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CONTACT QUANTIZATION:
QUANTUM MECHANICS = PARALLEL TRANSPORT

G. Herczeg, E. Latini, and Andrew Waldron

Abstract. Quantization together with quantum dynamics can be simulta-
neously formulated as the problem of finding an appropriate flat connection
on a Hilbert bundle over a contact manifold. Contact geometry treats time,
generalized positions and momenta as points on an underlying phase-spacetime
and reduces classical mechanics to contact topology. Contact quantization des-
cribes quantum dynamics in terms of parallel transport for a flat connection;
the ultimate goal being to also handle quantum systems in terms of contact
topology. Our main result is a proof of local, formal gauge equivalence for a
broad class of quantum dynamical systems—just as classical dynamics depends
on choices of clocks, local quantum dynamics can be reduced to a problem
of studying gauge transformations. We further show how to write quantum
correlators in terms of parallel transport and in turn matrix elements for
Hilbert bundle gauge transformations, and give the path integral formulation
of these results. Finally, we show how to relate topology of the underlying
contact manifold to boundary conditions for quantum wave functions.

1. Introduction

To understand why a study of contact geometry is fundamental to quantum
mechanics, it is useful to think about the standard Copenhagen interpretation in a
novel way: According to the Copenhagen interpretation, one prepares an initial
quantum state, allows it to evolve for some time, and then calculates the probability
of observing some choice of final state. The basic data here is a Hilbert space
and a one parameter family of unitary operators that determine time evolution.
This parameter typically corresponds to time intervals as measured in a classical
laboratory. Two modifications of this standard paradigm will lead us to a—rather
propitious—reformulation of quantum mechanics as a theory of flat connections on
a Hilbert bundle over a contact manifold:

(i) Because it ought be possible to describe quantum dynamics for any choice
of laboratory time coordinate (for example one may conceive of notions of
time that mix varying combinations of classical-laboratory measurements),
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we replace the time interval with a classical “phase-spacetime” manifold Z,
which can be thought of as a classical phase space augmented by a timelike
direction that enjoys general coordinate (diffeomorphism) invariance.

(ii) Instead of viewing quantum dynamics as trajectories in a single given Hilbert
space H, we associate—in a manner reminiscent of gauge theories and general
relativity—a copy of the Hilbert space to every point in the phase-spacetime Z.
This structure is a Hilbert bundle Z nH, viz. a vector bundle whose fibers are
Hilbert spaces [8]. We use the warped product notation Z nH to indicate
that, locally in Z, the Hilbert bundle is a direct product, although this need
not globally be the case.

Given the geometric data of the vector bundle Z n H, we wish to compare
Hilbert space states at distinct points in Z. For that we need a connection ∇.
Concretely

∇ = d+ Â ,

where d is the exterior derivative on Z and iÂ is a one-form taking values in the
space of hermitean operators on H. In particular, if H is simply L2(Rn), we may
consider Â to take values in the self-adjoint subspace of the corresponding Weyl
algebra.

To construct the connection ∇, additional data is required. In Section 2, we will
show that giving the phase-spacetime manifold a strict contact stucture endows
the Hilbert bundle Z nH with a flat connection. Physically, this strict contact
data corresponds to specifying classical dynamics on Z. The construction we give is
partly motivated by earlier BRST studies of Fedosov quantization [9] for symplectic
manifolds [14]. Solutions to the quantum Schrödinger equation are then parallel
sections of the Hilbert bundle—quantum dynamics amounts to parallel transport
of states from one Hilbert space fiber to another. The main theorem of Section 2
establishes that solutions for connections obeying the flatness condition are locally
and formally gauge equivalent. The method of proof is close to that employed in
Fedosov’s original work on deformation quantization of Poisson structures [9]. The
key advantage is that our contact approach not only incorporates dynamics, but
also establishes a very general local gauge equivalence between dynamical quantum
systems.

In Section 3, we focus on the description of dynamics in terms of parallel
sections of the Hilbert bundle. In particular we show how to reduce the problem of
computing quantum correlators to that of finding the matrix element of a gauge
transformation. We also give a path integral description of correlators in terms of
paths in a novel extended phase-spacetime description of contact Reeb dynamics.
We also show how topology of the underlying contact manifold determines boundary
conditions for quantum wavefunctions. Open problems and future prospects are
discussed in Section 4.
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2. Strict contact structures and quantization

Contact geometry may be viewed as a unification of Hamiltonian dynamics and
symplectic geometry. Therefore, before discussing quantization, we introduce the
salient features of contact structures [13, 22].

2.1. Contact geometry. A strict contact structure is the data (Z,α) where Z
is a 2n+ 1 dimensional manifold and α is a contact one-form, meaning that the
volume form
(2.1) Volα := α ∧ ϕ∧n

is nowhere vanishing1, where the two form
ϕ := dα ,

determines the Levi-form along the distribution; we therefore also term ϕ the Levi.

The data (Z,α) allows us to formulate classical dynamics via the action principle

(2.2) S =
ˆ
γ

α ,

defined by integrating the contact one-form along unparameterized paths γ in Z.
Requiring S to be extremal under compact variations of the embedding γ ↪→ Z
yields equations of motion
(2.3) ϕ(γ̇, ·) = 0 .
Since the Levi-form necessarily has maximal rank, the above condition determines
the tangent vector to γ up to an overall scale. The choice of solution γ̇ = ρ to
Equation (2.3) with normalization α(ρ) = 1 is called the Reeb vector. Classical
evolution is therefore governed by flows of the Reeb vector; and in this context is
dubbed Reeb dynamics. It is not difficult to verify that these obey a contact analog
of the classical Liouville theorem, namely that the volume form is preserved by
Reeb dynamics:

LρVolα = 0 ,
where L· denotes the Lie derivative.

The contact Darboux theorem is particularly powerful; it ensures that locally
there exists a diffeomorphism on Z that brings any contact form to the normal
form
(2.4) α = πAdχ

A − dψ ,
where (πA,χA,ψ) are 2n+ 1 local coordinates for Z. On this coordinate patch the
Reeb vector ρ = − ∂

∂ψ so that dynamics are locally trivial. Observe that in the

1A contact structure is the data of a maximally non-integrable hyperplane distribution; the
kernel of α (viewed as a map on tangent spaces TPZ → R) determines precisely such a distribution
(as does any fα where 0 < f ∈ C∞Z). Note also, that it is interesting to consider models for
which the Levi-form ϕ = dα has maximal rank, but Volα may vanish (either locally or globally).
The massless relativistic particle falls into this class.
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worldline diffeomorphism gauge ψ = τ , where τ is a worldline parameter along γ,
the action (2.2) becomes

S =
ˆ
dτ
[
πaχ̇

a − 1
]
.

This is the Hamiltonian action principle for a system with Darboux symplectic
form dπa ∧ dχa and trivial Hamiltonian H = 1.

2.2. Constraint analysis. Our quantum BRST treatment of Reeb dynamics
requires that we examine the constraint structure of the model (2.2). Firstly
observe that the action principle (2.2) is worldline diffeomorphism invariant, and
in a choice of coordinates zi for Z reads S =

´
αi(z)żidτ . Therefore the canonical

momenta pi for żi obey 2n+ 1 constraints

Ci := pi − αi(z) = 0 ,

of which 2n are second class (because these constraints Poisson commute to give the
maximal rank Levi-form: {Ci, Cj}PB = ϕij) and one is first class (corresponding to
worldline diffeomorphisms). By introducing 2n “fiber coordinates” sa (see [2]), local
classical dynamics can be described by an equivalent extended action principle for
paths Γ in Z := Z × R2n for which all constraints are first class2:

(2.5) Sext =
ˆ

Γ

[
1
2s
aJabds

b +A(s)
]
.

In the above Jab is a constant, maximal rank antisymmetric matrix (and therefore
an invariant tensor for the Lie algebra sp(2n)). The one-form A is given by

A(s) = α+ eaJabs
b + ω(s) ,

where the soldering forms ea together with the contact one-form α are a basis
for T ∗Z such that the Levi-form decomposes as

ϕ = 1
2 Jabe

a ∧ eb ,

and ea(ρ) = 0. The extended action (2.5) enjoys 2n + 1 gauge invariances (and
hence 2n+ 1, abelian, first class constraints) when A obeys the zero curvature type
condition3

dA+ 1
2{A ∧A}PB = 0 .

This condition can always be solved for a one-form ω(s) to any order in a formal
power series in s (and therefore exactly for contact forms expressible as polynomials
in some coordinate system). The main ingredients for quantization are now ready.

2To analyze global dynamics one ought promote Z to a bundle Z n R2n.
3For a pair of one-forms A and B, we denote {A(s) ∧ B(s)}PB := Jab ∂A

∂sa
∧ ∂B
∂sb

where the
inverse matrix Jab obeys JabJbc = δca.
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2.3. Flat connections. Because the constraints are now abelian and first class, it
is straightforward to quantize the extended Reeb dynamics defined by the action (2.5)
using the Hamiltonian BRST technology of [12]. The resultant nilpotent BRST
charge may be interpreted as a flat connection ∇ on the Hilbert bundle Z nH.
[An analogous connection has been constructed for symplectic manifolds in [19].]
In detail,

∇ = d+ Â ,

where Â is a one-form taking hermitean values in the enveloping algebra U(heis) of
the Heisenberg algebra
(2.6) heis = span{1, ŝa} , [ŝa, ŝb] = i~Jab .

In particular

iÂ = α

~
+ eaJabŝ

b

~
+ i Ω̂ ,

where ~Ω̂ is a hermitean operator, potentially involving higher powers of the
generators ŝa, that is expressible as a formal power series in ~. It is formally
determined by the zero curvature condition
(2.7) ∇2 = 0 .

Example 2.1 (Hamiltonian dynamics). Let Z = R3 = {p, q, t} and
α = pdq −H(p, q, t)dt ,

with Hamiltonian H given by a (possibly time-dependent) polynomial in p and q.
Notice that ϕ = e ∧ f where e := dp + ∂H

∂q dt and f := dq − ∂H
∂p dt, so we make a

choice of soldering ea = (f, e) which we use to construct the flat connection:

(2.8) ∇ = d+ i

~

[
dpS − dq

(
p+ ~

i

∂

∂S

)]
+ i

~
dtĤ ,

where the operator

Ĥ :=
(
H
(
q + S, p+ ~

i

∂

∂S

))
Weyl

is given by Weyl ordering the operators4 ŝa := (S, ~
i
∂
∂S ). (This ensures formal

self-adjointness of the operator Ĥ.) The Schrödinger equation (2.9) may be solved
by setting Ψ = exp(− i

~pS)ψ(q + S, t), where ψ(Q, t) obeys the standard time
dependent Schrödinger equation

i~
∂ψ(Q, t)

∂t
=
(
H
(
Q,

~
i

∂

∂Q

))
Weyl

ψ(Q, t) .

This example therefore shows how contact quantization recovers standard quantum
mechanics.

4Note that we have made the choice of Hilbert space H = L2(R) here as well as a pola-
rization for the space of wavefunctions. Different choices of polarization differ only by gauge
transformations—recall that in its metaplectic representation, compact elements of sp(2n) act by
Fourier transform on Schwartz functions.
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To better understand the space of flat connections ∇, we further organize the
expansion in powers of operators ŝ by assigning a grading gr to the operators ŝ
and ~ where5

gr(~) = 2 , gr(ŝa) = 1 .
Thus, arranging the connection in terms of this grading we have

∇ = α

i~︸︷︷︸
−2

+ eaJabŝ
b

i~︸ ︷︷ ︸
−1

+ dw︸︷︷︸
0

+ ω̂︸︷︷︸
>1

,

where
dω := d+ 1

2i~ ωabŝ
aŝb .

Here the symmetric part of ωab gives an sp(2n)-valued one-form (or connection)
while the antisymmetric part is necessarily pure imaginary in order that Ω̂ is
hermitean. Also, the terms with strictly positive grading are ω̂ := Ω̂− 1

2i~ ωabŝ
aŝb.

Observe that this grading is invariant under rewritings of products of the
operators ŝ given by quantum reorderings, for example

gr(ŝaŝb) = gr
(
ŝbŝa + i~Jab

)
.

In other words, gr filters U(heis). The projection of an element in U(heis) to the
part of grade k is denoted by6 grk(·).

In Theorem 2.2 we shall show that locally, every solution to the flatness condi-
tion 2.7 is formally7 gauge equivalent8 to a connection where Ω̂ = 0. Moreover the
latter such solutions always exist.

Realizing ŝa by hermitean operators representing the Heisenberg algebra acting
on H, the (principal) connection ∇ gives a connection on the (associated) Hilbert
bundle Z n H. The Schrödinger equation is then simply the parallel transport
condition
(2.9) ∇Ψ = 0
on Hilbert bundle sections Ψ ∈ Γ(Z n H). Indeed, modulo (non-trivial) global
issues, the problem of quantizing a given classical system now amounts to solving
the above flat connection problem (2.7), while quantum dynamics amounts to
parallel transport.

5When applied to sums of terms inhomogeneous in the grading, we define gr by the grade of
the lowest grade term.

6We also employ grK(·), where K ⊂ Z, to denote projection to subspaces with the corresponding
grades. For the exterior derivative, we define gr(d) = 0.

7The terms formally equivalent here are defined to mean that gauge transformations exist
giving connections that are equal to any chosen order in the grading gr.

8To be sure, we are not claiming that this means all quantum dynamics on a given Hilbert space
are equivalent, rather having identified the physical meaning of variables for a given connection ∇,
the “gauge equivalent” (in the bundle sense) connection ∇′ = Û ∇ Û† will in general describe
different dynamics. This is much like the case of active diffeomorphisms for a theory in a fixed
generally curved background. Moreover, it is a highly useful feature, because at least locally, it
allows complicated dynamics to be described in terms of simpler ones.
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Theorem 2.2. Any two flat connections ∇ = d+ Â and ∇′ = d+ Â′ where

gr−2(Â) = α

i~
= gr−2(Â′) ,

are locally, formally gauge equivalent.

Proof. The contact Darboux theorem ensures that locally, there exists a set of
closed one-forms dEa = 0, such that

ϕ = 1
2JabE

a ∧ Eb and ιρE
a = 0 .

(In the normal form (2.4), Ea = (dχA, dπA).) Hence the connection

(2.10) ∇D := α

i~
+ EaJabŝ

b

i~
+ d

solves the flatness condition (2.7). Our strategy is to construct the gauge transfor-
mation bringing a general flat ∇ to this “Darboux form”.

Firstly, the flatness condition of a general ∇ = d+ Â at grade −2 implies that
dα

i~
+
(

gr−1
(
Â
))2

= 0 .

This is solved, as discussed earlier, by
i~ gr−1Â = eaJabŝ

b ,

where
ϕ = 1

2Jabe
a ∧ eb and ιρe

a = 0 .
Comparing the line above with the first display of this proof, we see there must
(pointwise in some neighborhood in Z) exist an invertible linear transformation
U ∈ GL(2n) such that

Ea = Uabe
b .

Moreover, U must preserve J and hence is in fact Sp(2n)-valued with unit deter-
minant. Thus, we may write U = exp(u). In turn it follows that

gr{−2,−1}
(

exp(û0)Â exp(−û0)
)

= α

i~
+ EaJabŝ

b

i~
,

where
û0 = Jacu

c
bŝ
aŝb

2i~ .

Essentially, we have just intertwined U in the fundamental representation of Sp(2n)
to its metaplectic representation.

We now observe that

(2.11) gr0
(

exp(û0)(d+ Â ) exp(−û0)
)

= d− iα1 + ωabŝ
aŝb

2i~ ,

where α1 is some real-valued, ~-independent one-form and the one-form ωab = ωba
(the Heisenberg algebra (2.6) may be used to absorb an antisymmetric part of ωab
in α1).

We now again employ flatness of ∇ and closedness of the Ea’s to obtain

0 = gr−1

((
exp(û0)(d+ Â ) exp(−û0)

)2) = ωab ∧ Ea ŝb

i~
.



288 G. HERCZEG, E. LATINI AND A. WALDRON

We decompose the one-form ωab with respect to the (local) basis (α, ea) for T ∗Z
as ωab = Wab α+WabcE

c. The above display then implies that the functions Wab

must vanish and
WabcE

a ∧ Ec = 0 .
Hence Wabc is totally symmetric in the indices a, b, c.

We now gauge away the term ωabŝ
aŝb/(2i~) = Wabcŝ

aŝbEc/(2i~) in Equa-
tion (2.11). For that we work formally order by order in the grading employing the
adjoint action exp(û) Ŵ exp(−û) = exp([û, ·])(Ŵ ). In particular this gives

gr0

(
exp(û1)E

aJabŝ
b

i~
exp(−û1)

)
= −Wabcŝ

aŝbEc

2i~ ,

for the choice û1 = Wabcŝ
aŝbŝc/(3!i~). Hence we have achieved

gr{−2,−1,0}

(
exp(û1) exp(û0)(d+Â ) exp(−û0) exp(−û1)

)
= α

i~
+EaJabŝ

b

i~
+d−iα1 .

At this juncture, we have established the base case for an induction. Proceeding
recursively we now assume that the flat connection ∇ = d+ Â obeys

gr{−2,...,k}(Â ) =
α+ ~α1 + · · ·+ ~[(k+1)/2]α[(k+1)/2]

i~
+ EaJabŝ

b

i~
+ d+ ω̂k ,

where αi are ~-independent one-forms and, without loss of generality, take
gr(ω̂k) = k.

Employing the flatness condition for ∇ along the same lines explained above
to ω̂k shows that

i~ω̂k =



1
(k+2)! Wa1...ak+3 ŝ

a1 · · · ŝak+2Eak+3 + ~
k! Wa1...ak+1 ŝ

a1 · · · ŝakEak+1 + · · ·

+ ~(k+1)/2Wa1a2 ŝ
a1Ea2 , k odd ,

1
(k+2)! Wa1...ak+3 ŝ

a1 · · · ŝak+2Eak+3 + ~
k! Wa1...ak+1 ŝ

a1 · · · ŝakEak+1 + · · ·

+ ~k/2Wa1a2a3 ŝ
a1 ŝa2Ea3 + ~(k+2)/2 α(k+2)/2 , k even ,

where the tensors W are totally symmetric and α(k+2)/2 is some one-form. Both
the W ’s and α(k+2)/2 are ~-independent. Indeed, all terms save the one-form
α(k+2)/2 can—mutatis mutandis—be removed by higher order analogs of the gauge
transformation exp(û1) employed in the base step above. Hence we have now proven
that locally, gauge transformations achieve the form (formally to any power in the
grading)

∇ = ∇D − i
∑
j>1

~j−1αj .

It only remains to apply the flatness condition one more time to show that the
one-form α~ :=

∑
j>1 ~j−1αj is closed and therefore locally α~ = dβ~ for some

function β~. Thus exp(iβ~)∇ exp(−iβ~) = ∇D. �

Example 2.3 (The harmonic oscillator). Let Z = R3 = {p, q, t} and

α = pdq − 1
2(p2 + q2)dt .
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The Levi form
ϕ = dπ ∧ dχ ,

where
π = 1

2(p2 + q2) , χ = −t− arctan(p/q) .

Indeed, setting ψ = − 1
2pq, we have α = πdχ− dψ, so (π,χ,ψ) are local Darboux

coordinates and (denoting ŝa := (Ŝ, P̂ )) the Darboux normal form (2.10) for the
connection becomes

(2.12) ∇D := πdχ− dψ
i~

+ Ŝdπ− P̂ dχ
i~

+ d .

Let us now run the steps of the above proof in reverse to show how to find gauge
transformations bringing ∇D to the Hamiltonian dynamics form of 2.8.

The closed soldering forms Ea = (dχ, dπ) are related to those of the Hamiltonian
dynamics Example 2.1 (given here by ea = (dq − pdt, dp+ qdt) =: (f, e)) according
to the Sp(2) transformation

Ea :=
(
dχ

dπ

)
=
(

p
2π − q

2π
q p

)(
dq − pdt
dp+ qdt

)
=: Uabeb .

Writing U = exp(u) and then intertwining to its metaplectic representation
Û := exp

(
Jacu

c
bŝ
aŝb

2i~
)
, we have Û−1( α

i~ + EaJabŝ
a

i~
)
Û = α

i~ + eaJabŝ
a

i~ , while a short
computation shows that the sp(2)-valued one-form U−1dU is given explicitly by

U−1dU =
( 0 −dt

dt 0

)
+

 − (p2−q2)(pe+qf)
4π2

(3p2+q2)qe−(p2−q2)pf
4π2

(p2−q2)qe+(p2+3q2)pf
4π2

(p2−q2)(pe+qf)
4π2

 .

It is not difficult to verify that the last term in the above display can be re-expressed
as W a

bce
c where the tensor Wabc (moving indices with the antisymmetric bili-

near form J) is totally symmetric9. Moreover, intertwining the first term to the
metaplectic representation gives the standard harmonic oscillator Hamiltonian
i

2~ dt(P̂
2 + Ŝ2). Hence the difference between the gauge transformed Darboux

connection and the Hamiltonian dynamics connection of Equation 2.8 is

Û−1∇DÛ −∇ = ŝaŝbWabce
c

2i~ .

The above term is order 0 in the grading gr and therefore seeds the recursion
described in the proof of Theorem 2.2. It is removed by a grade 1 gauge transfor-
mation exp(û1) with û1 = ŝaŝbŝcWabc

3!i~ . It would be desirable to have an efficient
recursion to compute all higher terms with respect to the grading gr for the gauge
transformation between ∇ and ∇D, because in a general setting this would facilitate
computation of quantum correlators.

9Note that

W222 =
(3p2 + q2)p

4π2 , W221 = −
(p2 − q2)q

4π2 , W211 = −
(p2 − q2)p

4π2 , W111 =
(3p2 + q2)q

4π2 .
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2.4. Contact deformation quantization. The above proof of gauge equivalence
of flat connections is very close in spirit to Fedosov’s formal quantization for
symplectic and Poisson structures10. That work is concerned with constructing a
quantum deformation of the Moyal star product, while here we wish to describe
both dynamics and quantization. Nonetheless, we can employ Fedosov’s method
to our quantized contact connection ∇, to find a quantum deformation of the
commutative algebra of classical solutions.

To study the algebra of operators, instead of the Hilbert bundle over Z, we
consider a Heisenberg bundle Z n U(heis), defined in the same way as the Weyl
bundle, except that instead of working with fibers given by functions of R2n with
a non-commutative Moyal star product, we work directly with operators11. For
our purposes, the key point is that local sections â of the Heisenberg bundle are
functions of Z taking values in U(heis), which can be expressed with respect to the
grading gr as

â = a(−2)

i~︸ ︷︷ ︸
−2

+ a(−1)
a ŝa

i~︸ ︷︷ ︸
−1

+
a(0)
ab ŝ

aŝb

2i~ − ia(0)︸ ︷︷ ︸
0

+ · · · .

Importantly, a(k) are ~ independent, and we do not allow negative powers of ~
greater than one.

Requiring total symmetry of the tensors a(k)
a1...aj6k appearing in the above ex-

pansion uniquely determines a function of ~ which—following Fedosov—we call
the abelian part of â and denote by

σ(â) := a(−2) + ~a(0) + ~2a(2) + · · · .

We call â− 1
i~σ(â) the non-abelian part of â.

The flat connection ∇ acts on sections of the Heisenberg bundle by the adjoint
action

∇â := dâ+ [Â, â] .
The following lemma locally characterizes parallel sections.

Lemma 2.4. Let f~ ∈ C∞Z[[~]] obey

Lρf~ = 0 .

Then locally, there is a unique section â ∈ Γ(Z n U(heis)) such that

∇â = 0 and σ(â) = f~ .

Proof. By virtue of Theorem 2.2 we know that locally

∇ = exp(û) ◦ ∇D ◦ exp(−û) ,

10Deformation quantization dates back to the seminal work of Bayen et al [3], see also [4] for
a review of symplectic connections.

11Recall that the Moyal star product amounts simply to coordinatizing the space of opera-
tors U(heis) in terms of functions of R2n by employing a Weyl-ordered operator basis, and then
encoding their algebra using a non-commutative ?-multiplication of functions.
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for some û ∈ Γ(Z n U(heis)) and ∇D is given by Equation (2.10). Therefore we
begin by establishing that the equation

(2.13) ∇Db̂ = 0

has a solution such that

(2.14) σ(exp(û) b̂ exp(−û)) = f~ ,

because â = exp(û) b̂ exp(−û) will then solve ∇â = 0 with the correct boundary
condition σ(â) = f~. (We deal with uniqueness at the end of this proof.)

We now work order by order in the grading gr. Firstly, we must solve

0 = gr−2(∇Db̂) = db(−2) + b(−1)
a Ea

i~
.

From Equation (2.14) we have b(−2) = a(−2) = gr−2f~, but by assumption Lρf~ = 0
so Cartan’s magic lemma gives ιρdb(−2) = 0, whence db(−2) ∈ span{Ea}. Hence we
can solve the equation in the above display (uniquely) for b(−1)

a .
At the next order in the grading we must now solve

0 = gr−1(∇Db̂) =
db(−1)
a ŝa + b(0)

abE
aŝb

i~
.

By virtue of the Darboux coordinate system, b(−1)
a cannot depend on ψ so ιρdb(−1)

a =
0. Hence the above display (uniquely) determines b(0)

ab (and once again ιρdb(0)
ab = 0).

The abelian term −ib(0) is at this point not determined. However for that we
impose Equation (2.14) to the order 0 in the grading, which now determines b(0) in
terms of f~ and other ψ-independent quantities. This establishes the pattern for
an obvious recursion, which completes the existence part of this proof.

To show uniqueness, suppose â′ also obeys ∇â′ = 0 such that σ(â′ − â) = 0.
Now, let

∇ = α

i~
+ eaJabŝ

b

i~
+ · · · .

Then
0 = gr−2

(
∇(â′ − â)

)
= (a′(−1)

a − a(−1)
a )ea

i~
⇔ a′(−1)

a = a(−1)
a .

Indeed, the same pattern holds at all higher orders in the grading gr, so that â′ = â,
as required. �

Remark 2.5. Calling ξa = (χi,πi), the Darboux connection (2.10) obeys

[∇D, ŝ
a − ξa] = 0 .

So taking b̂ equal to any polynomial P(ŝa − ξa) solves the parallel section condi-
tion (2.13). This in turn immediately solves the parallel section problem for f~
expressible as a polynomial in Darboux coordinates. Note however, that in general,
replacing P by a formal power series in ŝa − ξa, may not give a well defined formal
power series in Weyl ordered symbols of ŝa. (Quantum reordering terms potentially
involve infinite, non-convergent, sums of the coefficients of the original power series.)
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Let us denote by σ−1 the map C∞Z[[~]] ∩ ker(Lρ) 3 f~ 7→ â as defined by the
above lemma. Now consider a pair of solutions f~, g~ ∈ C∞Z[[~]] to the classical
equations of motion:

Lρf~ = 0 = Lρg~ .

Then we have a pair of parallel sections σ−1(f~) and σ−1(g~) of Z n U(heis).
These may be multiplied pointwise along Z using the operator product on fibers.
Therefore, a lá Fedosov [9], we may define a ?-multiplication of functions f~ and g~
by12

f~ ? g~ = σ
(
σ−1(f~)σ−1(g~)

)
.

This gives a contact analog of deformation quantization. Observe that it reduces
the deformation problem to a gauge transformation. However, unlike Fedosov’s
work, this means that the above uniqueness proof for flat sections is local. It ought
however be possible to improve this to a global statement and preliminary results
indicate that this is the case; we reserve those results for a later publication, where
we also plan to detail the precise map between the above display and Fedosov’s
deformation formula for symplectic structures.

3. Flat sections and dynamics

As discussed in the previous section, solving for a flat connection∇ on the Hilbert
bundle ZnH is analogous to finding an operator quantizing a classical Hamiltonian,
while the parallel transport equation (2.9) is the analog of the Schrödinger equation
which controls quantum dynamics. We now turn our attention to solving the latter
and computing correlators.

3.1. Parallel transport. Let us suppose we have prepared a state |Ei〉 ∈ Hzi

where Hzi is the Hilbert space associated with a point zi ∈ Z (one may think of
z ∈ Z as a generalized laboratory time coordinate). We would like to compute
the probability of measuring a state |Ef〉 ∈ Hzf at some other point zf ∈ Z. For
that, observe that we can parallel transport the “initial” state |Ei〉 from the Hilbert
space Hzi to any other Hilbert space Hz using a line operator

(3.1) |E(z)〉 =
(

Pγ exp
(
−
ˆ z

zi

Â
))
|Ei〉 ∈ Hz ,

where Pγ denotes path ordering and γ is any path in Z joining zi and z. Since
∇ = d+Â, it follows that the section Ψ(z) = |E(z)〉 of ZnH solves the Schrödinger
equation (2.9). Since the connection ∇ is flat, if the fundamental group π1(Z) is
trivial, this solution is independent of the choice of path γ between zi and z. When
this is not the case, we must be more careful with the choice of Hilbert space fibers.

12Fedosov constructs a deformation of the Moyal star product for Weyl ordered operators in
the Weyl algebra given the data of a symplectic manifold. Here we skip the Moyal star and work
directly with operators in the Weyl algebra.
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We discuss this further below. Modulo this issue, the probability Pf,i of observing
|Ef〉 ∈ Hzf having prepared |Ei〉 ∈ Hzi is

Pf,i =

∣∣∣〈Ef |(Pγ exp
(
−
´ zf
zi
Â
))
|Ei〉
∣∣∣2

〈Ef |Ef〉 〈Ei|Ei〉
.

In [16] we showed how to extract quantum mechanical Wigner functions from
correlators

(3.2) WEf ,Ei(zf , zi) := 〈Ef |
(

Pγ exp
(
−
ˆ zf

zi

Â
))
|Ei〉 .

This correlator is gauge covariant. In particular, in a contractible local patch around
the path γ, by virtue of Theorem 2.2, we can find a gauge transformation Û such
that Û∇Û−1 = ∇D, where the Darboux normal form is given in Equation (2.4).
Hence the line operators for these two connections are related by

(3.3)
(

Pγ exp
(
−
ˆ zf

zi

Â
))

= Û(zf)−1 ◦
(

Pγ exp
(
−
ˆ z

zi

ÂD
))
◦ Û(zi) .

Inserting resolutions of unity
´
dS|S〉〈S| = 1 =

´
dP |P 〉〈P | for H (where ŝa =

(ŜA, P̂A) and ŜA|S〉 = SA|S〉, P̂A|P 〉 = PA|P 〉) in the above identity, and putting
this in the correlator (3.2) gives 13

(3.4)

WEf ,Ei(zf , zi) :=
ˆ
dSdP 〈Ef |Û(zf)−1|P 〉 〈P |

(
Pγ exp

(
−
ˆ zf

zi

ÂD
))
|S〉 〈S|Û(zi)|Ei〉 .

Since the line operator for the connection ÂD in the Darboux frame is essentially
trivial (see directly below), knowledge of the gauge transformations Û determines
the correlator.

Example 3.1 (The Darboux correlator). Consider a pair of points zi = (πi,χi,ψi)
and zf = (πf ,χf ,ψf) in the contact three-manifold Z = (R3,πdχ− dψ). Since here
we want to study a line operator for a flat connection ∇D on a trivial manifold, we
may choose any path between these two points, so take γ = γψ ∪ γπ ∪ γχ where

γπ := {(1− t)πi + tπf ,χi,ψi)} ,

γχ := {(πf , (1− t)χi + tχf ,ψi)} ,

γψ := {(πf ,χf , (1− t)ψi + tψf)} ,

where t ∈ [0, 1]. Then, along these three paths the potential Â for the Darboux
connection (see Equation 2.12) takes the form

Âγπ = 1
i~
dt(πf−πi)Ŝ , Âγχ = 1

i~
dt(χf−χi)(πf− P̂ ) , Âγψ = − 1

i~
dt(ψf−ψi) .

13Of course, one could equally well insert other resolutions of unity, for example, replacing´
dP |P 〉〈P | with

´
dS′|S′〉〈S′| is a propitious choice used in the next example.
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Hence the correlator in Darboux frame is simply

〈P |
(

Pγ exp
(
−
ˆ zf

zi

ÂD
))
|S〉 = exp

(
− (χf − χi)(πf − P ) + (πf − πi)S −ψf +ψi

i~

)
.

The above result combined with Equation 3.4 indeed shows that knowledge of the
gauge transformation Û bringing a connection to its Darboux form determines
correlators.

3.2. Path integrals. In general, one does not have access to the explicit diffeo-
morphism bringing the contact form to its Darboux normal form (let alone the
gauge transformation Û). Instead correlators can be computed in terms of path
integrals. For that, per its definition, we split the path ordered exponential of the
integrated potential Â into infinitesimal segments dzi along the path γ, and insert
successive resolutions of unity. In particular, using that, for dzi small,

〈P | exp(−Âi(Ŝ, P̂ )dzi)|S〉 ≈ exp
( i

~
PAS

A −AN(S, P )
)
,

where AN(S, P ) is the normal ordered symbol14 of the operator Â, we have the
operator relation

exp(−Âidzi) ≈
ˆ
dSdP |P 〉 exp

( i
~
PAS

A −AN(S, P )
)
〈S| .

Concatentating this expression along the path γ gives the path integral formula for
the correlator between states |Si〉 and 〈Pf |

WPf ,Si(zf , zi) =
ˆ P (zf)=Sf

S(zi)=Si

[dPdS] exp
(
− i

~

ˆ
γ

(
PAdS

A +AN(S, P )
))
.

In the above γ is any path in Z connecting zi and zf . When ∇ has trivial holonomy
(otherwise see below), neither the correlator nor its path integral representation
depends on this choice. Notice that the path integration in the above formula is only
performed fiberwise. We do not integrate over paths γ in Z, but rather paths in
the total space Z = Z n R2n above the path γ in Z. Indeed, calling sa := (SA, PA)
and writing PAdSA = 1

2s
aJabds

b we see that the action appearing in the exponent
of the above path integral is the quantum corrected analog of the extended action
of Equation (2.5)(computing the operator Â and its normal ordered symbol AN
will in general produce terms proportional to powers of ~).

3.3. Topology. Finally, we discuss the case when the fundamental group π1(Z) is
non-trivial15. The holonomy of the connection ∇ may then be non-trivial, and the
parallel transport solution (3.1) to the Schrödinger equation can depend on the
homotopy class of the path γ. A priori this seems to be a bug leading to loss of
predictivity, however remembering that the topology of a system can influence its

14To be precise, Â is recovered by writing A(S, P ) as a power series in P and S and then
replacing monomials PkSl by the operator P̂kŜl.

15We owe the key idea of this section of modding out the Hilbert space fibers by the holonomy
of ∇ to Tudor Dimofte.
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quantum spectrum (consider a free particle in a box, for example), we have in fact
hit upon a feature. Our quantization procedure is not complete until we impose
that the holonomy of the connection ∇ acts trivially on the Hilbert space fibers.
To explain this point better, as a running example consider the contact form

α = πdθ− dψ ,

on the manifold Z = C×R where C is a cylinder with periodic coordinate θ ∼ θ+2π.
Now let us study the quantizaton determined by the flat connection ∇ = d+ Â
where

Â = α

i~
+ dπ

S

i~
+ dθ

∂

∂S
.

Here we have picked some polarization for the Hilbert space fibers such that
elements are given by wavefunctions ψ(S).

Along the path γ = {θ = θo + θ,π = πo,ψ = ψo : θ ∈ [0, 2π)}, we have
Âγ = 1

i~dθ
(
πo − ~

i
∂
∂S

)
. Hence the holonomy of ∇ at basepoint zo = (θo,πo,ψo) is

holzo(Âγ) = exp
(
− 2πi

~

(
πo −

~
i

∂

∂S

))
.

Requiring that this holonomy acts trivially on the Hilbert space H over the base
point zo ∈ Z, we impose that elements ψzo(S) of that space obey

exp
(
− 2πi

~

(
πo −

~
i

∂

∂S

))
ψzo(S) = ψzo(S) .

Hence
ψzo(S + 2π) = e

2πiπo
~ ψzo(S) .

So, up to a basepoint dependent phase, wavefunctions are periodic. In effect, the
classical topology of the contact base manifold Z has enforced the desired boundary
conditions on quantum wavefunctions.

4. Discussion and conclusions

Just as contact geometry reduces classical mechanics to a problem of contact
topology (all dynamics is locally trivial by virtue of the contact Darboux theorem),
the contact quantization we have presented does the same for quantum dynamics.
Moreover, since our approach is completely generally covariant, even seemingly
disparate systems can be related by appropriate choices of clocks. This gives a
concrete setting for quantum cosmology-motivated studies of the “clock ambiguity”
of quantum dynamics [1, 20].

Beyond providing a solid mathematical framework for philosophical questions
of time and measurement in quantum mechanics, it is very interesting to probe
to which extent the gauge freedom characterized in Theorem 2.2 can be used to
solve or further the study of concrete quantum mechanical systems. As discussed in
Section 3, knowledge of the gauge transformation bringing the connection ∇ to its
Darboux form can be used to compute correlators, which begs the question whether
methods—perturbative, exact when symmetries are present, or numerical—can be
developed to calculate these transformations.
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Along similar lines to the above remark, symmetries and integrability play a
central rôle in the analysis of quantum systems. Again contact geometry and its
quantization ought be an ideal setting for analyzing quantum symmetries and
relating them to contact topology. Preliminary results show that this is the case,
and we plan to report on such questions elsewhere.

Lattice spin models and models with Fermi statistics are crucial for the descrip-
tion of physical systems. Here one needs to study supercontact structures (see [21,
23, 5]); it is indeed not difficult to verify that our flat connection/quantizaton and
parallel section/dynamics methodology can be applied directly in the supercontact
setting; again we plan to report on this interesting direction in the near future.

In Section 2.4 we showed how to relate contact quantization to Fedosov’s
deformation quantization. It would also be interesting to relate our approach to
other quantization methods. In particular, it would be interesting to study the
relation to Kontsevich’s explicit deformation quantization formula for Poisson
structures [18] and its Cattaneo–Felder sigma model derivation [7]. In addition,
it would be interesting to study when we can go beyond formal deformation
quantization, perhaps along the lines of the A-model approach of Gukov–Witten
to quantization [15], or geometric quantization in general. Indeed, Fitzpatrick has
made a rigorous geometric quantization study of contact structures [10] based on
the proposal by Rajeev [22] to quantize Lagrange brackets (these are the contact
analog of the Poisson bracket). Note also that earlier work by Kashiwara [17] studies
sheaves of pseudodifferential operators over contact manifolds, and Yoshioka has
performed a contact analog of Fedosov quantization where the base manifold is a
symplectic manifold and the fibers carry a contact structure [24].

Finally, we mention that our construction of the connection ∇ is in spirit rather
close to the Cartan normal connection in parabolic geometries, see [6] for the
general theory and [11] for its application to contact structures compatible with
a projective structure. These geometric methods may also end up being directly
relevant to quantum mechanics.
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