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EFFICIENT MEASUREMENT OF HIGHER-ORDER
STATISTICS OF STOCHASTIC PROCESSES

Wladyslaw Magiera, Urszula Libal and Agnieszka Wielgus

This paper is devoted to analysis of block multi-indexed higher-order covariance matrices,
which can be used for the least-squares estimation problem. The formulation of linear and
nonlinear least squares estimation problems is proposed, showing that their statements and so-
lutions lead to generalized ‘normal equations’, employing covariance matrices of the underlying
processes. Then, we provide a class of efficient algorithms to estimate higher-order statistics
(generalized multi-indexed covariance matrices), which are necessary taking in mind practical
aspects of the nonlinear treatment of the least-squares estimation problem. The algorithms are
examined for different higher-order and non-Gaussian processes (time-series) and an impact of
signal properties on covariance matrices is analysed.

Keywords: covariance matrix, higher-order statistics, adaptive, nonlinear
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1. INTRODUCTION

The least-squares estimation problems [3, 5] can be stated and solved using covariance
data of the underlying stochastic processes. If the considered problem is linear, the ‘suf-
ficient statistics’ are second-order (two-dimensional or two-indexed) covariance matrices,
being actually positive-definite Hermitian matrices. If the underlying process is wide-
sense stationary (in a weak second-order sense), those matrices become Toeplitz [11].

If the least-squares estimation problem considered becomes nonlinear, the ‘sufficient
statistics’ are higher-order (multi-dimensional or multi-indexed) covariance (precisely –
generalized, block multi-indexed) matrices, being generalized positive-definite Hermi-
tian. If a higher-order process is wide-sense stationary (in a weak, higher-order sense),
those matrices become generalized block-Toeplitz matrices.

If the underlying process is Gaussian, its second-order covariance matrix contains
‘all’ statistical information [11] (as in this case higher-order covariances are expressible
in terms of sums of products of second-order covariances, and do not contain any ‘new’
statistical information about the process). Thus, in the Gaussian case, second-order
statistics are sufficient statistics and it is enough to consider the linear estimation case
for this class of stochastic processes.
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In a non-Gaussian case higher-order statistics [6] become non trivial, and one has
to employ generalized covariance matrices to enhance the estimation accuracy. Conse-
quently, the linear approach has to be replaced by a nonlinear treatment of the problem.

In this paper we wish to propose a class of efficient algorithms for measurement/es-
timation of higher-order statistics (generalized block multi-indexed covariance matrices
of Gaussian and non-Gaussian stochastic processes), taking in mind practical aspects of
the nonlinear treatment of the least-squares estimation problem [7, 8]. We begin with
formulation of the linear/nonlinear least squares estimation problems, showing that their
statements/solutions lead to the generalized ‘normal equations’, employing covariance
matrices of the underlying processes (two-indexed in the linear case and/or block multi-
indexed in the nonlinear situation).

Then we briefly consider properties of higher-order generalized covariance matrices
in the nonstationary versus stationary cases.

Next, we propose a class of efficient higher-order statistics estimation/measurement,
including a new class of adaptive algorithms based on a generalized isomorphism between
the spaces of random variables (and their products), and (linear and nonlinear) sample-
observation vectors.

The results obtained are then confirmed by simulations for different classes of higher-
order and non-Gaussian processes (actually – time-series).

2. LEAST-SQUARES ESTIMATION PROBLEM PROBLEM FOR SECOND- AND
HIGHER-ORDER STOCHASTIC PROCESSES

Let {Ω,B, µ} be a probability space where Ω is an abstract set of elements ω ∈ Ω, B
– σ-algebra of Borel subsets, and µ – a probability measure on B. Via L2{Ω,B, µ} we
denote a separable Hilbert space of σ-measurable mappings w : Ω→ C, satisfying∫

Ω

|w(ω)|2µ(dω) <∞.

We introduce in L2{Ω,B, µ} the inner-product as

(w, v)Ω
∆
=

∫
Ω

w(ω)v̄(ω)µ(dω) = Ewv̄

where ¯ denotes complex conjugate and E stands for the expectation operator. This
inner-product induces the norm

‖w‖2Ω =

∫
Ω

|w(ω)|2µ(dω) = E|w|2

and metric
dΩ(w, v) = ‖w − v‖Ω.

With completeness of L2{Ω,B, µ}, that space will be a Hilbert space. Let T denote the
set of natural numbers and let t ∈ T . The mapping

t 7→ yt = yt(ω) ∈ L2{Ω,B, µ}

will be called a discrete-time Hilbert stochastic process y if ∀t∈T ‖yt‖2Ω < ∞. Let y
denote a discrete-time centred process.
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2.1. Linear least-squares estimation problem

Let us consider a finite set of random variables

{yt, yt−1, . . . , yt−n} (2.1)

and take t = 0 for simplicity. This set can equivalently be rewritten as

Y = [y−i1 ]i1=0,...,n.

Observe that
1Y = [y−i1 ]i1=1,...,n (2.2)

will be the nth order past w.r. to the offset t = 0. Assuming that the random variables
(2.1) form a linearly independent set, we can introduce the space spanned by the linear
past

S1 = ∨{1Y }

where ∨ stands for ‘the span of’. In the linear prediction problem we consider the space

S = ∨{y0}
·
+ S1 (2.3)

(where
·
+ denotes direct sum of subspaces) and define the nth order linear estimate as

ŷ1
0

∆
= P (S1)y0 ∈ S1

where P (S) denotes the orthogonal projection operator on S. We consider the nth order
linear prediction error

ε1
0

∆
= P (S 	 S1)y0 ⊥ S1

= y0 +

n∑
i1=1

ai1y−i1 (2.4)

where P (S 	S1) denotes the orthogonal projection operator on the orthogonal comple-
ment of S1 w.r. to S. Orthogonality of the error (2.4) w.r. to the subspace S1 implies
the following set of optimality conditions for the linear least-squares estimation problem

(ε1
0, y−k1) = 0 , k1 = 1, . . . , n.

Equivalently,

(ε1
0, y−k1) = (y0, y−k1) +

n∑
i1=1

ai1(y−i1 , y−k1)

= Ey0y−k1 +

n∑
i1=1

an;i1Ey−i1y−k1

= h0;k1 +

n∑
i1=1

ai1hi1;k1 = 0 , k = 1, . . . , n
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where
hi1;k1

∆
= Ey−i1y−k1

indicates (two-indexed) covariance of the random variables y−i1 and y−k1 . Observing
that

‖ε1
0‖2 = h0;0 +

n∑
i1=1

ai1hi1;0

we obtain the following ‘normal equations’
h0;0 h0;1 . . . h0;n

h1;0 h1;1 . . . h1;n

...
...

. . .
...

hn;0 hn;1 . . . hn;n




1
a1

...
an

 =


‖εn‖2

0
...
0


associated with the linear least-squares prediction problem. We notice that the second-
order statistics of the underlying process (actually, its two-indexed covariance matrix)

1⊕1H =


h0;0 h0;1 . . . h0;n

h1;0 h1;1 . . . h1;n

...
...

. . .
...

hn;0 hn;1 . . . hn;n

 (2.5)

is sufficient in order to state and solve the linear estimation problem (see Levinson [4]).

2.2. Nonlinear least-squares estimation problem

Let us introduce for m = 2, . . . ,M the following m-variate sets of nonlinear observations

mY
∆
= [y−i1 . . . y−im ]i1=1,...n; i2=i1,...,n; im=im−1,...,n (2.6)

and notice that (2.6) reduces to 1Y (2.2) if m = 1. Let for m = 2, . . . ,M

Sm
∆
= ∨{mY }

denote the subspace spanned by the mth degree nonlinear past of the process y. Now
introduce the entire Mth degree nonlinear estimation subspace

MS = S1
·
+ S2

·
+ . . .

·
+ SM

so that

S
∆
= ∨{y0}

·
+ MS (2.7)

and observe that (2.7) immediately reduces to (2.3) if M = 1. This means that the
linear estimation problem, corresponding to M = 1, is actually the ‘simplest’ nonlinear
estimation problem. Let us introduce the nth order, Mth degree nonlinear estimate

ŷM0
∆
= P (MS)y0 ∈ MS
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and the associated nth order, Mth degree nonlinear prediction error

εM0
∆
= P (S 	M S)y0 ⊥ MS

= y0 +

M∑
m=1

n∑
i1=1

n∑
i2=i1

. . .

n∑
im=im−1

ai1,i2,...,imy−i1y−i2 . . . y−im . (2.8)

Orthogonality (2.8) of the error w.r. to the subspace MS implies the following set of
optimality conditions for the nth order, Mth degree nonlinear least-squares estimation
problem

(εM0 , y−k1 . . . y−ku) = 0

for u = 1, . . . ,M and k1 = 1, . . . , n; k2 = k1, . . . , n; . . . ku = ku−1, . . . , n or, equivalently,

(εM0 , y−k1 . . . y−ku) = (y0, y−k1 . . . y−ku)

+

M∑
m=1

n∑
i1=1

n∑
i2=i1

. . .

n∑
im=im−1

ai1,i2,...,im (y−i1y−i2 . . . y−im , y−k1 . . . y−ku)

= Ey0y−k1 . . . y−ku

+

M∑
m=1

n∑
i1=1

n∑
i2=i1

. . .

n∑
im=im−1

ai1,i2,...,im Ey−i1y−i2 . . . y−imy−k1 . . . y−ku

= h0;k1k2...ku

+

M∑
m=1

n∑
i1=1

n∑
i2=i1

. . .

n∑
im=im−1

ai1,i2,...,im hi1,i2...,im;k1,...,ku

where
hi1,i2...,im;k1,...,ku

∆
= Ey−i1y−i2 . . . y−imy−k1 . . . y−ku

indicates the (m⊕u)-indexed covariance of the process y. The norm of the Mth degree
nonlinear error is then given by

‖εM0 ‖2 = h0;0 +

M∑
m=1

n∑
i1=1

n∑
i2=i1

. . .

n∑
im=im−1

ai1,i2,...,im hi1,i2...,im;0.

Let us introduce the following generalized matrices (the notation similar as in [12])

mA = [ai1,i2,...,im ]i1=1,...,n; i2=i1,...,n; im=im−1,...,n , m=1,...,M

and
{M}A = col[mA]m=1,...,M .

Moreover, let

m⊕uH = [hi1,...,im;k1,...,ku ]i1=1,...,n;... ;im=im−1,...,n;k1=1,...,n;... ;ku=ku−1,...,n

and
{M×M}H = [m⊕uH]m=1,...,M ; u=1,...,M . (2.9)
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Then the generalized ‘normal equations’, associated with the Mth degree nonlinear
estimation problem can be compactly expressed as

{M×M}H {M}A = col[ 1P 20 . . . M0] (2.10)

where 1P = [‖εM0 ‖2 0 . . . 0]′ and m0 is an m-indexed zero-matrix.
From the above it follows that in order to state and solve, via computation of the

m-indexed coefficient-matrices mA (actually – the multidimensional impulse responses
– or the Volterra kernels in the Regular Volterra Functional Polynomials, RVFPs, –
of the optimal nonlinear innovations filter [12]), the generalized (block, multi-indexed)
covariance matrix (2.9) is sufficient. In other words, for an Mth degree nonlinear esti-
mation problem the 2Mth order statistics of the underlying stochastic process y are the
‘sufficient statistics’, much like the second-order statistics are the ‘sufficient statistics’
in the linear case, which is immediately obtained from (2.10) if M = 1.

Remark. The multidimensional impulse responses of the nonlinear optimal filter can
efficiently be computed employing the generalized nonlinear Levinson [4] and/or Schur
[9] algorithms.

From the above it clearly follows that higher-order statistics of stochastic processes
are of crucial importance in nonlinear (Volterra-like) estimation problems. Moreover,
efficient measurement/estimation algorithms are required and desired for application
and implementation of the nonlinear processing schemes.

3. COVARIANCE MATRICES OF STOCHASTIC PROCESSES

In this section we consider higher-order statistics (covariance matrices) of stochastic
processes, as an introduction to efficient measurement/estimation algorithms, presented
in Section 4. Starting with second-order statistics, we focus on higher-order statistics,
being block, multi-indexed generalized matrices. We present their properties and show
consequences of weak stationarity in the higher-order sense.

3.1. Second-order processes

The covariance matrix of a stochastic process (2.5)

1⊕1H = [hi1;k1 ]i1,k1=0,...,n =


h0;0 h0;1 . . . h0;n

h1;0 h1;1 . . . h1;n

...
...

. . .
...

hn;0 hn;1 . . . hn;n


is Hermitian (symmetric) as

hi1;k1 = (y−i1 , ȳ−k1) = Ey−i1 ȳ−k1 = Eȳ−i1y−k1 = (ȳ−i1 , y−k1) = h̄k1;i1

and positive-definite (if the observations form a linearly independent set). It proves to
be useful to ‘normalize’ this matrix as

hi1;k1 ←
hi1;k1√

hi1;i1hk1;k1

(3.1)
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so that
hi1;k1 = 1 if i1 = k1.

3.2. Higher-order processes

If we consider a 2Mth order stochastic process, its higher-order statistics (2.9) are in-
luded into a generalized (block, multi-indexed) matrix (notation as in [12])

{M×M}H = [m⊕uH]m=1,...,M ; u=1,...,M =


1⊕1H 1⊕2H . . . 1⊕MH
2⊕1H 2⊕2H . . . 2⊕MH

...
...

. . .
...

M⊕1H M⊕2H . . . M⊕MH

 .
Let us observe that (2.9) is a Hermitian (symmetric) generalized matrix as we have

hi1,...,im;k1,...,ku = (y−i1 · · · y−im , ȳ−k1 · · · ȳ−ku) = Ey−i1 · · · y−im ȳ−k1 · · · ȳ−ku
=Eȳ−i1 · · · ȳ−imy−k1 · · · y−ku = (ȳ−i1 · · · ȳ−im , y−k1 · · · y−ku)

=hk1,...,ku;i1,...,im

so that (2.9) is a generalized Hermitian, block-Hankel matrix. Generalizing (3.1), we
can normalize (2.9) as follows

hi1,...,im;k1,...,ku ←
hi1,...,im;k1,...,ku√

hi1,...,im;i1,...,imhk1,...,ku;k1,...,ku

so that
hi1,...,in;k1,...,kn = 1

if ip = kp for p = 1, . . . , n. Let us observe that each odd-indexed block entry m⊕uH
can be rewritten as a generalized block-row (or block-column) ‘flat’ matrix while each
even-indexed block entry – as a generalized block-square ‘flat’ matrix, according to some
ordering of its rows or columns.

3.3. Nonstationary versus stationary

If the underlying process is wide-sense stationary, its higher-order statistics become
generalized Toeplitz matrices. For the second-order statistics 1⊕1H we obtain in this
case

hi1;k1 = Ey−i1 ȳ−k1 = Ey−i1+σ ȳ−k1+σ
σ=i1= Ey0ȳ−(k1+i1) = hk1−i1 .

For higher-order covariances m⊕uH we get

hi1,...,im;k1,...,ku = hi1+σ,...,im+σ;k1+σ,...,ku+σ
σ=i1= hi2−i1,...,im−i1;k1−i1,...,ku−i1 .

This means that in the stationary case the generalized covariance matrix {M×M}H
becomes a generalized block-Toeplitz matrix (see Figure 1 in Section 4.1). Hence, the
measurement (estimation) is much simpler in this case.
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4. EFFICIENT ESTIMATION ALGORITHMS OF HIGHER-ORDER STATISTICS

Let us consider in some detail fourth-order statistics of stochastic processes, associated
with the 2-nd degree nonlinear least-squares estimation problem. In further considera-
tions we assume that time-series has only real values.

4.1. Properties of fourth-order statistics

The generalized (block, multi-indexed) covariance matrix (2.9) for M = 2 is as follows

{2×2}H =

[
1⊕1H 1⊕2H
2⊕1H 2⊕2H

]
(4.1)

where the second-order statistics of the process are given by

1⊕1H = [hi;k]i,k=0,...,n.

The third-order statistics are

1⊕2H = [hi;k,l]i=0,...,n ; k=0,...,n ; l=k,...,n

or
2⊕1H = [hi,j;k]i=0,...,n ; j=i,...,n ; k=0,...,n

due to (Hermitian) symmetry of (4.1). The fourth-order statistics are then

2⊕2H = [hi,j;k,l]i=0,...,n ; j=i,...,n ; k=0,...,n ; l=k,...,n.

Let us observe that the third-order statistics can be described as a generalized block-row
‘flat’ matrix

1⊕2H = [1⊕2Hk]k=0,...,n

or – equivalently – generalized block-column ‘flat’ matrix

2⊕1H = col[2⊕1Hi]i=0,...,n,

while the fourth-order statistics as a block-square ‘flat’ matrix

2⊕2H = [2⊕2Hi;k]i,k=0,...,n. (4.2)

Hence, the ‘flat’ form of the matrix (4.1) will be

{2×2}H =


1⊕1H 1⊕2H0 . . . 1⊕2Hn
2⊕1H0

2⊕2H0,0 . . . 2⊕2H0,n

...
...

. . .
...

2⊕1Hn
2⊕2Hn,0 . . . 2⊕2Hn,n

 .
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Example. If M = 2 and n = 2, we get

{2×2}H =



h00 h01 h02 h000 h001 h002 h010 h011 h012 h020 h021 h022

h10 h11 h12 h100 h101 h102 h110 h111 h112 h120 h121 h122

h20 h21 h22 h200 h201 h202 h210 h211 h212 h220 h221 h222

h000 h001 h002 h0000 h0001 h0002 h0010 h0011 h0012 h0020 h0021 h0022

h010 h011 h012 h0100 h0101 h0102 h0110 h0111 h0112 h0120 h0121 h0122

h020 h021 h022 h0200 h0201 h0202 h0210 h0211 h0212 h0220 h0221 h0222

h100 h101 h102 h1000 h1001 h1002 h1010 h1011 h1012 h1020 h1021 h1022

h110 h111 h112 h1100 h1101 h1102 h1110 h1111 h1112 h1120 h1121 h1122

h120 h121 h122 h1200 h1201 h1202 h1210 h1211 h1212 h1220 h1221 h1222

h200 h201 h202 h2000 h2001 h2002 h2010 h2011 h2012 h2020 h2021 h2022

h210 h211 h212 h2100 h2101 h2102 h2110 h2111 h2112 h2120 h2121 h2122

h220 h221 h222 h2200 h2201 h2202 h2210 h2211 h2212 h2220 h2221 h2222



.

For the ‘symmetric domains’, corresponding to 2-nd degree RVFPs, we get

{2×2}Hsym =



h00 h01 h02 h000 h001 h002 h011 h012 h022

h10 h11 h12 h100 h101 h102 h111 h112 h122

h20 h21 h22 h200 h201 h202 h211 h212 h222

h000 h001 h002 h0000 h0001 h0002 h0011 h0012 h0022

h010 h011 h012 h0100 h0101 h0102 h0111 h0112 h0122

h020 h021 h022 h0200 h0201 h0202 h0211 h0212 h0222

h110 h111 h112 h1100 h1101 h1102 h1111 h1112 h1122

h120 h121 h122 h1200 h1201 h1202 h1211 h1212 h1222

h220 h221 h222 h2200 h2201 h2202 h2211 h2212 h2222



. (4.3)

Due to symmetry we have

hi;k = hk;i (4.4)

hi;k,l = hk,l;i

hi,j;k = hk;i,j

hi,j;k,l = hk,l;i,j
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so (4.3) became

{2×2}Hsym =



h00 h01 h02 h000 h001 h002 h011 h012 h022

h10 h11 h12 h100 h101 h102 h111 h112 h122

h20 h12 h22 h200 h201 h202 h211 h212 h222

h000 h100 h200 h0000 h0001 h0002 h0011 h0012 h0022

h001 h101 h201 h0001 h0101 h0102 h0111 h0112 h0122

h002 h102 h202 h0002 h0102 h0202 h0211 h0212 h0222

h011 h111 h211 h0011 h0111 h0211 h1111 h1112 h1122

h012 h112 h212 h0012 h0112 h0212 h1112 h1212 h1222

h022 h122 h222 h0022 h0122 h0222 h1122 h1222 h2222



. (4.5)

If the process is stationary (in a weak fourth-order sense), we obtain (for index i – the
same properties are valid for other indices)

hi;k = hk−i (4.6)

hi;k,l = hk−i,l−i

hi,j;k = hj−i,k−i

hi,j;k,l = hj−i,k−i,l−i

so that (4.1) becomes a block-Toeplitz multi-indexed matrix; i. e.,

{2×2}Hst =



h0 h1 h2 h0,0 h0,1 h0,2 h1,1 h1,2 h2,2

h1 h0 h1 h1,0 h1,1 h1,2 h0,0 h0,1 h1,1

h2 h1 h0 h2,0 h2,1 h2,2 h1,0 h1,1 h0,0

h0,0 h1,0 h2,0 h0,0,0 h0,0,1 h0,0,2 h0,1,1 h0,1,2 h0,2,2

h0,1 h1,1 h2,1 h0,0,1 h1,0,1 h1,0,2 h1,1,1 h1,1,2 h1,2,2

h0,2 h1,2 h2,2 h0,0,2 h1,0,2 h2,0,2 h2,1,1 h2,1,2 h2,2,2

h1,1 h0,0 h1,0 h0,1,1 h1,1,1 h2,1,1 h0,0,0 h0,0,1 h0,1,1

h1,2 h0,1 h1,1 h0,1,2 h1,1,2 h2,1,2 h0,0,1 h1,0,1 h1,1,1

h2,2 h1,1 h0,0 h0,2,2 h1,2,2 h2,2,2 h0,1,1 h1,1,1 h0,0,0



.

In Figure 1, we present example of block-Toeplitz fourth-order covariance matrix
2⊕2H. The matrix was obtained according to eq. (4.2) for n = 2, after simplifications
which came from symmetry (4.4) and stationarity (4.6).
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Fig. 1. Example of block-Toeplitz fourth-order covariance matrix
2⊕2H of narrow band time-series.

Gaussian case. If the process was Gaussian, we would have [11]

hi1,...im;k1,...,ku =

{
ΣΠhir;ks if m+ u is even

0 if m+ u is odd
(4.7)

where the symbol ΣΠ stands for the summation over all distinct ways of partitioning the
m+ u random variables into products of averages of their pairs. This means that in the
Gaussian case, each higher-order covariance of even-order can be expressed in terms of
the second-order covariance values while all odd-order covariances vanish. Therefore, it
is sufficient to treat a Gaussian stochastic sequence as the second-order sequence (as its
higher-order statistics do not contain any ‘new’ statistical information). If the process
was white Gaussian, (4.7) would become

hi1,...im;k1,...,ku =

{
ΣΠδir;ks if m+ u is even

0 if m+ u is odd
(4.8)

where δir;ks denotes the Kronecker delta (see Figure 2).
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Fig. 2. Multi-indexed covariance matrix {2×2}H of Gaussian white

noise.

4.2. Isomorphism of the space of nonlinear observations and the space of
sample-product coefficient-vectors

Consider a set of samples of a fourth-order time-series

{y0, . . . , yT }

and employ the 〈bra|ket〉 notation, following [2]. Define a (column) ket-vector

|y〉T = [y0, . . . , yT ]′ (4.9)

where ′ stands for transpose. According to Kolmogorov isomorphism [1], we have

y−i ↔ |ziy〉T
y−iy−j ↔ |ziy · zjy〉T

where the delay operator is defined as

|ziy〉T = [0 . . . 0︸ ︷︷ ︸
i

y0, . . . , yT−i]
′.

Then we can introduce the entries of the Gram-matrix, being the estimates of higher-
order covariances of the process y, as

ĥi;k = 〈ziy|zky〉T (4.10)

ĥi;k,l = 〈ziy|zky · zly〉T
ĥi,j;k = 〈ziy · zjy|zky〉T
ĥi,j;k,l = 〈ziy · zjy|zky · zly〉T
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We assume that the process y is ergodic. That is why the length T of a sample vector
(4.9) should be long enough.

5. IMPLEMENTATION OF HIGHER-ORDER STATISTICS ESTIMATION

5.1. Algorithm for fourth-order covariance matrices

Below we present the Matlab implementation of the proposed earlier algorithms for
measurement/estimation algorithms for second-, third- and fourth-order covariance ma-
trices estimates. The function cov reduced returns the estimate of the multi-indexed
covariance matrix {2×2}H, in accordance with (4.3).

1 function [H] = cov_reduced(n, y)

2 % The function returns 4-order covariance matrix H

3 H11=zeros(n+1,n+1);

4 for i=1:n+1

5 for k=1:n+1

6 H11(i,k)=h11(y,i-1,k-1);

7 end

8 end

9

10 H12=zeros(n+1,(n+1)*(n+2)/2);

11 for i=1:n+1

12 ind =1;

13 for k=1:n+1

14 for l=k:n+1

15 H12(i,ind)=h12(y,i-1,k-1, l-1);

16 ind=ind+1;

17 end

18 end

19 end

20

21 H21=H12 ’;

22

23 H22=zeros((n+1)*(n+2)/2,(n+1)*(n+2) /2);

24 ind1 =0;

25 for i=1:n+1

26 for j=i:n+1

27 ind1=ind1 +1;

28 ind2 =1;

29 for k=1:n+1

30 for l=k:n+1

31 H22(ind1 ,ind2)=h22(y,i-1,j-1,k-1, l-1);

32 ind2=ind2 +1;

33 end

34 end

35 end

36 end

37 % 4-order covariance matrix

38 H=[[H11 , H12]; [H21 , H22 ]];

39 end
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5.2. Simulations results

We present simulation results for higher-order time-series. In Figures 3, 4 and 5 we
show the results for pseudo-random realizations (Matlab randn source) with band-pass
spectral density obtained from band-pass filtering of a ‘white’ time-series of full range
PSD (with the normalized frequencies from 0.00−1.00). For example, time-series used in
Figure 4 was filtered by a FIR pass-band filter with the lower cut-off frequencies 0.1 and
0.2, and the upper cut-off frequencies 0.3 and 0.4. In Figure 6 we used pseudo-random
narrow-band time-series |y〉T from Figure 3, but squared (i. e. |y · y〉T ). Sine-type time-
series were illustrated in Figures 7 and 8. The ‘length’ of time-series was T = 1000
samples while the dimension of second, third and fourth-order covariance matrix was set
to n = 10.
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Fig. 3. Time-series |y〉T with frequency band (0.03, 0.09): a)

trajectory, b) power spectral density, c) {2×2}H matrix, d) 1⊕1H

matrix, e) 1⊕2H matrix, f) 2⊕2H matrix.

In the Gaussian case, presented in Figures 3e), 4e), 5e), third-order statistics 1⊕2H
and 2⊕1H disappears – see eq. (4.8). Narrowing the band we obtain stronger correlation
– compare Figure 4 with Figure 3. The band shift to from lower-frequencies (Figure 3)
to higher-frequencies (Figure 5) causes weaker correlation. Taking time-series of squared
samples produces non-zero third-order statistics – see Figures 3e) and 6e).
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Fig. 4. Time-series |y〉T with frequency band (0.1, 0.4): a) trajectory,

b) power spectral density, c) {2×2}H matrix, d) 1⊕1H matrix, e) 1⊕2H

matrix, f) 2⊕2H matrix.
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Fig. 5. Time-series |y〉T with frequency band (0.23, 0.29): a)

trajectory, b) power spectral density, c) {2×2}H matrix, d) 1⊕1H

matrix, e) 1⊕2H matrix, f) 2⊕2H matrix.
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Fig. 6. Time-series |y · y〉T ( with frequency band (0.03, 0.09)):

a) trajectory, b) power spectral density, c) {2×2}H matrix, d) 1⊕1H

matrix, e) 1⊕2H matrix, f) 2⊕2H matrix.
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Fig. 7. Time-series |y〉T = sin(2π0.05t): a) trajectory, b) power

spectral density, c) {2×2}H matrix, d) 1⊕1H matrix, e) 1⊕2H matrix,

f) 2⊕2H matrix.
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Fig. 8. Time-series |y〉T = sin(2π0.05t) + sin(2π0.3t): a) trajectory,

b) power spectral density, c) {2×2}H matrix, d) 1⊕1H matrix, e) 1⊕2H

matrix, f) 2⊕2H matrix.

6. ADAPTIVE ESTIMATION

In the Section, we present adaptive estimation algorithm, used to find minimal time-
series length T , necessary for proper representation of time-series statistics. Another
approach, for stationary case, can be found in [10]. At the end of the Section, we show
simulation results.

6.1. Algorithm

Let us rewrite the estimates (4.10) in a way indicating that the estimates employ the
time-series of the ‘length’ T which may be from now on treated as a ‘current time’; i. e.,
T = 1, 2, . . .

ĥTi;k = < ziy|zjy〉T
ĥTi;k,l = < ziy|zky · zlyT
ĥTi,j;k = < ziy · zjy|zky〉T
ĥTi,j;k,l = < ziy · zjy|zky · zly〉T
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This gives the estimates of the covariance matrices

1⊕1HT = [ĥTi;k]i,k=0,...,n

1⊕2HT = [ĥTi;k,l]i=0,...,n ; k=0,...,n ; l=k,...,n

2⊕1HT = [ĥTi,j;k]i=0,...,n ; j=i,...,n ; k=0,...,n

2⊕2HT = [ĥTi,j;k,l]i=0,...,n ; j=i,...,n ; k=0,...,n ; l=k,...,n

yielding the overall higher-order statistics estimate (actually the generalized Gram ma-
trix)

{2×2}HT =

[
1⊕1HT 1⊕2HT

2⊕1HT 2⊕2HT

]
.

Computational complexity of the higher-order statistics estimation crucially depends on
the ‘length’ T of the time-series realization. When the estimation procedure is started,
we can hardly predict which value of the parameter T should be chosen to obtain the
resulting estimates of satisfactory accuracy. We can propose, instead, an adaptive esti-
mation algorithm, based on the observation that

〈x|y〉T+1 =

T+1∑
t=0

xtyt = 〈x|y〉T + xT+1yT+1

following from (2.28). Hence,

ĥT+1
i;k = ĥTi;k + ∆T+1

i;k

ĥT+1
i;k,l = ĥTi;k,l + ∆T+1

i;k,l

ĥT+1
i,j;k = ĥTi,j;k + ∆T+1

i,j;k

ĥT+1
i,j;k,l = ĥTi,j;k,l + ∆T+1

i,j;k,l

and consequently,

1⊕1HT+1 = 1⊕1HT +1⊕1 ∆T+1

1⊕2HT+1 = 1⊕2HT +1⊕2 ∆T+1

2⊕1HT+1 = 2⊕1HT +2⊕1 ∆T+1

2⊕2HT+1 = 2⊕2HT +2⊕2 ∆T+1

resulting in
{2×2}HT+1 ={2×2} HT +2×2 ∆T+1.

Hence, at each step, we can use a criterion based – for example – on the Frobenius
distance

‖{2×2}HT+1 − {2×2}HT ‖Frobenius
‖{2×2}HT ‖Frobenius

< δ (6.1)

and decide to terminate the estimation algorithm for a given value of the parameter δ.
The Frobenius norm for a matrix A = [aij ]i,j was calculated in the following way

‖A‖Frobenius =

√∑
i

∑
j

|aij |2. (6.2)
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We chose the Frobenius distance, because it can be interpreted as least squares error for
matrices. It gives us possibility to stop the adaptive procedure for time-series length T .
This means that we can find minimal value of parameter T , instead of the larger, fixed
and presumed value in ‘classical’ procedure.

The Matlab implementation of the adaptive algorithm implementation is presented
below.

1 function [h, frobnorm] = cov_adaptive(u,n,wx1 ,wx2 ,wy1 ,wy2 ,threshold)

2 % The function returns adaptive covariance matrix with given order {(wx1

,...,wx2) x (wy1 ,...,wy2)} for given delta

3 h_old = [];

4 T = size(u);

5 for t = 1 : T %

6 h = [];

7 for w = wx1 : wx2

8 hy = [];

9 for k = wy1 : wy2

10 hy = [hy cov_adaptive_update(u(1:t),n,w,k)];

11 end

12 h = [h; hy];

13 end

14 frobnorm(t) = frob(h-h_old)/frob(h_old);

15 if frobnorm(t) < threshold

16 return

17 end

18 h_old = h;

19 end

20 end

21

22 function h = cov_adaptive_update(u,n,wx,wy)

23 % The function returns covariance matrix of update values for time t+1 w.r

.t t with given order {wx x wy}

24

25 function y = frob(h)

26 % The function returns frobenius norm of matrix h

27 y = 0;

28 for w = 1 : size(h,1)

29 for k = 1 : size(h,2)

30 y = y + h(w,k)^2;

31 end

32 end

33 y = sqrt(y);

34 end

6.2. Simulations results

The Frobenius norm can be used as a stop criterion for the procedure listed above in
cov adaptive Matlab function (line 15). In the performed simulations we take three
threshold values of δ = 0.5, 0.15, 0.01. Lower δ value provides better estimation, due
to lower relative difference between correlation matrices obtained for T and T + 1.

The Frobenius distance calculated on each step (for each T = 1, 2, . . . ) according
to equation (6.1) is on left-hand side of Figures 9, 10, 11 and 12. The corresponding
generalized covariance matrices are placed on right-hand side.
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Fig. 9. Narrow-band time-series |y〉T with frequency-band (0.1, 0.6).

Adaptive estimation of the {2×2}H matrix (right side) and

Frobenius-norm (left side) for δ = 0.5 a)-b), δ = 0.15 c)-d),

δ = 0.01 e)-f).
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Fig. 10. Time-series |y〉T = sin(2π0.05t). Adaptive estimation of the
{2×2}H matrix (right side) and Frobenius-norm (left side) for

δ = 0.5 a)-b), δ = 0.15 c)-d), δ = 0.01 e)-f).
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Fig. 11. Time-series |y〉T = sin(2π0.05t) + sin(2π0.3t). Adaptive

estimation of the {2×2}H matrix (right side) and Frobenius-norm (left

side) for δ = 0.5 a)-b), δ = 0.15 c)-d), δ = 0.01 e)-f).
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Fig. 12. Time-series |y〉T = randn(1, T ). Adaptive estimation of the
{2×2}H matrix (right side) and Frobenius-norm (left side) for δ = 0.5

a)-b), δ = 0.15 c)-d), δ = 0.01 e)-f).
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In Figure 11 for sum of two sines, we see that for the value of δ = 0.5 the length of
time-series obtained from adaptive procedure was very short T = 6 (see Figure 11a). In
this case covariance estimation (see Figure 11b) did not reproduce the real covariance
matrix, presented in Figure 8c (for ‘classical’ procedure and T = 1000). For much
smaller δ = 0.01, the covariance estimation was performed with better results, shown
in Figure 11f. In that case, time-series length was T = 120 (see Figure 11f), which is
longer than T taken for δ = 0.5, but much smaller than T = 1000. Similar observations
can be made for simpler example – one sine. Compare Figure 10 to Figure 7.

For Gaussian white noise, the estimated covariance matrix for δ = 0.01, shown in
Figure 12f, is quite similar to the theoretical covariance matrix, illustrated in Figure 2.
We observe peaks on diagonal and smaller peaks for fourth-order statistics, however
there are still some non-zero values for third-order statistics.

We can observe that there is a global decreasing trend for Frobenius-norm (left-
hand side in Figures 9 – 12), but there are some local fluctuations – the decrease is not
monotonic.

7. FINAL REMARKS

At the beginning, we defined linear and nonlinear least-squares estimation problem using
second- and higher-order statistics, respectively eq. (2.5) and (2.9). We defined general-
ized multi-indexed matrix {M×M}H and we used it to analyse time-series features such as
stationarity (block-Toeplitz for fourth-order statistics), gaussianity (zeroed third-order
statistics), frequency band width and shift. We also verified the convergence speed of
proposed method, with respect to relative Frobenius norm (6.1).

We proposed new efficient algorithm for estimation of higher-order statistics – see
Sec. 6. Higher-order statistics allow us to perform a deeper analysis of time-series.

Our future research will focus on applying fourth-order statistics in nonlinear least-
squares estimation problem. Also problem of determining proper value of δ for a given
time-series is not clear and should be investigated in the future.

(Received August 18, 2017)
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