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1. Introduction

The main goal of this paper is to enlarge the list of sharp embedding theorems for

analytic function spaces in tubular domains over symmetric cones obtained recently

in [6], [16] and [17].

Various embeddings of analytic function spaces in various types of domains in

higher dimension and their numerous applications were under intensive attention

by various authors during last decades (see, for example, [1], [2], [6], [8], [15], [16],

[17], [25] and many references therein). In this paper we will turn to the study of

certain new sharp embedding theorems for some new mixed norm analytic classes

in tubular domains over symmetric cones in C
n. This paper can be considered as

a continuation of recent investigations in this direction, namely other new sharp

results of such type in tube domains over symmetric cones have been given recently

in [6], [16] and [17]. Related new sharp embedding theorems of such type in other
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general (bounded) pseudoconvex domains with proofs based on the same ideas have

been provided recently in [22]. In this paper we find complete analogues of some

theorems from [14], where they can be seen in context of less general unit ball in tube

domains over symmetric cones. For proving the estimates and embedding theorems

in tubular domains over symmetric cones we heavily use the same technique as has

been developed recently in [1], [2] in pseudoconvex domains, but in context of tube

domains. In [16] and [17] in tube domains and in [1] and [2] in pseudoconvex domains,

a crucial estimate from below of Bergman kernel on Bergman ball and Kobayashi balls

appeared and was used and this estimate will often be used by us in the proofs below.

Similar ideas were used in context of a unit ball and pseudoconvex domains in [14]

and [22]. For similar sharp embedding results based on similar ideas in bounded

symmetric domains and their direct generalizations—minimal bounded homogeneous

domains, we refer the reader to a series of recent subtle results of Yamaji (see [23], [24]

and various references therein). Note that pseudoconvex domains are not symmetric,

tubular domains are not bounded. Minimal bounded homogeneous domains serve

as direct extensions of bounded symmetric domains (see [23], [24] and references

therein). The motivation of this paper is to provide complete analogues of some

of our recent sharp results for so-called Herz-type analytic spaces in tube domains

over symetric cones. We refer to [22], where our theorems can be seen in bounded

pseudoconvex domains and minimal homogeneous domains; new related results on

sharp embeddings on other domains were also discussed in that paper. Since till

now there are only several sharp embedding theorems in analytic function spaces in

domains with very complex structure in higher dimension, we found these reasons

enough to present a new paper. It is well known that applications of such type

of results are numerous. In various embeddings theorems for analytic mixed norm

function spaces in tubular domains over symmetric cones as well as in other domains,

the so-called Carleson type measures constantly appear. We turn to some history

related to this problem starting from the simplest domain—the unit disk. Carleson

measures were introduced by Carleson (see [7]) in his solution of the corona problem

in the unit disk of the complex plane, and since then they have become an important

tool in analysis, and an interesting object of study per se. Let A be a Banach space

of analytic functions on a domain D ⊂ C
n. Given p > 1, a finite positive Borel

measure µ on D is a Carleson measure of A (for p) if there is a continuous inclusion

A →֒ Lp(µ), that is, there exists a constant C > 0 such that

∫

D

|f |p dµ 6 C‖f‖pA ∀ f ∈ A.

A finite positive Borel measure µ is a Carleson measure of Hardy space Hp(D),

where D is the unit disk in C (see [19]) if and only if there exists a constant C > 0
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such that µ(Sθ0,h) 6 Ch for all sets

Sθ0,h = {reiθ ∈ D : 1− h 6 r < 1, |θ − θ0| < h}

(see also [10], [19]). The set of Carleson measures of Hp(D) does not depend on p.

In [12] the authors obtained a similar description for the Carleson measures of the

Bergman spaces Ap(D) (see also [18] and [19] for such type of result); it was also

obtained in terms of the special sets Sθ0,h. In [8] and [9] the authors characterized

Carleson measures for Bergman spaces in the unit ball Bn ⊂ C
n, and Cima and

Mercer (see [8], [9]) found the description of Carleson measures of Bergman spaces

in strongly pseudoconvex domains, showing in particular that the set of Carleson

measures of Ap(D) is independent of p > 1. We turn to more details. In [8] and [9]

a characterization of Carleson measures of Bergman spaces was formulated in terms

of more general sets than Sθ0,h. We will use the one expressed via the intrinsic

Kobayashi geometry of the domain. Let z0 ∈ D and 0 < r < 1, let BD(z0, r)

denote the ball of center z0 and radius
1
2 (log (1 + r)− log (1 − r)) for the Kobayashi

distance kD of D (that is, of radius r with respect to the pseudohyperbolic distance

̺ = tanh(kD)). It is known for D strongly pseudoconvex (see [1], [2]) that a finite

positive measure µ is a Carleson measure of Ap(D) for p if and only if for some (and

hence all) 0 < r < 1 there is a constant Cr > 0 such that

µ(BD(z0, r)) 6 Crν(BD(z0, r)) ∀ z0 ∈ D,

where ν is a standard Lebegue’s measure on a domain. (The proof of this in [2] relied

on Cima and Mercer’s characterization, see [8].)

We say that a finite positive Borel measure µ is a (geometric) θ-Carleson measure

if for some (and hence all) 0 < r < 1 there is a constant Cr > 0 such that

µ(BD(z0, r)) 6 crν(BD(z0, r))
θ ∀ z0 ∈ D.

Note that 1-Carleson measures are the usual Carleson measures of Ap(D), and

we know that θ-Carleson measures are exactly the Carleson measures of weighted

Bergman spaces (see [1], [2]). Note also that when D = Bn, a q-Carleson measure

in the sense of [13], [15] is a (1 + q(n + 1)−1)-Carleson measure in our sense. We

refer the reader to [3], [4], [5], [15], [25] and several references therein for various

(not only sharp) embedding theorems and related results in the case of a ball for

analytic Bergman type and Besov type spaces in higher dimension and for various

embeddings related to mixed norm spaces of analytic functions of several variables in

tubular domains over symmetric cones. In this paper we are however more interested

in Carleson type measures for some new analytic Herz-type mixed norm spaces in
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tubular domains over symmetric cones. Note in addition that the literature con-

cerning various one-dimensional embeddings is very large (see, for example, [15]).

In recent papers of Yamaji (see [23], [24] and references therein) new subtle esti-

mates from below for Bergman kernel and weighted Bergman kernel on balls forming

r-lattices were provided in context of bounded minimal homogeneous domains. This

leads to new sharp embedding theorems for these domains (see [14], [15]). Similarly

as in bounded pseudoconvex domains with smooth boundary in tubular domains over

symmetric cones, some sharp Carleson type embeddings for Bergman type spaces (or

Herz spaces) will be also fully characterized in terms of Carleson type measures of

tubular domains (see the definitions of Carleson type measures for these domains be-

low). Throughout this paper constants are denoted by C and Ci, i = 1, 2, . . ., or by C

with other indices, they are positive and may not be the same at each occurrence.

2. Preliminaries on geometry of tubular domains

over symmetric cones

In this section we provide a chain of facts, properties and estimates on the geometry

of tubular domains which we will use in all our proofs below. Practically all of them

are taken from recent interesting papers of Bekolle and coauthors, see [3], [4], [5]. In

particular, following these papers we provide several results on the boundary behavior

of Bergman balls and we formulate a vital submean property for analytic functions

in Bergman balls. Note that two estimates are very important for us. The first one

is the so-called Forelly-Rudin estimate in tube and the second one is the estimate

from below of Bergman kernel on Bergman balls (see the recent papers [16], [17] and

also [5]).

If D = TΩ is a tube domain over cone, z0 ∈ D and r ∈ (0, 1), we shall denote by

BD(z0, r) the Bergman ball of center z0 and radius r.

Let TΩ = V + iΩ be the tube domain over an irreducible symmetric cone Ω in the

complexification V C of an n-dimensional Euclidean space V . Following the notation

of [3] we denote the rank of the cone Ω by r and by ∆ the determinant function on V .

Letting V = R
n, we have as an example of a symmetric cone on R

n, the Lorentz

cone Λn defined for n > 3 as

Λn = {y ∈ R
n : y21 − . . .− y2n > 0, y1 > 0}.

It is equivalent to the forward light cone given by

{y = (y1, y2, y
′) ∈ R

n : y1y2 − |y′|2 > 0}.
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Light cones have rank 2. The determinant function in this case is given by the Lorentz

form ∆(y) = y21 − . . .− y2n (see, for example, [3]).

H(TΩ) denotes the space of all holomorphic functions on D = TΩ.

For τ ∈ R+ and the associated determinant function ∆(x) we set

(2.1) A∞

τ (TΩ) =
{
F ∈ H(TΩ) : ‖F‖A∞

τ
= sup

x+iy∈TΩ

|F (x + iy)|∆τ (y) < ∞
}

(see [3] and references therein). It can be checked that this is a Banach space.

For 1 6 p, q < ∞, ν ∈ R and ν > nr−1− 1 we denote by Ap,q
ν (TΩ) the mixed-norm

weighted Bergman space consisting of analytic functions f in TΩ that

‖F‖Ap,q
ν

=

(∫

Ω

(∫

V

|F (x+ iy)|p dx

)q/p

∆ν(y)
dy

∆(y)n/r

)1/q

< ∞.

This is a Banach space. Replacing simply A by L we will get as usual the corre-

sponding larger space of all measurable functions in tube over symmetric cone with

the same quazinorm (see [3], [21]). It is known that the Ap,q
ν (TΩ) space is nontrivial

if and only if ν > nr−1 − 1 (see [3], [21]), and we will assume this everywhere below.

When p = q, we write (see [3])

Ap,q
ν (TΩ) = Ap

ν(TΩ).

This is the classical weighted Bergman space with usual modification when p = ∞.

The (weighted) Bergman projection Pν is the orthogonal projection from the

Hilbert space L2
ν(TΩ) onto its closed subspace A2

ν(TΩ) and it is given by the fol-

lowing integral formula (see [3]):

(2.2) Pνf(z) = Cν

∫

TΩ

Bν(z, w)f(w)∆
ν−n/r(v) du dv,

where Bν(z, w) = Cν∆
−(ν+n/r)((z − w)/i) is the weighted Bergman reproducing

kernel for A2
ν(TΩ) (see [3]). In the sequel we use constantly the following notations

w = u+ iv ∈ TΩ and also = x+ iy ∈ TΩ.

Let us first recall the following known basic integrability properties for the deter-

minant function, which appeared already in the definitions above. Below we denote

by ∆s the generalized power function (see [3]).

Lemma 2.1.

(1) The integral

Jα(y) =

∫

Rn

∣∣∣∆−α
(x+ iy

i

)∣∣∣dx
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converges if and only if α > 2nr−1 − 1. In that case

Jα(y) = Cα∆
−α+n/r(y), α ∈ R, y ∈ Ω.

(2) Let α ∈ C
r and y ∈ Ω. For any multi-indices s and β and t ∈ Ω the function

y 7→ ∆β(y + t)∆s(y) belongs to L
1(Ω, dy/∆n/r(y)) if and only if ℜs > g0 and

ℜ(s+ β) < −g∗0 . In that case we have
∫

Ω

∆β(y + t)∆s(y)
dy

∆n/r(y)
= Cβ,s∆s+β(t).

We refer to Corollary 2.18 and Corollary 2.19 of [21] for the proof of the above

lemma or to [3]. As a corollary of the one-dimensional version of the second estimate

and the first estimate (see, for example, [21]) we obtain the following vital Forelli-

Rudin estimate (2.3) which we will often use in the proofs of our main results:

(2.3)

∫

TΩ

∆β(y)|Bα+β+n/r(z, w)| dν(z) = C∆−α(v),

where β > −1, α > nr−1 − 1, z = x+ iy, w = u+ iv (see [21]).

In this paper we restrict ourselves to Ω irreducible symmetric cone in the Euclidean

vector space Rn of dimension n, endowed with an inner product for which the cone Ω

is self dual. We denote by D = TΩ = R
n + iΩ the corresponding tube domain in Cn.

Let D ⋐ C
n be a tube domain within C

n. We shall use the following notations:

⊲ δ : D → R
+ will denote the determinant function, that is, δ(z) = ∆(Im; z), z ∈

TΩ = D;

⊲ dν will be the Lebesgue measure on TΩ;

⊲ given 1 6 p 6 ∞, the Bergman space Ap(D) is the Banach space Lp(D) ∩H(D)

endowed with the Lp-norm;

⊲ B : D ×D → C will be the Bergman kernel of D, B = Bn/r.

Let further dνt(z) = (δ(z))t dν(z), t > −1.

Definition 2.1. Let D ⋐ C
n be a bounded domain and r > 0. An r-lattice

in D is a sequence {ak} ⊂ D such that D =
⋃
k

BD(ak, r) and there exists m > 0

such that any point in D belongs to at most m balls of the form BD(ak, R), where

R = 1
2 (1 + r).

The existence of r-lattices in tube D = TΩ domains is ensured by the following.

Lemma 2.2 ([3], Lemma 2.5). Let D ⊂⊂ C
n be a domain. Then for every

r ∈ (0, 1) there exists an r-lattice in D, that is, there exist m ∈ N and a sequence

{ak} ⊂ D of points such that D =
∞⋃
k=0

BD(ak, r) and no point of D belongs to more

than m of the balls BD(ak, R), R = c(r), where c(r) is a certain function of r.
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Note that we have

να(BD(ak, R)) =

∫

BD(ak,R)

δα(z) dν(z) = δα(ak)ν(BD(ak, R))

= δα(ak)

∫

BD(ak,R)

dν(z), α > −1.

This equality follows directly from the properties of r-lattices on Bergman balls we

listed already and the definition of weighted Lebesgue’s measure.

We will call r-lattice sometimes the family of balls BD(ak, r). Dealing with un-

weighed Bergman kernel (B = Bn/r) we always assume |B(z, ak)| ≍ |B(ak, ak)| for

any z ∈ BD(ak, r), r ∈ (0, 1) (see [3], [4]). Based on the definition of the Bergman

kernel (see [3]), it is easy to see this assertion is valid also for allBt kernels, t = mnr−1

if m ∈ N.

More general version of this assertion can be seen in Corollary 2.1.

We shall use a submean estimate for nonnegative subharmonic functions on

Bergman balls on tube D = TΩ domains. We denote for simplicity tube domains

by D.

Lemma 2.3 ([3]). Let D ⊂⊂ C
n be a tube domain. Given r ∈ (0, 1), set R =

1
2 (1 + r) ∈ (0, 1). Then there exists Cr > 0 depending on r such that

∀ z0 ∈ D, ∀ z ∈ BD(z0, r) χ(z) 6
Cr

ν(BD(z0, r))

∫

BD(z0,R)

χ dν

for every nonnegative subharmonic function χ : D → R
+.

We will use this lemma for χ = |f(z)|q, f ∈ H(D), q ∈ (0,∞).

Remark 2.1. Note that from Lemma 2.3 for each a0 ∈ D we have

sup
z∈BD(a0,r)

|f(z)|q 6
Cr

ν(BD(a0, r))

∫

BD(a0,r)

|f(w)|q dν(w), f ∈ H(D), q ∈ (0,∞).

We have the following result known as Korányi’s lemma.

Lemma 2.4 ([3], [16], [17], [21]). For every δ > 0 there is a constant Cδ > 0 such

that ∣∣∣
B(ζ, z)

B(ζ, w)
− 1

∣∣∣ 6 Cδd(z, w)

for all ζ, z, w ∈ D with d(z, w) 6 δ, where d is a distance in TΩ (see [3], [21]).
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The following vital for us corollary is a straightforward consequence of [3], [21]

and Lemma 2.4 (the estimate from below of Bergman kernel).

First, for ν > nr−1 − 1 and w ∈ D, the normalized reproducing kernel is

(2.4) bν(·, w) =
Bν(·, w)

‖Bν(·, w)‖2,ν
= ∆−ν−n/r

( · − w

i

)
∆(ν+n/r)/2(Imw).

Corollary 2.1 ([16]). Let ν > nr−1 − 1, δ > 0 and z, w ∈ D. There is a positive

constant Cδ such that for all z ∈ Bδ(w),

Vν−n/r(Bδ(w))|bν(z, w)|
2 6 Cδ.

If δ is sufficiently small, then there is C > 0 such that for all z ∈ Bδ(w),

Vν−n/r(Bδ(w))|bν (z, w)|
2 > (1− Cδ),

where bν is a normalized Bergman kernel.

The following property is also very important for us (see, for example, [16], [17]):

δ(w) ≍ δ(z), z ∈ BD(w, r).

Also, we constantly use in this paper that (see [16], [17])

∫

Bδ(w)

∆α(Im z) dν(z) ≍ ∆α+2n/r(Imw), α > −1, w ∈ D.

At the end of this section we note that all our results in context of the unit ball

(and even bounded pseudoconvex domains) can be seen in [14], [22], hence all our

proofs are sketchy since the arguments are rather similar in all cases.

3. On some new sharp embedding theorems for Herz-type mixed norm

spaces in tubular domains over symmetric cones

This main section of our work contains the formulations of all main results of this

work and also contains the proofs of our main results in tube and bounded strongly

pseudoconvex domains.

The theory of analytic spaces in tube domains was developed rapidly during last

decades (see [1], [2], [5] and various references therein). Several Carleson-type sharp

embedding theorems for such spaces are known today (see [1], [2] and references

therein). The goal of this paper is to add to this list several new sharp assertions
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for these unbounded domains. We alert the reader that we extend our previous

results in the bounded domain unit ball of Cn from [14]. And the proofs are rather

similar. However, we found these general results interesting enough to put them in

a separate paper. We need for all of our proofs, as previously in the unit ball case,

various properties of r-lattices of D domain, which we listed in the previous section

and various properties of analytic functions on Bergman balls from recent papers of

Sehba and coauthors.

During past decades the theory of Bergman spaces in bounded strictly pseudocon-

vex domains with smooth boundary was also developed in many papers by various

authors ([1], [2] and various references therein). Here we consider direct analogues

of such spaces in context of unbounded domains. For the Bergman space theory in

the unit disk, unit polydisk and in the unit ball we refer the reader to [10], [25].

One of the goals of this paper is to extend some recent results of standard weighted

Bergman spaces in the tube domains in C
n to the case of more general A(p, q, α)

classes Bergman-type classes in unbounded tubular domains. Note that using prop-

erties of r-lattice from [3], [5] we can get the following estimates for tube domain D:

‖f‖p
Ap

α1

=

∫

D

|f(z)|pδα(z) dν(z) ≍

∞∑

k=1

max
z∈BD(ak,r)

|f(z)|pδα1
(BD(ak, r))(3.1)

≍

∞∑

k=1

∫

BD(ak,R)

|f(z)|pδα(z) dν(z),

0 < p < ∞, α > −1, α1 = α+ nr−1, R = c(r), where c(r) is a certain function of r,

r ∈ (0, 1).

Motivated by (3.1) we introduce a new space as follows.

Definition 3.1. Let µ be a positive Borel measure in D, 0 < p, q < ∞, s > −1.

Fix r ∈ (0;∞) and an r-lattice {ak}
∞

k=1. The analytic space A(p, q, dµ) is the space

of all holomorphic functions f such that

‖f‖qA(p,q,dµ) =

∞∑

k=1

(∫

B(ak,r)

|f(z)|p dµ(z)

)q/p

< ∞.

If dµ = δs(z) dν(z), then we will denote by A(p, q, s) the space A(p, q, dµ). This is

a Banach space for min(p, q) > 1. It is clear that A(p, p, s) = Ap
s̃, s̃ = s+ nr−1.

Remark 3.1. It is clear now from the discussion above and the definition of

A(p, p, s) spaces that these classes are independent of {ak} and r. But in the

general case of A(p, q, s) spaces the answer is unknown. For simplicity we denote

‖f‖A(p,q,s,ak,r) by ‖f‖A(p,q,s).
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We also have the following estimates using r-lattice:

‖f‖qA(p,q,s) =

∞∑

k=1

(∫

D

χBD(ak,r)(z)|f(z)|
pδs(z) dν(z)

)q/p

6 C

(∫

D

|f(z)|pδs(z) dν(z)

)q/p

= C‖f‖q
Ap

s̃

, q > p, s > −1,

where s̃ = s+ nr−1.

So finally we have

‖f‖A(p,q,s) 6 C‖f‖Ap

s̃
, q > p, s > −1.

Motivated by this estimate we pose the following very natural and more general

problem (as in the case of the unit ball).

Problem: Let µ be a positive Borel measure in tube D and let {ak}k∈N be a se-

quence such that BD(ak, r) is an r-lattice for tubular domain D in C
n. Let X be

a quasinormed subspace of H(D) and p, q ∈ (0,∞). Describe all positive Borel mea-

sures such that

(3.2) ‖f‖A(p,q,dµ) 6 C‖f‖X .

For p = q case see [6], [16], [17]. Some modifications of (3.2) are also interesting.

We note again that for all proofs of the assertions below we will need the properties

of r-lattice, which we listed in previous sections, and various properties of Bergman

balls from recent papers [16] and [17], which we also listed above. The estimate from

below of Bergman kernel on Bergman balls is crucial everywhere below and as in the

case of simpler domains it can be seen in [16] and [17].

All theorems of this section in very particular case of the unit ball can be seen

in [14]. Moreover, the arguments of the proofs are rather similar, so we omit some

proofs.

The following result (a multifunctional sharp embedding theorem for tubular do-

mains over symmetric cones) is as far as we know new even if the amount of functions

is equal to one.

Theorem 3.1. Let µ be a positive Borel measure on D and {ak} be a Bergman

sampling sequence forming an r-lattice. Let α > −1, fi ∈ H(D), 0 < pi, qi < ∞,

i = 1, . . . ,m so that
m∑
i=1

q−1
i = 1. Then

∫

D

m∏

i=1

|fi(z)|
pi dµ(z) 6 C

m∏

i=1

[ ∞∑

k=1

(∫

B(ak,r)

|fi(z)|
piδα(z) dν(z)

)qi]1/qi
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if and only if

(3.3) µ(BD(ak, r)) 6 Cδm(α+2n/r)(ak)

for every k = 1, 2, 3, . . ., r > 0.

Remark 3.2. The assertion of Theorem 3.1 can be found in paper [14] for the

case of the unit ball in C
n. For qi = 1, pi = p, m = 1 it can be seen in [25] for the

unit ball.

Theorem 3.2. Let 0 < q, s < ∞, q > s, α > −1. Let {ak}
∞

k=1 be a sequence

forming an r-lattice in D. Let µ be a positive Borel measure in D. Then

∫

D

|f(z)|q dµ(z) 6 C

∫

D

(∫

BD(z,r)

|f(w)|s dνα(w)

)q/s

dν(z)

if and only if

(3.4) µ(BD(ak, r)) 6 C(δ(ak))
q((α+2n/r)/s+2n/(rq))

for some constant C, C > 0, k ∈ N.

Theorem 3.3. Let 0 < q, p < ∞, 0 < s 6 p < ∞, β > −1, β̃ = β + nr−1.

Let µ be a positive Borel measure on D. Then we have the assertion

‖f‖A(q,p,dµ) 6 C‖f‖As

β̃

if and only if

(3.5) µ(BD(ak, r)) 6 C(δ(ak))
q(2n/r+β)/s.

Remark 3.3. The estimates of these types (3.5) for a unit ball can be found in

paper [14] for simpler case p = q, p = s; similar assertions are proved in [25] for the

unit ball.

Remark 3.4. Our one functional theorems can be easily extended to weighted

spaces with quasinorms

∫

D

(∫

BD(z,r)

|f(w)|s dνα(w)

)q/s

dνβ(z),
∞∑

k=1

(∫

B(ak,r)

|f(z)|p dµ(z)

)q/p

δβ(ak)

with some restrictions on the parameters involved. Similarly, a bit more general form

can be given for our multifunctional result.
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As it was mentioned above we intend to give in this paper “unbounded” versions

of our earlier results proved before in the case of the unit ball in Cn and in bounded

strictly pseudoconvex domains with smooth boundary. For this purpose we heavily

use the new vital technique which was developed in very recent vital papers [16]

and [17], where the so-called r-lattice was applied for the embeddings of similar type

in tube domains. We note that all proofs of our theorems will not be given in this

paper because of certain real similarities in arguments we used in the case of the unit

ball before and here below. Note also again here as before that in the case of a unit

ball all our proofs are heavily based on nice properties of r-lattice, which we listed

in previous sections, but for the case of a tube.

The proofs are rather sketchy for reasons which were already indicated (see also [14]

for the unit ball case).

P r o o f of Theorem 3.1. First suppose that (3.3) holds. Then using properties

of r-lattices, which we listed in previous sections, and Bergman balls we have

J =

∫

D

m∏

i=1

|fi(z)|
pi dµ(z) =

∞∑

k=1

∫

BD(ak,r)

m∏

i=1

|fi(z)|
pi dµ(z)

6 C̃

∞∑

k=1

sup
BD(ak,r)

m∏

i=1

|fi(z)|
piµ(BD(ak, r))

6 C̃1

∞∑

k=1

µ(BD(ak, r))
m∏

i=1

sup
BD(ak,r)

|fi(z)|.

Hence, using Lemma 2.3 and the comments after it and since δ(ak) ≍ δ(w) if

w ∈ BD(ak, R), we have

J 6 C

∞∑

k=1

(µ(BD(ak, r)))

m∏

i=1

sup
z∈BD(ak,r)

|fi(z)|
pi ;

J 6 C̃

∞∑

k=1

µ(BD(ak, r))

δm(α+2n/r)(ak)
δm(α+2n/r)(ak)

m∏

i=1

∫

BD(ak,R)

|fi(w)|
pi

dν(w)

(ν(BD(ak, r)))m
,

since (ν(BD(ak, r)))
m ≍ δm2n/r(ak), k = 1, 2, . . .,

J 6 C1

∞∑

k=1

µ(BD(ak, r))

δm(α+2n/r)(ak)

m∏

i=1

∫

BD(ak,R)

|fi(w)|
piδα(w) dν(w)

6 C2

∞∑

k=1

m∏

i=1

∫

BD(ak,R)

|fi(w)|
piδα(w) dν(w).

Using the condition
m∑
i=1

q−1
i = 1 and Hölder’s inequality for m functions we get

what we need. The converse follows from the chain of equalities and estimates based
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again on the properties of r-lattice, which we listed in the previous section. Indeed,

we have as above for fi the test function

fi(z) = (δ(α+2n/r)/pi(ak))(B2(α+2n/r)/pi−n/r(z, ak)), i = 1, 2, . . . ,m.

By the properties of r-lattice, which we listed in previous section, using Corol-

lary 2.1 we have

∫

D

m∏

i=1

|fi(z)|
pi dµ(z) >

∫

BD(ak,r)

(δm(α+2n/r)(ak))(Bτ (ak, ak)) dµ(z)

>
µ(BD(ak, r))

δm(α+2n/r)(ak)
, τ = 2m

(
α+

2n

r

)
−

n

r
.

Hence, we get what we need. Indeed, we have the following estimates:

m∏

i=1

( ∞∑

k=1

(∫

BD(ak,r)

|fi(z)|
piδα(z) dν(z)

)qi)1/qi

6

m∏

i=1

∞∑

k=1

∫

BD(ak,r)

|fi(z)|
pi(δα(z)) dν(z).

Note first of all that fi depends on k by definition. So since each y ∈ D belongs

to at most N balls BD(ak, r), we have

m∏

i=1

∞∑

k=1

∫

BD(ak,r)

|fi(z)|
pi(δα(z)) dν(z) 6

m∏

i=1

∞∑

k=1

∫

D

χBD(ak,r)(z)|fi(z)|
pi(δα(z)) dν(z)

6

m∏

i=1

N∑

k=1

∫

D

|fi(z)|
pi(δα(z)) dν(z)

and using the definition of fi we get

m∏

i=1

N∑

k=1

∫

D

|fi(z)|
pi(δα(z)) dν(z)

6

m∏

i=1

N∑

k=1

δα+2n/r(ak)

∫

D

|B2(α+2n/r)/pi−n/r(z, ak)|
pi(δα(z)) dν(z)

6

m∏

i=1

N∑

k=1

δα+2n/r(ak)δ
−2n/r−α(ak)

since ∫

D

|B2(α+2n/r)/pi−n/r(z, ak)|
pi (δα(z)) dν(z) = cδ−2n/r−α(ak)

whenever α > −1. The proof of the theorem is complete. �
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P r o o f of Theorem 3.2. Let (3.4) hold. We have for the same {ak} sequence and

using the properties of r-lattice, which we listed in previous sections (Lemmas 2.2–2.4

and the remarks after Corollary 2.1),

∫

D

|f(w)|q dµ(w) 6
∞∑

k=1

sup
w∈BD(ak,r)

|f(w)|qµ(BD(ak, r)).

Since qs−1 > 1,

∞∑

k=1

sup
w∈BD(ak,r)

|f(w)|qµ(BD(ak, r))(3.6)

6

[ ∞∑

k=1

sup
w∈BD(ak,r)

|f(w)|s(µ(BD(ak, r)))
s/q

]q/s

6 C

[ ∞∑

k=1

(
sup

w∈BD(ak,r)

|f(w)|s
)
δs((α+2n/r)/s+2n/(rq))(ak)

]q/s
.

Since w ∈ D and D is open, there exists δ > 0 such that BD(w, 2δ̃) ∈ D. From

the mean value formula we derive (see also Lemma 2.3 and the remark after it)

|f(w)|s 6
1

ν(BD(w, δ̃))

∫

BD(w,δ̃)

|f(w̃)|s dν(w̃) ≃ δ−2n/r(w)

∫

BD(w,δ̃)

|f(w̃)|s dν(w̃).

This leads to

sup
w∈BD(ak,r)

|f(w)|s . δ−2n/r(ak)

∫

BD(ak,δ̃+r)

|f(w̃)|s dν(w̃)(3.7)

since δ(w) ∼ δ(ak) and BD(w, δ) ⊂ BD(ak, δ+ r) whenever w ∈ BD(ak, r). It follows

from (3.6) and (3.7) that

∞∑

k=1

sup
w∈BD(ak,r)

|f(w)|qµ(BD(ak, r))

6 C

[ ∞∑

k=1

δs((α+2n/r)/s+2n/(rq))−2n/r(ak)

∫

BD(ak,δ+r)

|f(w̃)|s dν(w̃)

]q/s
.

Then we have δ(w) ≍ δ(z), z ∈ BD(w, r) (see [16], [17]) and hence

∫

BD(ak,R)

|f(z)|s dν(z)

6 C

∫

BD(ak,R)

(∫

BD(z,r)

|f(w̃)|s dνα(w̃)

)
dν(z)

δ(α+2n/r)(z)
, R = δ + r.
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By Hölder’s inequality for this R we have, using the properties of r-lattice (Lem-

mas 2.2–2.4 and the remarks after Corollary 2.1),

(∫

BD(ak,R)

∫

BD(z,r)

|f(w̃)|s dνα(w̃)
dν(z)

δ2n/r(z)

)q/s

6 c̃

∫

BD(ak,R)

(∫

BD(z,r)

|f(w̃)|s dνα(w̃)

)q/s

(δ−2n/r(ak)) dν(z).

Taking in previous estimate R = δ + r, we shall finally obtain

∫

D

|f(w)|q dµ(w) 6 C

∫

D

(∫

BD(z,r)

|f(w̃)|s dνα(w̃)

)q/s

dν(z).

We show the converse. We have {ak}, z ∈ D, k = 1, 2, . . . and β which is big

enough. Let

fk(z) = δ(β−(α+2n/r))/s−2n/(rq)(ak)[Bn/r(z, ak)]
β̃ , β̃ =

β

2nr−1
.

We can choose β so that β̃ can be integer.

Then by estimate (2.3), Lemmas 2.2–2.4 and the remarks after Corollary 2.1, we

have

∫

D

(∫

BD(w,r)

|fk(z)|
s dνα(z)

)q/s

dν(w) 6 C(δτ (ak))
1

δτ (ak)
6 const.,

τ = βq − q
α+ 2nr−1

s
−

2n

r
.

Note the fact that

∫

BD(w̃,r)

δs(w) dν(w)

|∆α((z − w)i−1)|
6

c

|∆α̃((z − w̃)i−1)|
, α̃ = α− s−

2n

r
,

α > s+ 2nr−1, z, w̃ ∈ D can be seen in [20]. Then using Corollary 2.1 we have

∫

D

|fk(z)|
q dµ(z) > C(µ(BD(ak, r)))δ

−q((α+2n/r)/s+2n/(rq))(ak).

The rest is clear (see also [14]). The proof of the theorem is complete. �

Remark 3.5. Note that in the proofs we repeat the arguments from [14] provided

there in the case of much simpler domain in C
n, namely in the unit ball in C

n.
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P r o o f of Theorem 3.3. Suppose (3.5) holds. Then using the properties of

r-lattice, which we listed in previous sections (Lemmas 2.2–2.4 and the remarks

after Corollary 2.1) we have

( ∞∑

k=1

[∫

BD(ak,r)

|f(z)|q dµ(z)

]p/q)s/p

6 C1

( ∞∑

k=1

max
z∈BD(ak,r)

|f(z)|pδp(2n/r+β)/s(ak)

)s/p

6 C2

∞∑

k=1

max
z∈BD(ak,r)

|f(z)|sδ(2n/r+β)(ak)

6 C3

∫

D

|f(z)|sδβ(z) dν(z) 6 C4‖f‖
s
As

β̃
(D), β > 0, 0 < s < ∞.

Conversely, using an appropriate test function fk(z) and the estimates from below

of Bergman-type kernel Bs (see Corollary 2.1 and remarks therein) and using also

the properties of r-lattices, which we listed in the previous section, for a test function

fk(z) = δ(β+2n/r)/s(ak)Bt/s−n/r(z, ak), z ∈ D, k = 1, 2, . . . , t = 2
(
β +

2n

r

)
,

where β is large enough positive number, and noting that

(3.8)

(∫

BD(ak,r)

|f(z)|q dµ(z)

)1/q

= Ck(f) 6

( ∞∑

k=1

(Ck(f))
p

)1/p

= C

[ ∞∑

k=1

(∫

BD(ak,r)

|f(z)|q dµ(z)

)p/q]1/p
6 c‖f‖As

β̃

.

Using Corollary 2.1 we get what we need.

Indeed, putting fk into (3.8) and using the fact that sup
k

‖fk‖As

β̃

6 const., which

follows from estimate (2.3) (see also [16] and [17]), we will get what we need. The

proof of the theorem is complete. �

The careful analysis of the proofs of these embeddings in Herz-type analytic func-

tion spaces we provided above shows various similarities to our previous work of

similar type in the unit ball and bounded strictly pseudoconvex domains. Neverthe-

less, tubular domains over symmetric cones are general unbounded as domains and

our results can be seen only as direct analogues of our previous embedding theorems

in bounded domains in higher dimension. Some similar results in Herz-type analytic

function spaces with similar proofs are valid also in bounded symmetric domains
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and minimal homogeneous domains (see [11], [23], [24] for some machinery which is

needed for such results and proofs).

Note finally that by similar methods some sharp reverse embeddings of the follow-

ing type can be obtained:

∫

D

(∫

BD(z,r)

|f(w)|s dµ(w)

)q/s

dν(z) 6 C‖f‖Ap

β

for some values of q, s, p, β, or

(∫

D

|f(z)|vdµ(z)

)1/v

6 C1

∞∑

k=1

(∫

B(ak,r)

|f(z)|p dνα(z)

)q/p

for some values of parameters v, p, q, α and a fixed positive Borel measure µ on TΩ.

We omit the details.

Some results of this paper can be extended by similar methods to appropriately

defined analytic Herz-type function spaces on product domains Cn× . . .×C
n = C

mn.
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