 1]2.

A dual operation to a t-subnorm is t-superconorm.

Definition 2.2. (Alsina et al. [2], Klement et al. [22]) A triangular superconorm (t-
superconorm for short) is a commutative, associative, increasing function R : [0, 1]2 →
[0, 1] such that R(x, y) ≥ max(x, y) for all (x, y) ∈ [0, 1]2. Moreover, if 0 is the neutral
element of the t-superconorm, i. e., R(0, x) = x for all x ∈ [0, 1] then R is called triangular
conorm (t-conorm for short). The t-conorm often is denoted by S. It is obvious that for
t-conorm S, S(x, y) ≥ max(x, y) for all (x, y) ∈ [0, 1]2.

Definition 2.3. (Yager and Rybalov [45]) A uninorm is a commutative, associative,
increasing function U : [0, 1]2 → [0, 1] such that U(e, x) = x for all x ∈ [0, 1], where
e ∈ [0, 1] is often called the neutral element. If U(x0, x0) = x0 for some x0 ∈ [0, 1] then
x0 is called the idempotent element of U .

We summarize some fundamental results from [18].



On left-continuous uninorms 429

It is clear that the function U becomes a t-norm when e = 1 and a t-conorm when
e = 0. A uninorms can be also taken as a bipolar t-conorm on [−1, 1] (see [32]). For
any uninorm we have U(0, 1) ∈ {0, 1}. A uninorm U such that U(0, 1) = 0 is called
conjunctive and if U(0, 1) = 1 then it is called disjunctive.

Throughout this paper, we exclusively consider uninorms with a neutral element e
strictly between 0 and 1.

With any uninorm U with neutral element e ∈]0, 1[, we can associate two binary
operations TU , SU : [0, 1]2 → [0, 1] defined by

TU (x, y) =
1

e
· U(ex, ey)

and

SU (x, y) =
1

1− e
(U(e+ (1− e)x, e+ (1− e)y)− e).

It is easy to see that TU is a t-norm and that SU is a t-conorm. In other words, on [0, e]2

any uninorm U is determined by a t-norm TU , and on [e, 1]2 any uninorm U is determined
by a t-conorm SU ; TU is called the underlying t-norm, and SU is called the underlying
t-conorm. Hence, for uninorm U , we have U(x, y) ≤ min(x, y) for all (x, y) ∈ [0, e]2 and
U(x, y) ≥ max(x, y) for all (x, y) ∈ [e, 1]2. Let us denote the remaining part of the unit
square by A(e), i. e.,

A(e) = [0, 1]2\([0, e]2 ∪ [e, 1]2).

On the set A(e), any uninorm U is bounded by the minimum and the maximum of
its arguments, i. e., for any (x, y) ∈ A(e) it holds that

min(x, y) ≤ U(x, y) ≤ max(x, y). (1)

Note that uninorm (t-norm, t-subnorm, t-conorm) can be defined on any interval
I ⊆ [0, 1] by an isomorphic transformation from I to [0, 1].

The classes of Umin (respectively Umax) and representable uninorms were introduced
in [18]. After this, some other classes of uninorms were discussed like idempotent uni-
norms in [7, 29, 42], uninorms continuous in the open square ]0, 1[2 in [14, 20] and
uninorms with continuous underlying operators [15, 19, 24, 26, 33, 34]. Moreover, the
relations between different classes of uninorms were also discussed in [16, 27, 31].

There exists another class of uninorms [11, 16, 28] which has been extensively studied
in the literature, i. e., those uninorms that are locally internal in a region of [0, 1]2.

Definition 2.4. (Drygas et al. [16]) A uninorm U with neutral element e ∈]0, 1[
is called locally internal in a region R ⊆ [0, 1]2 if it satisfies U(x, y) ∈ {x, y} for all
(x, y) ∈ R.

The class of uninorms locally internal on the boundary of [0, 1]2 has been discussed
in [28] and the authors have shown that such uninorms can be represented as an ordinal
sum of semigroups in the sense of Clifford [10].

Note that the term locally internal (also called conservative in [37]) is first used to
describe the fact that the values of a monotonic and associative binary function [12] at
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all point (x, y) ∈ [0, 1]2 must equal to one of its argument. A full characterization of
such binary functions was given using a decreasing function g dividing the region where
the function takes the value of the minimum and the maximum. These results were used
later to characterize the idempotent uninorms [7, 29, 42] and also for the discussion of
those uninorms which are locally internal in A(e). Some results about the latter class
of uninorms are listed here.

Definition 2.5. (Baets et al. [9]) A decreasing function g : [0, 1] → [0, 1] is called
Id−symmetrical if its completed graph Fg satisfies

(x, y) ∈ F (g)⇔ (y, x) ∈ F (g), (2)

where

Fg = {(x, g(x)) : x ∈ [0, 1]} ∪ {(0, y) : y > g(0)} ∪ {(1, y) : y < g(1)}
∪{(s, y) : s− ≤ y ≤ s+},

s is any discontinuity point of g and s−, s+ are the corresponding lateral limits, i. e.,
s− = limx→s− g(x), s+ = limx→s+ g(x),

Some properties about the Id−symmetrical function was given in [13].

Proposition 2.6. (Drygas [13]) Let g : [0, 1] → [0, 1] be a decreasing function with
fixed point e ∈]0, 1[. Then g is Id−symmetrical if and only if g satisfies the following
conditions:

(i) inf{y : g(y) = g(x)} ≤ g(g(x)) ≤ sup{y : g(y) = g(x)} for all x ∈ [0, 1],

(ii) g is constant, say g(x) = s in the interval ]p, q[ with p < q, where

p = inf{x ∈ [0, 1] : g(x) = s}, q = sup{x ∈ [0, 1] : g(x) = s},

if and only if, s ∈]0, 1[ is a discontinuity point of g or s ∈ {0, 1} and it is satisfied
that

p =

{
limx→s+ g(x) s < 1,
0 s = 1,

and

q =

{
limx→s− g(x) s > 0,
1 s = 0.

Remark 2.7. Note that if g is strictly decreasing and continuous on an interval ]a, b[⊆
[0, 1] then g(]a, b[) =]c, d[⊆ [0, 1], g is also strictly decreasing and continuous on ]c, d[
and g(g(x)) = x for all x ∈]a, b[∪]c, d[.

Theorem 2.8. (Drygas [13], Ruiz-Aguilera et al. [42]) Let U be a uninorm with neutral
element e ∈]0, 1[ and locally internal in A(e). Then there exists a decreasing function
g : [0, 1]→ [0, 1] with g(e) = e which is Id−symmetrical, in such a way that U is given
in the region A(e) by

U(x, y) =

 min(x, y) y < g(x) or y = g(x) and x < g(g(x)),
max(x, y) y > g(x) or y = g(x) and x > g(g(x)),
x or y y = g(x) and x = g(g(x)).

(3)
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The function g in Theorem 2.8 is often called the associated function of the uni-
norm U .

Unfortunately, a full characterization for the class of uninorms in Theorem 2.8 is still
open. An interesting problems arise:

Problem: Whether the class of uninorms locally internal in region A(e) can also be
represented as an ordinal sum of semigroups in the sense of Clifford?

In this paper, we focus on the conjunctive, left-continuous uninorms which are locally
internal in the region A(e) and the residual implications derived from them which both
play the important role in fuzzy logics [44], fuzzy relational equations [4] and fuzzy mor-
phology [8]. Note that the residual implications derived from some classes of uninorms
have been discussed in [1, 39, 41] respectively.

Now, we recall here some facts on implications.

Definition 2.9. (Baczyński and Jayaram [3]) A binary function I : [0, 1]2 → [0, 1] is
said to be an implication function, or an implication, if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y for all z ∈ [0, 1].

(I2) I(x, y) ≤ I(x, z) when y ≤ z for all x ∈ [0, 1].

(I3) I(0, 0) = I(1, 1) = 1, I(1, 0) = 0.

Definition 2.10. (Baczyński and Jayaram [3]) Let U be a uninorm. The residual
operation derived from U is the binary operation given by

IU (x, y) = sup{z ∈ [0, 1] : U(x, z) ≤ y} (4)

for all x, y ∈ [0, 1].

For the residual operation derived from U , the following result holds.

Proposition 2.11. (De Baets and Fodor [5]) Let U be a uninorm. Then the residual
operation IU is implication if and only if the following condition holds:

U(x, 0) = 0 for all x < 1. (5)

The implication IU in Proposition 2.11 is usually called RU−implication.
Note that all conjunctive uninorms but also many disjunctive ones satisfy the con-

dition (5). However, when we focus on left-continuous uninorms, we immediately have
that uninorm U satisfies condition (5) if and only if U is conjunctive.

As for t-norm, the left-continuity of uninorm is an important property since the
corresponding RU−implication IU satisfies the residuation property.

Proposition 2.12. (Aguiló et al. [1]) Let U be a conjunctive uninorm and IU its
residual implication. Then U is left-continuous if and only if IU satisfies the residuation
property:

U(x, y) ≤ z ⇔ IU (x, z) ≥ y for all x, y ∈ [0, 1].
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Moreover, when U is left-continuous, some important properties are satisfied.

Proposition 2.13. (Aguiló et al. [1]) Let U be a left-continuous conjunctive uninorm
with neutral element e ∈]0, 1[. Then IU satisfies

(i) Counterpart for uninorms of the ordering property:

IU (x, y) ≥ e⇔ x ≤ y, x, y ∈ [0, 1]. (OPU )

(ii) Exchange principle:

IU (x, IU (y, z)) = IU (y, IU (x, z)), x, y, z ∈ [0, 1]. (EP)

An axiomatic characterization of the residual implications derived from conjunctive
left-continuous uninorm U was given in [1]. Moreover, a characterization for the par-
ticular cases when U is representable, when U is continuous in ]0, 1[2 and when U is
idempotent were also given in [1].

Theorem 2.14. (Aguiló et al. [1]) Let I : [0, 1]2 → [0, 1] be a function and e ∈]0, 1[.
The following statements are equivalent:

(i) I is an RU−implication derived from a left-continuous uninorm U with neutral
element e.

(ii) I satisfies (I2), (OPU ), (EP ) and I(x, ·) is right-continuous for all x ∈ [0, 1].

Moreover, in this case the uninorm U must be conjunctive and it is given by:

U(x, y) = inf{z ∈ [0, 1] : I(x, z) ≥ y}. (6)

3. THE STRUCTURE OF THE SPECIAL CLASS OF UNINORMS

In this section, we focus on the class of conjunctive, left-continuous uninorms locally
internal in the region A(e), that is, those uninorms that satisfy that U(x, y) ∈ {x, y}
for all (x, y) ∈ A(e). Note that the general uninorms locally internal in the region A(e)
have been studied in [13, 15].

By Theorem 2.8, the following result holds firstly.

Proposition 3.1. Let U be a conjunctive, left-continuous uninorm with neutral element
e ∈]0, 1[ and locally internal in A(e). Then there exists a decreasing, left-continuous
function g : [0, 1] → [0, 1] with g(0) = 1, g(e) = e which is Id−symmetrical, in such
a way that U is given in the region A(e) by

U(x, y) =

{
min(x, y) y ≤ g(x),
max(x, y) y > g(x).

(7)

P r o o f . By Theorem 2.8, there exists a unary left-continuous function g satisfies the
conditions in Proposition 3.1 and Eq. (7) holds since the left-continuity of U . Since U
is conjunctive, we have U(0, 1) = 0, g(0) = 1. �
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Proposition 3.2. Let U be a conjunctive, left-continuous uninorm with neutral element
e ∈]0, 1[ such that U is locally internal in A(e) and let g be its associated function. If g
is strictly decreasing and continuous on ]a, b[, then

(i) g(x) is an idempotent element of U for all x ∈]a, b[, and

(ii) x is an idempotent element of U for all x ∈]a, b].

P r o o f . (i) The proof is equal to the proof of Proposition 5 in [16].

(ii) By the similar proof of Proposition 5 in [16], we can prove that y ∈]a, b[ are idempo-
tent elements of U . By the left-continuity of U , we obtain that b is idempotent element
too. �

Proposition 3.3. Let U be a conjunctive, left-continuous uninorm with neutral element
e ∈]0, 1[ such that U is locally internal in A(e) and let g be its associated function. If g
is constant, say g(x) = s in the interval ]a, b] with a = inf{x ∈ [0, 1] : g(x) = s} < b =
sup{x ∈ [0, 1] : g(x) = s}, then the following statements hold.

(i) If ]a, b] ⊆ [0, e] then s is an idempotent element of U and U(x, y) = min(x, y) for all
(x, y) ∈ [0, a]×]a, e]∪]a, e]× [0, a].

(ii) If ]a, b] ⊆ [e, 1] then a is an idempotent elements of U and U(x, y) = max(x, y) for
all (x, y) ∈ [e, a]× [a, b] ∪ [a, b]× [e, a].

P r o o f . Note that the case e ∈]a, b[ can not appear since g is Id−symmetrical.

(i) By the similar proof of Proposition 6 in [16], we can prove that s is an idempotent
element of U . Now, we consider the point a:

• If there exists l < a such that g is strictly decreasing and continuous on ]l, a[. Then
by Proposition 3.2, the point a is an idempotent element of U . Due to the fact
that e is the neutral element of U and the monotonicity and the commutativity of
U , we have U(x, y) = min(x, y) for all (x, y) ∈ [0, a]×]a, e]∪]a, e]× [0, a].

• If a is only a discontinuity point of the function g then we can prove that U(u, v) =
u for all u, v such that u < a < v < b by the equal proof of Proposition 6 in
[16]. By the left-continuity of U , we have U(a, v) = a for all a < v < b and
U(u, b) = u for all u ≤ a. Due to the fact that e is the neutral element of U and
the monotonicity and the commutativity of U , we have U(x, y) = min(x, y) for all
(x, y) ∈ [0, a]×]a, e]∪]a, e]× [0, a].

(ii) Suppose ]a, b] ⊆ [e, 1]. Then s ≤ e. Considering the point a, we have the following
two cases:

• If there exists l < a such that g is strictly decreasing and continuous on ]l, a[. Then
by Proposition 3.2, the point a is an idempotent element of U .
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• If a is only a discontinuity point of the function g then we denote the left limit
limx→a− g(x) of g at point a by l. So, l ≤ e. Taking y ∈]s, l[ and u, v such that
e ≤ u < a < v < b, we have g(u) ≥ l > y > s = g(v) and U(u, v) ≥ max(u, v) =
v. So, g(U(u, v)) ≤ g(v) < y. By Proposition 3.1, the commutativity and the
associativity of U , we have

U(u, v) = max(U(u, v), y)
= U(U(u, v), y)
= U(v, U(u, y))
= U(v,min(u, y))
= U(v, y)
= max(v, y)
= v.

It means that U(u, v) = v for all u, v such that e ≤ u < a < v < b. By the
left-continuity of U , we have U(a, v) = v for all a < v ≤ b. So, U(a, a) ≤ a by the
monotonicity of U . Since U(a, a) ≥ a, we have U(a, a) = a.

Due to the fact that e is the neutral element of U and the monotonicity and the com-
mutativity of U , we have U(x, y) = max(x, y) for all (x, y) ∈ [e, a]× [a, b]∪ [a, b]× [e, a].

�

The new structure of the class of conjunctive, left-continuous uninorms which are
locally internal in A(e) is presented here. Firstly, we need the following results of Clifford
introduced in [10].

Theorem 3.4. Let A 6= ∅ be a totally ordered set and (Gα)α∈A with Gα = (Xα, ∗α)
be a family of semigroups. Assume that for all α, β ∈ A with α < β the sets Xα and
Xβ are either disjoint or that Xα ∩Xβ = {xαβ}, where xαβ is both the neutral element
of Gα and the annihilator of Gβ and where for each γ ∈ A with α < γ < β we have
Xγ = {xαβ}. Put X =

⋃
α∈AXα and define the binary operation ∗ on X by

x ∗ y =

 x ∗α y if (x, y) ∈ Xα ×Xα,
x if (x, y) ∈ Xα ×Xβ and α < β,
y if (x, y) ∈ Xα ×Xβ and β < α.

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and only if for
each α ∈ A the semigroup Gα is commutative.

According to three different cases of the associated function g at point 0, the struc-
tures of uninorms are given respectively in the following theorem.

Theorem 3.5. Let U be a conjunctive, left-continuous uninorm with neutral element
e ∈]0, 1[ such that U is locally internal in A(e) and let g be its associated function. Then
one of the following statements holds.

(i) If there exists the largest interval [0, r[ such that g is strictly decreasing and con-
tinuous on [0, r[, then the semigroup G = ([0, 1], U) is an ordinal sum of the
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semigroups G1 = (([0, r]∪]g(r), 1]), U) and G2 = ([r, g(r)], U). Moreover, in this
case, the restriction of U to ([0, r]∪]g(r), 1])2 is a conjunctive, left-continuous uni-
norms defined on [0, r]∪]g(r), 1] with the neutral element r, and the restriction of
U to [r, g(r)]2 is a conjunctive, left-continuous uninorms defined on [r, g(r)] with
the neutral element e.

(ii) If there exists the largest interval [0, r] such that g is constant on [0, r], i. e., g(x) = 1
for all x ∈ [0, r]. Then the semigroup G = ([0, 1], U) is an ordinal sum of the
semigroups G1 = (([0, r], U) and G2 = (]r, 1], U). Moreover, in this case, the
restriction of U to [0, r]2 is a left-continuous t-subnorm defined on [0, r], and the
restriction of U to ]r, 1]2 is a left-continuous uninorms defined on ]r, 1] with the
neutral element e.

(iii) If g is discontinuous at point 0, then the semigroup G = ([0, 1], U) is an ordinal sum
of the semigroups G1 = ([0, s], U) and G2 = (]s, 1], U), where s = limx→0+ g(x).
Moreover, in this case, the restriction of U to [0, s]2 is a conjunctive, left-continuous
uninorm defined on [0, s] with the neutral element e, and the restriction of U to
]s, 1]2 is a left-continuous t-superconorm defined on ]s, 1].

P r o o f . (i) By Proposition 2.6 and Remark 2.7, g(]0, r[) =]g(r), 1] and g is strictly
decreasing and continuous on ]g(r), 1[. By Proposition 3.2 and the trivial fact that 0, 1
are idempotent elements of U , arbitrary x ∈ [0, r]∪]g(r), 1] is an idempotent element
of U . Note that g(r) ∈ [e, 1[. Then U(g(r), g(r)) = g(r). In fact, since U(y, y) = y
for all y ≥ g(r), U(g(r), g(r)) ≤ g(r). Moreover, due to the fact that U(g(r), g(r)) ≥
max(g(r), g(r)) = g(r), it holds U(g(r), g(r)) = g(r). So, g(r) is an idempotent element
of U .

Due to Proposition 3.1, the monotonicity of U and the fact that e is the neutral
element of U , U(x, y) = min(x, y) for all (x, y) ∈ [0, r]× [r, e]∪ [r, e]× [0, r] and U(x, y) =
max(x, y) for all (x, y) ∈ [g(r), 1]×[e, g(r)[∪[e, g(r)]×[g(r), 1]. Moreover, U(x, y) ∈ {x, y}
for every (x, y) ∈ [0, r]×]g(r), 1]∪]g(r), 1]× [0, r] by Proposition 3.1. Thus, [0, r]∪]g(r), 1]
is closed under U . Since U(r, y) = y for all y ∈ [0, r]∪]g(r), 1] by Proposition 3.1, the
restriction of U to [0, r]∪]g(r), 1])2 is a conjunctive, left-continuous uninorms defined on
([0, r]∪]g(r), 1] with the neutral element r.

By the monotonicity of U and U(r, r) = r, U(g(r), g(r)) = g(r), we have U(x, y) ≥ r
for all (x, y) ∈ [r, e]2 and U(x, y) ≤ g(r) for every (x, y) ∈ [e, g(r)]2. Due to Proposition
3.1, U(x, y) = max(x, y) for all (x, y) ∈]g(r), 1]×[r, g(r)]∪[r, g(r)]×]g(r), 1] and U(x, y) =
min(x, y) for all (x, y) ∈ [0, r]× [e, g(r)]∪ [e, g(r)]× [0, r]. Hence, [r, g(r)] is closed under
U and the restriction of U to [r, g(r)]2 is a conjunctive, left-continuous uninorms defined
on [r, g(r)]) with the neutral element e. So, U(r, y) = U(y, r) = min(r, y) = r for all
y ∈ [r, g(r)].

Now, we construct two semigroups G1 = (([0, r]∪]g(r), 1]), U), G2 = ([r, g(r)], U) and
a totally ordered set A = {1, 2} equipped with the natural order of the real numbers. It
is obvious that U is an ordinal sum in the sense of Clifford of the semigroups G1, G2.

(ii) By Proposition 3.1, Proposition 2.6 and Proposition 3.3, U(x, y) = min(x, y) for
every (x, y) ∈ [0, r]×]r, 1]∪]r, 1] × [0, r]. So, [0, r] is closed under U and the restriction
of U to [0, r]2 is a left-continuous t-subnorm defined on [0, r]. Now, we prove that there
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exists no (x0, y0) ∈]r, e[2 such that U(x0, y0) = r. On the contrary, suppose that there
exists (x0, y0) ∈]r, e[2 such that U(x0, y0) = r. Then U(U(x0, y0), 1) = U(r, 1) = r and
U(x0, U(y0, 1)) = U(x0,max(y0, 1)) = U(x0, 1) = max(x0, 1) = 1, a contradiction with
the associativity of U . Hence, ]r, 1] is closed under U and the restriction of U to ]r, 1]2

is a left-continuous uninorms defined on ]r, 1] with the neutral element e. We construct
two semigroups G1 = (([0, r], U), G2 = (]r, 1], U) and a totally ordered set A = {1, 2}
equipped with the natural order of the real numbers. It is obvious that U is an ordinal
sum in the sense of Clifford of the semigroups G1, G2.

(iii) For the discontinuity point 0 of g, let us denote by s the corresponding right
limit s = limx→0+ g(x). By Proposition 2.6, g is constant in the interval ]s, 1]. From
Proposition 3.3, s is an idempotent element of U . Moreover, by Proposition 3.2,
U(x, y) = max(x, y) for all (x, y) ∈ [e, s] × [s, 1] ∪ [s, 1] × [e, s]. By the monotonicity of
g, we know that g(x) ≥ s for all x ∈ [0, e]. So, by Proposition 3.1, U(x, y) = max(x, y)
for all (x, y) ∈]0, e]×]s, 1]∪]s, 1]×]0, e]. It is obvious that [0, s] is closed under U and the
restriction of U to [0, s]2 is a conjunctive, left-continuous uninorm defined on [0, s] with
the neutral element e. Moreover, U(x, y) ≥ max(x, y) for all (x, y) ∈]s, 1]2. Hence, ]s, 1]
is closed under U and the restriction of U to ]s, 1]2 is a left-continuous t-superconorm
defined on ]s, 1]. We construct two semigroups G1 = (([0, s], U), G2 = (]s, 1], U) and a
totally ordered set A = {1, 2} equipped with the natural order of the real numbers. It
is obvious that U is an ordinal sum in the sense of Clifford of the semigroups G1, G2.

�

Remark 3.6. Note that Theorem 3.5 partially offers a positive answer to the Problem
in Section 2.

4. THE RESIDUAL IMPLICATION DERIVED FROM UNINORMS

In this section, we focus on the residual implication derived from the conjunctive, left-
continuous uninorm locally internal in the region A(e).

Theorem 4.1. Let U be a conjunctive, left-continuous uninorm with neutral element
e ∈]0, 1[ such that U is locally internal in A(e) and let g be its associated function. Then
the residual implication IU derived from U is given by

IU (x, y) =


max(g(x), y) x ≤ y ≤ e or x ≤ e ≤ y,
min(g(x), y) e ≤ y < x or y ≤ e ≤ x,
e · ITU

(xe ,
y
e ) y < x ≤ e,

e+ (1− e) · ISU
(x−e1−e ,

y−e
1−e ) e ≤ x ≤ y.

(8)

P r o o f . We divide the proof in some cases.

• x ≤ y ≤ e. Then y ≤ e ≤ g(x). In this case, we have U(x, y) ≤ min(x, y) = x. If
we take z satisfying e ≤ z ≤ g(x), then U(x, z) = min(x, z) = x ≤ y. Moreover, if
we take z satisfying g(x) < z, U(x, z) = max(x, z) = z > y, and then

IU (x, y) = sup{z : z ∈ [0, 1], U(x, z) ≤ y} = g(x) = max(g(x), y).
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• x ≤ e ≤ y, y ≤ g(x). In this case, we have U(x, y) = min(x, y) = x ≤ y. If we take
z satisfying y ≤ z ≤ g(x), then U(x, z) = min(x, z) = x ≤ y. Moreover, if we take
z satisfying g(x) < z, U(x, z) = max(x, z) = z > y, and then

IU (x, y) = sup{z : z ∈ [0, 1], U(x, z) ≤ y} = g(x) = max(g(x), y).

• x ≤ e ≤ y, g(x) < y. In this case, we have U(x, y) = max(x, y) = y. If we take z
satisfying g(x) < z ≤ y, then U(x, z) = max(x, z) = z ≤ y. Moreover, if we take z
satisfying y < z, U(x, z) = max(x, z) = z > y, and then

IU (x, y) = sup{z : z ∈ [0, 1], U(x, z) ≤ y} = y = max(g(x), y).

• e ≤ y < x. Then g(x) ≤ e ≤ y. In this case, we have U(x, y) ≥ max(x, y) = x. If
we take z satisfying z ≤ g(x), then U(x, z) = min(x, z) = z ≤ y. Moreover, if we
take z satisfying g(x) < z, U(x, z) = max(x, z) > y, and then

IU (x, y) = sup{z : z ∈ [0, 1], U(x, z) ≤ y} = g(x) = min(g(x), y).

• y ≤ e ≤ x, y ≤ g(x). In this case, we have U(x, y) = min(x, y) = y. If we take z
satisfying x ≥ z > y, then U(x, z) ≥ min(x, z) = z > y and

IU (x, y) = sup{z : z ∈ [0, 1], U(x, z) ≤ y} = y = min(g(x), y).

• y ≤ e ≤ x, g(x) < y. In this case, we have g(x) ≤ e and U(x, y) = max(x, y) =
x ≥ y. If x = y = e then IU (x, y) = IU (e, e) = e = g(e) = min(g(x), y). In the
sequent, without loss of generality, we assume that y < x. If we take z satisfying
z ≤ g(x), then U(x, z) = min(x, z) = z ≤ y. Moreover, if we take z satisfying
g(x) < z, U(x, z) = max(x, z) > y, and then

IU (x, y) = sup{z : z ∈ [0, 1], U(x, z) ≤ y} = g(x) = min(g(x), y).

• y < x ≤ e. In this case, we have U(x, y) ≤ min(x, y) = y. Due to the fact that
U(x, z) ≥ min(x, z) = x > y for all z ∈]e, 1], we have

IU (x, y) = sup{z : z ∈ [0, 1], U(x, z) ≤ y}
= sup{z : z ∈ [0, e], e · TU (xe ,

z
e ) ≤ y}

= e · sup{ ze : ze ∈ [0, 1], TU (xe ,
z
e ) ≤ y

e}
= e · ITU

(xe ,
y
e ).

• e ≤ x ≤ y. In this case, we have U(x, y) ≥ max(x, y) = y. Due to the fact that
U(x, z) ≤ max(x, z) = x ≤ y for all z ∈ [0, e], we have

IU (x, y) = sup{z : z ∈ [0, 1], U(x, z) ≤ y}
= sup{z : z ∈ [e, 1], e+ (1− e) · SU (x−e1−e ,

z−e
1−e ) ≤ y}

= e+ (1− e) · sup{ z−e1−e : z−e1−e ∈ [0, 1], SU (x−e1−e ,
z−e
1−e ) ≤ y−e

1−e}
= e+ (1− e) · ISU

(x−e1−e ,
y−e
1−e ).
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�
From Theorem 4.1 , we can derive the following result.

Theorem 4.2. Let I : [0, 1]2 → [0, 1] be a function and e ∈]0, 1[. The following state-
ments are equivalent:

(i) I is an RU−implication derived from a left-continuous uninorm U with neutral
element e which is locally internal in A(e).

(ii) I satisfies (I2), (OPU ), (EP ), I(x, ·) is right-continuous for all x ∈ [0, 1], and there
exists a function g : [0, e]→ [e, 1] such that I(x, y) = max(g(x), y) for all x ≤ e ≤ y
or x ≤ y ≤ e.

Moreover, in this case the uninorm U must be conjunctive and it is given by:

U(x, y) = inf{z ∈ [0, 1] : I(x, z) ≥ y}.

P r o o f . If U is a left-continuous uninorm locally internal in A(e), then I clearly satisfied
all conditions in (ii) by Theorem 2.14 and Theorem 4.1.

Conversely, if I satisfies all conditions in (ii) then by Theorem 2.14 I must be the
residual implication derived from the conjunctive, left-continuous uninorm given by

U(x, y) = inf{z ∈ [0, 1] : I(x, z) ≥ y}.

Thus, we only need to prove that in our case such uninorm must be locally internal in
A(e).

Since for all x ∈ [0, e], x = U(x, e) = inf{z ∈ [0, 1] : I(x, z) ≥ e} = inf{z ∈ [x, e] :
I(x, z) ≥ e} = inf{z ∈ [x, e] : max(g(x), z) ≥ e}, we have g(x) ≥ e for all x ∈ [0, e].

Since g(e) = U(e, g(e)) = inf{z ∈ [0, 1] : I(e, z) ≥ g(e)} = inf{z ∈ [e, 1] : I(e, z) ≥
g(e)} = inf{z ∈ [e, 1] : max(g(e), z) ≥ g(e)} = e, we have g(e) = e.

For arbitrary x1 ≤ x2 ≤ e, we have I(x1, e) = max(g(x1), e) = g(x1) and I(x2, e) =
max(g(x2), e) = g(x2). Since I is an implication and is decreasing with respect to the
first argument, g(x1) ≥ g(x2), i. e., g is decreasing.

Since 0 = U(0, 1) = inf{z ∈ [0, 1] : I(0, z) ≥ 1} = inf{z ∈ [0, e] : I(0, z) ≥ 1} =
inf{z ∈ [0, e] : max(g(0), z) ≥ 1} = inf{z ∈ [0, e] : g(0) ≥ 1}, we have g(0) = 1.

For all x ≤ e ≤ y, we have x ≤ U(x, y) ≤ y by Eq. (1).

• If y > g(x) then

U(x, y) = inf{z ∈ [0, 1] : I(x, z) ≥ y}
= inf{z ∈ [x, 1] : I(x, z) ≥ y}
= inf{z ∈ [x, 1] : max(g(x), z) ≥ y}
= inf{z ∈ [x, 1] : z ≥ y}
= y.

Hence, U(x, y) = max(x, y) = y.
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• If y ≤ g(x) then

U(x, y) = inf{z ∈ [0, 1] : I(x, z) ≥ y}
= inf{z ∈ [x, 1] : I(x, z) ≥ y}
= inf{z ∈ [x, 1] : max(g(x), z) ≥ y}
= inf{z ∈ [x, 1]}
= x.

Hence, U(x, y) = min(x, y) = x.

So, the uninorm U is locally internal in A(e) by the commutativity of U . �

5. CONCLUSIONS

One of the most used classes of conjunctions and fuzzy implications is the class of left-
continuous t-norms and their residual implications, but recently, many other kinds of
functions are used in this framework. In this paper, we discuss the structure of the con-
junctive, left-continuous uninorms locally internal in A(e) and give an axiomatic charac-
terization of those binary functions I : [0, 1]2 → [0, 1] that are the residual implications
derived from this special class of uninorms, in a similar way to the characterization of
residual implications derived from left-continuous uninorms. Our results can be taken
as complements to those in [1].

Note that using the so-called weak law of importation (WLI), another characteri-
zation of residual implication derived from this special class of uninorms can be given
by Theorem 31 in [30]. We say that a function I : [0, 1]2 → [0, 1] satisfies the weak
law of importation if there exist a conjunctive, commutative and nondecreasing function
F : [0, 1]2 → [0, 1] such that I(F (x, y), z) = I(x, I(y, z)) for all x, y, z ∈ [0, 1] and then
we say that I satisfies (WLI) with the function F .

Theorem 5.1. Let I : [0, 1]2 → [0, 1] be a function and e ∈]0, 1[. The following state-
ments are equivalent:

(i) I is an RU−implication derived from a left-continuous uninorm U which is locally
internal in A(e).

(ii) I satisfies (OPU ) and (WLI) with a conjunctive, left-continuous uninorm U .
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