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CALCULUS ON SYMPLECTIC MANIFOLDS

MICHAEL EASTWOOD AND JAN SLOVAK

ABSTRACT. On a symplectic manifold, there is a natural elliptic complex
replacing the de Rham complex. It can be coupled to a vector bundle with
connection and, when the curvature of this connection is constrained to be
a multiple of the symplectic form, we find a new complex. In particular, on
complex projective space with its Fubini-Study form and connection, we can
build a series of differential complexes akin to the Bernstein—Gelfand—Gelfand
complexes from parabolic differential geometry.

1. INTRODUCTION

Throughout this article M will be a smooth manifold of dimension 2n equipped
with a symplectic form J,;. Here, we are using Penrose’s abstract index notation [15]
and non-degeneracy of this 2-form says that there is a skew contravariant 2-form
J® such that J,;,J% = §,° where §,¢ is the canonical pairing between vectors and
co-vectors.

Let A* denote the bundle of k-forms on M. The homomorphism

/\k - /\k72 given by ¢abc~~~d = Jab¢abc~~d

is surjective for 2 < k < n with non-trivial kernel, corresponding to the irreducible

representation
e o .o e o . o «ts of Sp(2n,R)C GL2n,R).

4 k™ node

Denoting this bundle by /\’i, there is a canonical splitting of the short exact
sequence
0— A% = AP AF2 0
™
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and an elliptic complex [2] [, [TT], [T6] [I§]
0 — A0 4, Al A2 A3 L L A
(1) 12

0 — A0 dy Al dy /\i dy /\?i do . du A

dy dy
— —

where
— d: A\° — Al is the exterior derivative,
for 1 < k < n, the operator d; : Ak — /\’fr1 is the composition

NE s AF AR T AR
a first order operator,
—dy: /\’j_"'1 — Ak are canonically defined first order operators, which may be
seen as adjoint to d : /\’j_ — /\’i“,
— d?: A\ — A" is the composition
AL S NS AT
a second order operator.
More explicitly, formulz for these operators may be given as follows. Firstly, it is
convenient to choose a symplectic connection V,, namely a torsion-free connection
such that V,Jp. = 0, equivalently V,J% = 0. As shown in [I2], for example,

such connections always exist and if V is one such, then the general symplectic
connection is

ﬁa(bb = vagzl)b + JCdEabc¢d where Habe = E(abc) .

Then, for 1 < k < n, the operator d; : A¥ — /\’j_‘H is given by

(2) Pdefg = VieQdes-g) — 5=y " (Vables.g) Jea
and d; : AR — AE s given by
(3) ¢cdef~~-g L chvb’(/}cdefmg .

Now suppose E is a smooth vector bundle on M and V: E — Al ® E is a
connection. Choosing any torsion-free connection on Al induces a connection on
A' ® E and, as is well-known, the composition

ANQE->AN'9A'QFE - A2QF

does not depend on this choice. (It is the second in a well-defined sequence of
differential operators

(4) ELANGQE LANQEY ... LA 1gE Y A A g R

known as the coupled de Rham sequence.) In particular, we may define a homomor-
phism ©: E — E by

JOV, V¥ = ﬁ@E for ¥ e T'(E).
It is part of the curvature of V and if this is the only curvature, then
(5) (VaVy — vaa)z =2J,0%,
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and we shall say that V is symplectically flat. Looking back at , it is easy to see
that there are coupled operators

v 1 \Y 2 \Y \Y% n—1 v

4

explicit formulze for which are just as in the uncoupled cases and (). To
complete the coupled version of let us use

(6) Vi—%@:/\ﬁ@E—M\ﬁ@E
for the middle operator. It is evident that
ELANQE TS A2 QF
is a complex if and only if V is symplectically flat. The reason for the curvature

term in @ is that this feature propagates as follows.

Theorem 1. Suppose E RN ® E is a symplectically flat connection and define
O: F— E by , Then the coupled version of

0 - E 5 ANleE Y5 A2oE Y5 ... Y5 AngE
|v2 - 20
0« E & NeE & ANgE & ... 2 AgE

is a complex. It is locally exact except near the beginning where

ker V :/\1®EH/\3_®E
imV:E—-A'QFE

may be identified with the kernel and cokernel, respectively, of © as locally constant

sheaves.

kerV:E—>A'®F and

More precision and a proof of Theorem [1| will be provided in Our next theorem
yields some natural symplectically flat connections.

Theorem 2. Suppose M is a 2n-dimensional symplectic manifold with symplectic
connection V,. Then there is a natural vector bundle T on M of rank 2n + 2
equipped with a connection, which is symplectically flat if and only if the curvature
Rap¢q of Vg has the form

(7) Rapa = 0a“Poa — 0 Paa + JaaPre S — JoaPac “ + 2JapPac
for some symmetric tensor Pgp.

In particular, the Fubini—-Study connection on complex projective space is symplectic
for the standard Kéahler form and its curvature is of the form for Pup = gas,
the standard metric. More generally, if the symplectic connection V,, arises from a
Kéhler metric, then we shall see that holds precisely in the case of constant
holomorphic sectional curvature.

After proving Theorems [I] and [2} the remainder of this article is concerned with
the consequences of Theorem [1| for the vector bundle 7 and those bundles, such
as @k’T, induced from it. In particular, these consequences pertain on complex
projective space where we shall find a series of elliptic complexes closely following



268 M. EASTWOOD AND J. SLOVAK

the Bernstein-Gelfand-Gelfand complexes on the sphere S2"*1 as a homogeneous
space for the Lie group Sp(2n + 2, R).

This article is based on our earlier work [IT] but here we focus on the simpler
case where we are given a symplectic structure as background. This results in fewer
technicalities and in this article we include more detail, especially in constructing
the BGG-like complexes in §5] Further indications justifying the shape of our
complexes can be found in [3| [ B} 6 [7].

2. THE RUMIN-SESHADRI COMPLEX

By the Rumin—Seshadri complex, we mean the differential complex after [16].
However, the 4-dimensional case is due to R.T. Smith [I7] and the general case is
also independently due to Tseng and Yau [I8]. In this section we shall derive the
coupled version of this complex as in Theorem (1} our proof of which includes (|1
as a special case. The following lemma is also the key step in [IT].

Lemma 1. Suppose E is a vector bundle on M with symplectically flat connection
V:E - AN ®EFE. Define©® : E — E by , Then © has constant rank and the
bundles ker © and coker © acquire from V, flat connections defining locally constant
sheaves ker © and coker ©, respectively. There is an elliptic complex

E Y ANoE Y ANoE Y NoE X AQE

N o Xooe X oo Xooe o,
E

— A'QFE — AN2QFE — ANQF

where the differentials are given by

Vi 10) Vop—-J®n w Vw4 J AP
ZH{@E} [n]H[ Vi - 06 v |7 Vot ew
It is locally exact save for the zeroth and first cohomologies, which may be identified
with ker © and coker ©, respectively.

Proof. From the Bianchi identity for V reads
0= V[a(ch]G) = Ju V0O
and non-degeneracy of J; implies that V,0 = 0. Consequently, the homomorphism

O has constant rank and the following diagram with exact rows commutes

0 — ker © — F S, FE — coker © — 0

lv lv
0 - AN'@ker® - A'®FE o, NRE — Al'®coker® — 0

and yields the desired connections on ker © and coker ©, which are easily seen to
be flat. Ellipticity of the given complex is readily verified and, by definition, the
kernel of its first differential is ker ©. To identify the higher local cohomology of
this complex the key observation is that locally we may choose a 1-form 7 such
that dr = J and, having done this, the connection

N(E)>2+Y- VS~ r© 0% e (Al ® E)
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is flat. The rest of the proof is diagram chasing, using exactness of

E—>/\1®E—>/\2®E—>/\3®E /\4®E—>-~-.
If needed, the details are in [IT]. O

Proof of Theorem [Il In [I1], the corresponding result [I1, Theorem 4] is proved
by invoking a spectral sequence. Here, we shall, instead, prove two typical cases
‘by hand,’ leaving the rest of the proof to the reader.

For our first case, let us suppose n > 3 and prove local exactness of

ANRE YA QFE Y5 A @F
Thus, we are required to show that if w,;, has values in F and
Wab = Wiah] J%wap =0 Viwae = 75 (Vaws(e) Jue)
then locally there is ¢, € I'(A! ® E) such that
Wed = Vieha) — 359 (Va®p) Jea-
If we set ¢, = —ﬁ]“bvawbc, then Vicwge + J[eqtPe) = 0 s0
0=VpVewie + JpeVate) = JpcOwae) + JpeVabe
and since J A _: A2 — A? is injective it follows that
Vietq + Oweqg = 0.
In other words, we have shown that
Vw+JAY=0
Vi +0Bw =20
and Lemma locally yields ¢, € I'(A! ® E) and n € I'(E) such that
Via®s) — Javn = Wab ,
Van = O¢a =Y.
In particular,
TN oty — 2nm = J* (Vady — Japn) = Jwap = 0
and, therefore,
Vietd — 32 (Vabs)Jed = Vicha) — NJea = wed

as required.

Our second case is more involved. It is to show that
2

n VJ.f%@ n Vi n—1
(8) NIQE —"— NI QF — N7 ®F
is locally exact. As regards V| : AT @ E — /\Z71 ® FE, notice that
TP N ptedef..qg = SEE TV pUedef. g

and that if ¢ges..., € T(AF ® E), then

c _ 4( k) -1) c
9) T T Pacs-o) = TATEFD Pdesa + DRI Do
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80 if Ggef...q € D(AT™' ® E), then
TP Tpederg) = wpnsy Pdes-g -
Therefore, V1 € T(A"}"' @ E) is characterised by
(10) JAV1Y=2Vy
as an equation in A"T! ® E. In particular, in A"*2? ® E we find
J/\VVL’L/J:V(J/\VLZ/J):%V2’¢J:J/\@”(/J:O

whence VV | 9 already lies in /A" ® E and there is no need to remove the trace as
in to form V2 4. Therefore, invoking once again, the composition

"RE VS ATIQE Y AT E VS AR E
is characterised by
JAV3Y =2VV3p=2V2V ¢ =2J N0V p=2]J AV O¢

and, since J A _: A""! — A"l is an isomorphism, we conclude that V31 =
%V 101, equivalently that is a complex.

Before proceeding, let us remark on another consequence of @, namely that for
Vedef..g € DA™ ® E),

(11) J[achdef~--g] =0 JCdVCdef...g =0.

Now to establish local exactness, suppose v € I'(A"} ® E) satisfies V v = 0.
Equivalently, according to and

vel'(A"®E) satisfies V=0 and JAv =0.
Lemma, [I] implies that locally there are

i) g II;((//QZ,(? g)E) such that quﬁv; i /6\)2 z S
Since
0 A2 e An LA g
is exact, we can write ¢ uniquely as
p=v+JAT,

where ¢ € T(A} ® E) and 7 € T(A""? @ E). We conclude that

VQZJV%—JQMZ i S’ (where 1 =n— V).
However, as discussed above, these equations say exactly that

Viv—20¢=v,

and exactness is shown. O
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3. TRACTOR BUNDLES

For the rest of the article we suppose that we are given, not only a manifold
M with symplectic form Jg;, but also a torsion-free connection V, on the tangent
bundle (and hence on all other tensor bundles) such that V,J,. = 0. This is
sometimes called a Fedosov structure [12] on M. The curvature R4 of Vg,
characterised by

(VaVe — VuVa) X = Rap“aX?,
satisfies
Rap’a = Riay)a  Bap‘qg =0  Rap‘adee = Rapedea
and enjoys the following decomposition into irreducible parts
Rapa = Vay“a + 6a“Poa — 6Paa + JaaPre S — JoaPaed “ + 2J0pPac S,
for some symmetric P, where V%3 = 0 (reflecting the branching

H = Hi o m
of representations under GL(2n,R) D Sp(2n,R)). Notice that

(12) Pya = ﬁRabad = mJaeRaechcd .

We define the standard tractor bundle to be the rank 2n + 2 vector bundle 7 =
AP @ Al @ A with its tractor connection

o Va0 — pig
Va Hb = V(/L,uJb + Jabp +Puo ) where Sa = 2n1+1 chchab .
o Vap — PapJ® e + S,0

Readers familiar with conformal differential geometry may recognise the form of
this connection as following the tractor connection in that setting [I]. If needs
be, we shall write symplectic tractor connection to distinguish the connection just
defined from any alternatives. We shall need the following curvature identities.

Lemma 2. Let Y. = ﬁVCVabcd. Then
(13) Yabe = 2V 4Py — 2Jc[aSp) + 2JapSe
and
TN o Yoea = J*WVieaPea + 4n(J*"PpaPea — V. S0))
(14) + 2J5e IV o Sq — JPoePay) .
Proof. Writing the Bianchi identity V[aRbc}de = 0 in terms of V¢4 and P, yields
VieVige = =203 VaP e + 2JY T, VaPy s — 2JY Jpo Vo Pey -

and contracting over ,? gives

. P
%Va‘/bcae = %V[bpc]e + g [V[ch]e - (2n + l)Je[bSc]]

—+ [(277, + 1)chSe + 2v[ch]e] )

Wil N
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which is easily rearranged as . For , firstly notice that

JRupq = JRapq = 2(n + 1)JPyy
and the Bianchi symmetry may be written as R, = —%Rbcea. Thus,

JUN o VpPeg = V" VoPeq — J"RapcPea — J* RapaPee

= —(2n+1)VpS, — J" Ry Peg + 2(n + 1) J¥Pp P,

and so
JUN  VpPa = —(2n 4+ 1)VSg + 5% Roc®aPea + 2(n + 1) J9PyqPee .
From we see that
J Yoea = 27V VP a + 2V (S + 205"V S .
Therefore,
TN o Yiea = J" Ry oPea — 4nV pSe + 4(n + 1) J“PyaPee + 250 J "V 0 S -
Finally,
T RyctaPea = J*Vie Peq = 47" 'PraPea = 2Jpc ] T/ PacPar |

SO
T Yoea = "WV aPea + AnJ " PpoPeg — 20, T TPy Pys
— AnV Sy + 2JpeJ IV 0 S,
which may be rearranged as (14)). O

Proposition 1. The tractor connection T — A' ®@ T preserves the non-degenerate
skew form

o o
< By | | fe >—05+chubﬂcp5’

p p
and its curvature is given by
o 0
(VaVa =V Vo) |pa| = —Var©apte + Yapao
P _YachCd,U/d + ﬁ(JCdVabecPde - JCdchabd)U
p
+2Jab JcePcd,U/e - Sda

Se g + ﬁJCd(Vch — J¢ P Pys)o
Proof. We expand

o o o o
<va Hb ) /]'c > + < Mo ava ﬂc >
p p p p
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to obtain
(vao - ,U/a)ﬁ + U(Vﬁ - PabeC,ac + Sa&)

+ ch(vaub + Jabp + Pabo-)/]c + chﬂb(va,ac + Jacﬁ + Paca-)

- (vap - Pabec,U/c + Saa)& - P(Va5 - ﬂa)
in which all terms cancel save for

(Vao)p+0oVp+ ch(va/ib)/lc + chﬂbvaﬂc —(Vap)d — pVaG,
which reduces to
Va(op+ I mfic = pg)

as required. For the curvature, we readily compute

o V[avb}a - Jbap
VieVy | Ha | = | VieVyra + JaaPrjcd “te — Pajatte) + Tabao ;
p ViaVe)p = Taved“Upia + (Vi Sy — JPcPrg)o

where Tupe = ViaPyje — Je[aSy)- Lemma@, however, states that
Tabc = %Yabc - JabSc

and
4n(v[aSb] - JCdPachd) = JCdVabecPde - JCdchabd
+ 2JabJCd(VCSd — JefPCSPdf) .
Therefore,
o 0
VieVy | Ha | = ViaViita + JajaPojed “ pie — Pajapie) + 5 Yabao
14 _%YachCd/fvd + ﬁ(JCdVabecPde - JCchYabd)U
p
+ Jab -S40
Sed g+ 5=JUVSq — JFPPys)o
Finally,
RapCapre = Varatte — 2P gjapiy) + 2JaaPrjed “pte + 2JapPae S “pic
SO
v[(lvb]/lj’d + Jd[an]cheMe - Pd[alib] = _% abcd,uc - JadeeJce,u/c
whence
o 0
v[avb] Hd = _% abcdﬂc + %Yabdo—
14 _%YachCdﬂld + ﬁ(JCdVabecPde - JCdchabd)J
p
+ Jab JcePcdﬁLe - SdU )

Sed g + =TV Sq — TP Pys)o

as required. O
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Corollary 1. The tractor connection is symplectically flat if and only if the
curvature tensor Vy,€q vanishes.

4. KAHLER GEOMETRY

Kéhler manifolds provide a familiar source of symplectic manifolds equipped
with a compatible torsion-free connection as in In this case, the connection V,
is the Levi-Civita connection of a metric gq, and J,* = J,.¢% is an almost complex
structure on M whose integrability is equivalent to the vanishing of V,Jp.. In
Kahler geometry, the Riemann curvature tensor decomposes into three irreducible
parts:

Rap®a = Unp®a
+00°Epd — 06°Cad — 9ad=p® + GbaZa©
+ JaBpd — JpBad — Jad2p® + Jpa2a + 2J0p g + 2 g qp
+ A(0a®gbd — 06 Gad + JaIva — Jp°Jaa + 2JapJq)

(15)

where indices have been raised using ¢*® and
— Ugp©q is totally trace-free with respect to ¢, J,°, and J2,
— Zgap is trace-free symmetric whilst 3., = J,°Ey. is skew.
Computing the Ricci curvature from this decomposition, we find
Rpg = Rop%q = 2(Tl + Q)Ebd + 2(71 + I)Agbd
and therefore from conclude that

2=
Pab = Lil:ab + Agab .

Hence
Je"Rap®a = J"Vap®a — JpaPa” — 204" Paa

n -+ 2
n+1

= Jcavabcd -2 Zbd — 2(n + 1>Ade .

On the other hand, from we find
JORapa = —2(n+2)Xpg — 2(n + 1) Adpg
and, comparing these two expressions gives

JeVapa — Q%Ebd = —2(n+ 2)Xpg

and we have established the following.
Proposition 2. Concerning the symplectic curvature decomposition on a Kdéhler
manifold,

JeVap©a = _271(:7:_12)2bd :

Corollary 2. The symplectic tractor connection on a Kdihler manifold is symplec-
tically flat if and only if the metric has constant holomorphic sectional curvature.
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Proof. According to Corollary [1, we have to interpret the constraint Vg ;¢4 = 0 in
the Kéhler case. From it is already clear that U,;°q = 0 and Proposition
implies that also X, = 0 so reduces to

Rapa = A6a9vd — 06 9ad + Ja“Toa — Jo°Jaa + 2Jap I a) ,

which is exactly the constancy of holomorphic sectional curvature. O

5. BGG-LIKE COMPLEXES ON CP,

Fix a real vector space g_; of dimension 2n, let g; denotes its dual, and fix
a non-degenerate 2-form J,;, € A?g;. The (2n + 1)-dimensional Heisenberg Lie
algebra may be realised as

b =R b g-1,
where the first summand is the 1-dimensional centre of h and the Lie bracket on
g_1 is given by
[(X,Y] =2JXYP cR—h.

We should admit right away that the reason for this seemingly arcane notation is
that we shall soon have occasion to write

(16) sp(2n+2,R)= g2 ® g1 ® go © g1 D go

I | I

R sp(2n,R) & R R
(a |2|-graded Lie algebra as in [8, §4.2.6]) and, in particular, regard h = R @ g_1 =
g_2 ® g_1 as a Lie subalgebra of sp(2n + 2, R). Be that as it may, let us suppose
that V is a finite-dimensional representation of h. The Lie algebra cohomology
H"(h,V) may be realised as the cohomology of the Chevalley-Eilenberg complex

(17) 0-V—-bheV— - APV AT V...
as, for example, in [I3] Chapter IV]. We shall require, however, the following
alternative realisation.

Lemma 3. There is a complex

0-V -5 eV A2gev & 0 25 Arg eV
(18) |
0V & oV & Agev & 0 2 Atg eV
whose cohomology realises H" (b, V). Here, we are writing
N1 g1 = {Wabe-.a € N'g1 | JWape...a = 0},
where J% € N?g_1 is the inverse of Ju € N?g1 (let’s say normalised so that
Jap S = 6°).

Proof. Notice that any representation p : h — End(V) is determined by its
restriction to g_; C b. Indeed, writing 9, : g—1 — End(V) for this restriction, to
say that p is a representation of b is to say that

((‘)aab —8b8a)v = 2Jab91} } Yo € V7

(19) (90 — 00,0 = 0
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where 6 € End(V) is p(1) for 1 e R C h.
The splitting h* = g1 @ R allows us to write as
V — eV — A"V — APV —

| [ |
(20) V— g1V — AZgi oV — A1V — ..,

N 0 Xoe X oe X

\Y% — 1V — /\291®V —

where the differentials are given by

|: 80,” :| |: (ba :| — |: a[a¢b] - Jabn :| |: Wab :| N |: 8[awbc] + J[abz/}c]

N2 n Da) — 004 Va Oattr) + vt
et cetera. In particular, notice that the homomorphisms
(21) AN lg s — £TAY e AT lgy
are

— independent of the representation on V,

— injective for 1 <7 < n,

— an isomorphism for r = n,

— surjective for n < r < 2n — 1.
Note that /\T‘lgl is complementary to the image of for 1 < r < n. Also note
the isomorphisms

NZtL=rg, INInenT AN tg, forn<r<2n+1,
under which the kernel of may be identified with
/\i”"'l_"gl, for n<r<2n-1.
Diagram chasing in (or the spectral sequence of a filtered complex) finishes

the proof. O
Remark. Evidently, the equations are algebraic versions of

(VaViy — VuVa)S = 27,08
(Va® —OV,)S = 0

which hold for a symplectically flat connection V, on smooth vector bundle F
on M. Also is the evident algebraic counterpart to the differential complex of
Lemma [1} It follows that explicit formulee for the operators 0, in the complex (18]
follow the differential versions and with AT g®V — A'lg ® V being given
by 9% — %9.

Let us now consider the tractor connection on CP,,. According to Theorem [2], the
remarks following its statement, and the discussions in this is the connection
on T =A@ A @ A" given by

} VY eI (E).

o Va0 — lg V.o —Ha
Val| o | = | Vaps +Japp + gavo | = | Vapio + gavo | + | Jasp
P Vap — Jabﬂb Vap — Jabﬂb 0
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The induced operator V: A' @ T — A2 @ T is

oy V(a0 H{ab]
Hbe | — V[aub]c + GclaOb] + | - claPb)
Pb Viapr) — Jia Hpje

but Corollary [2] says the tractor connection on CP,, is symplectically flat so we
should contemplate V| : A' ® T — A% ® T from Theorem [1} viz.

o V10 — 35 VeoaTay Hat] = 55T pedTab
Hoe | — cee + _Jc[apb] - ﬁchab
Pb e 0
From these formulee, let us focus attention on the homomorphisms
0 — T - AT — N T —
g ~Ha
Mo — Jabp
(22) P 0
Tb Liab) = 5 teaJab
Hbe = —JefaPv] — 35 PcJab
Pb 0

It is evident that this is a complex and that its cohomology so far is
A% in degree 0 and  (D?Al in degree 1.

On the other hand, one may check that the defining representation of the Lie
algebra sp(2n + 2, R) on R?"*+2 = R @G R?" @ R restricts via to a representation
of the Heisenberg Lie algebra h = R & g_1, given explicitly by

R2n+2 i) R2n+2 and RQn+2 8_a> g1 ® R2n+2
o p o ~Ha
b — 0 b — Japp
p 0 p 0

(noticing that equations hold, as they must). We may also find 6 as part of
the curvature of the tractor connection on CP,. Specifically, the formula from
Proposition [T] reduces to

g P
(23) (vava - vbva) ta | = 2Ja Jde,ufe
p -

and we find 6 as the top component of ©: 7 — 7 where © is defined by . If we
now consider the entire complex from Theorem [1} with filtration induced by

AN ANanN ¢ NaAlteAN = T

0 0 o

0 2 b
p p p
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of 7, then the associated spectral sequence (or corresponding diagram chasing)
yields continuing as in including the middle operator V2 —26: A7 — A",

n
The same reasoning pertains for any Fedosov structure with V, ;3 = 0 as in
Corollary [1} Evidently, this sequence of vector bundle homomorphisms is induced
by the complex and, together with Lemma 3] the spectral sequence of a filtered

complex (or the appropriate diagram chasing) immediately yields the following.

Theorem 3. Suppose V, is a torsion-free connection on a symplectic manifold
(M, Jup), such that V,Jp. = 0 and so that the corresponding curvature tensor Vyp©q
vanishes. Fiz a finite-dimensional representation E of Sp(2n 4+ 2,R) and let E
denote the associated ‘tractor bundle’ induced from the standard tractor bundle
and the representation E (so that the standard representation of Sp(2n + 2,R)
on R2"*2 yicelds the standard tractor bundle). In accordance with C’orollary the
induced ‘tractor connection’ V : E — A' ® E is symplectically flat and we may
define © : E — E by , Having done this, there are complezes of differential
operators

0— H°bh,E) — H'(hE) — H*(h,E) — - — H'bE)

0 — H2n+1(b,E) - H2n(f),E) - H2n_1<f),E) — .. o H"+1(f),E)

where H" (b, E) denotes the tensor bundle on M that is induced by the cohomology
H"(h,E) as a representation of Sp(2n,R). This complex is locally exact except near
the beginning where

ker : H'(h,E) — H?(h, E)

im: HO(h, E) — H'(h, E)

may be identified with the locally constant sheaves ker © and coker ©, respectively.
In particular, for CP, with its Fubini-Study connection, these sheaves vanish and
the complex is locally exact everywhere.

ker: H(h,E) — H'(h,E) and

Proof. It remains only to observe that for the Fubini—Study connection we see
from that © : 7 — 7 is an isomorphism. O
The main point about Theorem [3] however, is that if the representation E of
Sp(2n + 2, R) is irreducible, then the representations H" (h,E) of Sp(2n,R) are also
irreducible and are computed by a theorem due to Kostant [I4]. Specifically, if we
denote the irreducible representations of Sp(2n + 2, R) and Sp(2n,R) by writing
the highest weight as a linear combination of fundamental weights and recording
the coeflicients over the corresponding nodes of the Dynkin diagrams for C),11 and
C.,, as is often done, then Kostant’s Theorem says that

Ho(f), a b ¢ d e f) _ b ¢ d e [
Hl(b,a b ¢ d - f) _ a+b+1 ¢ d - f
HQ(b,a b ¢ d - f) _ a btct+l d - f
Hg(h, a b ¢ d - f) _ a b ctd+1 - f
a b (:: d e f a b c etf+1
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and for r > n + 1, there are isomorphisms H"(h,E) = H?*"*1-"(h,E). Using the
same notation for the bundles H"(h, E'), the complexes of Theorem |3 become

b ¢ d e [ vett a+b+1l ¢ d e [

vttt q btetl d e f

vetl a b octd+1 e [
N ° 4:(;.
vetl e b ¢ e+ f+1
vt a4 b e et+f+1
vett
vett b ¢ d e f
—— oo - —ebe,

for arbitrary non-negative integers a, b, c,d,--- ,e, f. When all these integers are
zero, this is the Rumin—Seshadri complex. Just the first three terms in this complex,
in the special case when only a is non-zero, are already essential in [I0]. For example,
if @ =1, then the first two differential operators are

g = vaVbO' + Pabo' and ¢bc = (Va¢bc - Vbdjac)L

where ¢, is symmetric and ( ), means to take the trace-free part with respect
to Jgp. From the curvature decomposition and Bianchi identity we find that their
composition is

[ Vabdcvdo' + Yapeo,
which vanishes in case V,;,“y = 0. In case O is invertible, as for the Fubini—Study
connection, we conclude that this sequence of differential operators is locally exact.
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