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EFFICIENT MEASUREMENT OF HIGHER-ORDER
STATISTICS OF STOCHASTIC PROCESSES

WLADYSLAW MAGIERA, URSZULA LIBAL AND AGNIESZKA WIELGUS

This paper is devoted to analysis of block multi-indexed higher-order covariance matrices,
which can be used for the least-squares estimation problem. The formulation of linear and
nonlinear least squares estimation problems is proposed, showing that their statements and so-
lutions lead to generalized ‘normal equations’; employing covariance matrices of the underlying
processes. Then, we provide a class of efficient algorithms to estimate higher-order statistics
(generalized multi-indexed covariance matrices), which are necessary taking in mind practical
aspects of the nonlinear treatment of the least-squares estimation problem. The algorithms are
examined for different higher-order and non-Gaussian processes (time-series) and an impact of
signal properties on covariance matrices is analysed.
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1. INTRODUCTION

The least-squares estimation problems [3, [5] can be stated and solved using covariance
data of the underlying stochastic processes. If the considered problem is linear, the ‘suf-
ficient statistics’ are second-order (two-dimensional or two-indexed) covariance matrices,
being actually positive-definite Hermitian matrices. If the underlying process is wide-
sense stationary (in a weak second-order sense), those matrices become Toeplitz [11].

If the least-squares estimation problem considered becomes nonlinear, the ‘sufficient
statistics’ are higher-order (multi-dimensional or multi-indexed) covariance (precisely —
generalized, block multi-indexed) matrices, being generalized positive-definite Hermi-
tian. If a higher-order process is wide-sense stationary (in a weak, higher-order sense),
those matrices become generalized block-Toeplitz matrices.

If the underlying process is Gaussian, its second-order covariance matrix contains
‘all’ statistical information [T1] (as in this case higher-order covariances are expressible
in terms of sums of products of second-order covariances, and do not contain any ‘new’
statistical information about the process). Thus, in the Gaussian case, second-order
statistics are sufficient statistics and it is enough to consider the linear estimation case
for this class of stochastic processes.
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In a non-Gaussian case higher-order statistics [6] become non trivial, and one has
to employ generalized covariance matrices to enhance the estimation accuracy. Conse-
quently, the linear approach has to be replaced by a nonlinear treatment of the problem.

In this paper we wish to propose a class of efficient algorithms for measurement/es-
timation of higher-order statistics (generalized block multi-indexed covariance matrices
of Gaussian and non-Gaussian stochastic processes), taking in mind practical aspects of
the nonlinear treatment of the least-squares estimation problem [7, [§]. We begin with
formulation of the linear /nonlinear least squares estimation problems, showing that their
statements/solutions lead to the generalized ‘normal equations’, employing covariance
matrices of the underlying processes (two-indexed in the linear case and/or block multi-
indexed in the nonlinear situation).

Then we briefly consider properties of higher-order generalized covariance matrices
in the nonstationary versus stationary cases.

Next, we propose a class of efficient higher-order statistics estimation/measurement,
including a new class of adaptive algorithms based on a generalized isomorphism between
the spaces of random variables (and their products), and (linear and nonlinear) sample-
observation vectors.

The results obtained are then confirmed by simulations for different classes of higher-
order and non-Gaussian processes (actually — time-series).

2. LEAST-SQUARES ESTIMATION PROBLEM PROBLEM FOR SECOND- AND
HIGHER-ORDER STOCHASTIC PROCESSES

Let {Q, B, 1} be a probability space where ) is an abstract set of elements w € Q, B
— o-algebra of Borel subsets, and p — a probability measure on B. Via Lo{Q), B, u} we
denote a separable Hilbert space of o-measurable mappings w : 2 — C, satisfying

[ 1w)Pulde) < .
Q

We introduce in L2{Q2, B, 1} the inner-product as

(w,v)q 2 /Qw(w)@(w),u(dw) = Ewv

where ~ denotes complex conjugate and E stands for the expectation operator. This
inner-product induces the norm

uw%=%ﬁmm%mm:EmP

and metric
do(w,v) = [Jw — v||q.

With completeness of Lo{Q, B, u}, that space will be a Hilbert space. Let T denote the
set of natural numbers and let ¢ € T. The mapping

t—yr = y(w) € Lo{Q, B, u}

will be called a discrete-time Hilbert stochastic process y if Vier||lye]|3 < oo. Let y
denote a discrete-time centred process.



Efficient measurement of higher-order statistics of stochastic processes 867

2.1. Linear least-squares estimation problem

Let us consider a finite set of random variables

{yt,yt—1, .- Yt—n} (2.1)
and take t = 0 for simplicity. This set can equivalently be rewritten as
Y = [y*il]ilzo,...,rr

Observe that
o=y i Ji=1m (2.2)

will be the nth order past w.r. to the offset ¢ = 0. Assuming that the random variables
(2.1) form a linearly independent set, we can introduce the space spanned by the linear

past
St =v{v}

where V stands for ‘the span of’. In the linear prediction problem we consider the space

S =v{y}+ 5" (2.3)

(where + denotes direct sum of subspaces) and define the nth order linear estimate as
i = P(S ) € 5!

where P(S) denotes the orthogonal projection operator on S. We consider the nth order
linear prediction error

et 2 P(Se Sy LS
n
= Yo+ Z @iy Y—iq (24)
11=1

where P(S © S1) denotes the orthogonal projection operator on the orthogonal comple-
ment of S w.r. to S. Orthogonality of the error (2.4) w.r. to the subspace S! implies
the following set of optimality conditions for the linear least-squares estimation problem

(0 yk) =0, k1 =1,...,n.
Equivalently,

n
(8(1)73/7161) = (y(hy*kl) + Z Qiy (y*h?y*k’l)

i1=1

n
Eyoy—k1 + Z an§ilEy—i1 Y-k,

11=1

= hoxk, + Zailhil;kl =0, k=1,...,n

i1=1
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where A
hivk, = By_s,y—k,

indicates (two-indexed) covariance of the random variables y_;, and y_g,. Observing
that

n
legll® = howo + > @i iz

=1
we obtain the following ‘normal equations’
hoo hoax ... hon 1 llenl®
hl;() hl;l . hl;n aq 0
hn'O hn'l [N hnn (075 0

) ) )

associated with the linear least-squares prediction problem. We notice that the second-
order statistics of the underlying process (actually, its two-indexed covariance matrix)

hoo hoi --. hom
hn'O hn;l R hnn

3 3

is sufficient in order to state and solve the linear estimation problem (see Levinson [4]).

2.2. Nonlinear least-squares estimation problem

Let us introduce for m = 2, ..., M the following m-variate sets of nonlinear observations

A
Y = Yoiy oo Yminy Jir=1,. s damin e s i =imn 1,0 (2.6)

and notice that (2.6) reduces to 'Y (2.2) if m = 1. Let form =2,..., M

denote the subspace spanned by the mth degree nonlinear past of the process y. Now
introduce the entire Mth degree nonlinear estimation subspace

Mg_ gl 1624 . +8M
so that .
S2V{iy} + Ms (2.7)

and observe that (2.7) immediately reduces to (2.3]) if M = 1. This means that the
linear estimation problem, corresponding to M = 1, is actually the ‘simplest’ nonlinear
estimation problem. Let us introduce the nth order, Mth degree nonlinear estimate

G2 PMS)y, e Ms
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and the associated nth order, Mth degree nonlinear prediction error

eM £ P(ScM Sy, L Ms

M n n n
=yt >, > D i Yt Yin Y (2.8)
m=141=142=11 T =%m—1

Orthogonality of the error w.r. to the subspace ™S implies the following set of
optimality conditions for the nth order, Mth degree nonlinear least-squares estimation
problem

(€6" Yy -+ Y—k,) =0

foru=1,...,Mand ky =1,...,n; ks =k1,...,n; ... ky =ky_1,...,n or, equivalently,

(0! y—ky - Y—ku) = (Y0s Yk - - Y—kr)

M n n n
FY DD D v WeinYmin e Ymis Yk Yk
m=1 i1:1i2:il im,:im,_l

M n n n
+ § E E Qi igenyivg BY—iyY—in - Y Y—key -+ - Y=k,
m=1141=110=11 Tn =T —1
= hoskika. ky
M n n n
+ E E E Qi igenyiv Wi sin.osimshn oo b
m:1i1=1i2=i1 ih’L:in*l

where A

Ris i imibr ook = BY—iyYin -+ Ymin Y—ky - - Yk,
indicates the (m @ u)-indexed covariance of the process y. The norm of the Mth degree
nonlinear error is then given by

M n n n
M2 _
e 1P =hoo+ DD > oo > Girisein Piriaeii0-
m=1 ilzl’ig:il im:im_l
Let us introduce the following generalized matrices (the notation similar as in [12])
m
A= 8is i Jin =1 ms i3 =i, i1 M=, M

and
MY A = col[™ A=, u-

Moreover, let
mou — ) . . . )
H = [hzl,.4.,zm;k1,4..,ku]zl=1,.4.,n;... Am=tm—1,--,nk1=1,...n5... ;ky=ky—1,...,n

and

{MxM}p [meauH]m:l,.“,M; w=1.. M- (2.9)
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Then the generalized ‘normal equations’, associated with the Mth degree nonlinear
estimation problem can be compactly expressed as

MMy AMY A — col[ P 20 ... M) (2.10)

where 1P = [||[€d]|2 0 ... 0] and ™0 is an m-indexed zero-matrix.

From the above it follows that in order to state and solve, via computation of the
m-indexed coefficient-matrices ™A (actually — the multidimensional impulse responses
— or the Volterra kernels in the Regular Volterra Functional Polynomials, RVFPs, —
of the optimal nonlinear innovations filter [12]), the generalized (block, multi-indexed)
covariance matrix is sufficient. In other words, for an Mth degree nonlinear esti-
mation problem the 2Mth order statistics of the underlying stochastic process y are the
‘sufficient statistics’, much like the second-order statistics are the ‘sufficient statistics’
in the linear case, which is immediately obtained from if M =1.

Remark. The multidimensional impulse responses of the nonlinear optimal filter can
efficiently be computed employing the generalized nonlinear Levinson [4] and/or Schur
[9) algorithms.

From the above it clearly follows that higher-order statistics of stochastic processes
are of crucial importance in nonlinear (Volterra-like) estimation problems. Moreover,
efficient measurement/estimation algorithms are required and desired for application
and implementation of the nonlinear processing schemes.

3. COVARIANCE MATRICES OF STOCHASTIC PROCESSES

In this section we consider higher-order statistics (covariance matrices) of stochastic
processes, as an introduction to efficient measurement/estimation algorithms, presented
in Section [d] Starting with second-order statistics, we focus on higher-order statistics,
being block, multi-indexed generalized matrices. We present their properties and show
consequences of weak stationarity in the higher-order sense.

3.1. Second-order processes

The covariance matrix of a stochastic process ([2.5))

hoo  hoa ho:n
h1~0 hl'l hl'n
101 B ; ; ;
H= [hiukl]ihkl:(),mﬂ - :
hn;O hn;l hn;n

is Hermitian (symmetric) as

hil;kl = (yfiyg*kl) = Eyf'hgfkl = ngilyfkrl = (ﬂ—myfkl) = Bkl;il

and positive-definite (if the observations form a linearly independent set). It proves to
be useful to ‘normalize’ this matrix as

h..
hi1;k1 — Lk (3.1)

V hil;ilhkl;kl
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so that
hiye, = 1if 4 = k.
3.2. Higher-order processes

If we consider a 2Mth order stochastic process, its higher-order statistics (2.9 are in-
luded into a generalized (block, multi-indexed) matrix (notation as in [12])

loify 1e2g . 1My
2@1H 2@2H o 2@]\/IH
M x M
MMy — [mOUE Mt =
M@lH MGBQH MEBMH

Let us observe that (2.9)) is a Hermitian (symmetric) generalized matrix as we have

Py ooimiber ook = Ymin Y Uty = b)) = BY iy Y Uty = Y
=Ey_i, Ui Yty Ykw = W—is Ui Y—kr " Y=

=Ny o kusin, i

so that (2.9) is a generalized Hermitian, block-Hankel matrix. Generalizing (3.1)), we
can normalize (2.9) as follows

hi1y~~7i7n§k1;~-7ku

il,»»-,im;il,»--,imhk1,--~7ku;k1,-~7ku

hilvnai?n;kly'”yku A \/h

so that

h’il,...,in;kl,...,k‘n = ]-
if i, = kp for p = 1,...,n. Let us observe that each odd-indexed block entry ™®“H
can be rewritten as a generalized block-row (or block-column) ‘flat’ matrix while each

even-indexed block entry — as a generalized block-square ‘flat” matrix, according to some
ordering of its rows or columns.

3.3. Nonstationary versus stationary

If the underlying process is wide-sense stationary, its higher-order statistics become
generalized Toeplitz matrices. For the second-order statistics '®' H we obtain in this
case

Rivikr = BY—i ot = By—iyro¥trro = BYY—(hytiy) = Mhor—is -

For higher-order covariances ™®“H we get

O’:’il
Pis,oimikssskn = Pisto,imtoikito,kuto = Pig—in, o im—izsky—in,e.. by —is -

This means that in the stationary case the generalized covariance matrix {M*M} g
becomes a generalized block-Toeplitz matrix (see Figure [l in Section [4.1). Hence, the
measurement (estimation) is much simpler in this case.
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4. EFFICIENT ESTIMATION ALGORITHMS OF HIGHER-ORDER STATISTICS

Let us consider in some detail fourth-order statistics of stochastic processes, associated
with the 2-nd degree nonlinear least-squares estimation problem. In further considera-
tions we assume that time-series has only real values.

4.1. Properties of fourth-order statistics

The generalized (block, multi-indexed) covariance matrix (2.9)) for M = 2 is as follows

1@1H 1692H
{2x2} g — { 2@l 202 ] (4.1)

where the second-order statistics of the process are given by
YOVH = [hiklik=o0....n-
The third-order statistics are
Y21 = [higtlizo,...n  k=0....m:i=k....n

or

2@1H = [hz)j)k]1:07)n 5 j=%,...,n ; k=0,...,n

due to (Hermitian) symmetry of (4.1). The fourth-order statistics are then
2®2H - [hi,j;k,l}i:O ..... n; j=i,..., n ; k=0,..., n;l=k,..., n-.

Let us observe that the third-order statistics can be described as a generalized block-row

‘flat’ matrix
920 = "2 H )0,

)

or — equivalently — generalized block-column ‘flat’ matrix

2®1H = COl[QEBlHi]Z‘:OW ny

while the fourth-order statistics as a block-square ‘flat’ matrix
2920 = P2 Hpik—o....n- (4.2)
Hence, the ‘flat’ form of the matrix (4.1]) will be

191 1@2H0 . 1®2Hn
2@1HO 2®2H00 2®2H0n

)

{2><2}H _

2@1Hn 2®2Hn,0 s 2®2Hn,n
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Example. If M =2 and n = 2, we get

hoo ho1 ho2
hio hi1 hi2
hao h21 haa

hooo hoo1 hoo2
ho1o ho11 hoi2
ho20 ho21 ho22
{2><2}H —
h1oo hio1 hio2
hi1o hi11 hi12
hi20 h121 hi22

h200 h201 h202
ha210 h211 ho12
ha20 h221 ha22

hooo hoo1 hoo2
hioo h1o1 hio2
h200 h201 h202

hoooo hooo1 hooo2
ho1oo ho1o1 ooz
ho200 ho201 o202

h1ooo h1001 P1oo2
h1100 h1101 h1102
hi1200 h1201 1202

h2000 h2001 h2002
h2100 h2101 h2102
ha2200 h2201 h2202

ho1o ho11 ho12
hi1o h111 hi12

ha1o h211 h212

hoo1o hoo11 hoo12
ho110 ho111 hoi12
ho210 ho211 ho212

h1o10 h1o11 h1o12
hi110 h1111 hi112
hi210 hi211 hi212

h2010 h2011 h2012
h2110 ho111 h2112
ha210 ha211 ha212

ho20 ho21 ho22
hi20 hi21 hi22
ha2o ha21 ha2o

hoo20 hoo21 hoo22
ho120 ho121 hoi22
ho220 ho221 ho222

h1020 h1021 h1o22
hi120 h1121 hi122
hi1220 hi1221 h1222

h2020 h2021 h2o22
h2120 ho121 h2122
ha220 ha221 o222

For the ‘symmetric domains’, corresponding to 2-nd degree RVFPs, we get

hoo ho1 ho2 hooo oot hooz hoi1 ho12  ho22

hio hi1 hi2 hioo h1o1 hio2 hii1 b1z hiae

hao ha1 hao haoo h201 hoo2 ho11 ho12  haao

hooo hoo1 hoo2  hoooo Pooor Mooo2  hooit Mootz hooz2

x2 hoio ho11 o2 hotoo hoto1 hoto2  hoiir hoiiz  hoi2e
sym —

Y ho2o ho21 ho22  ho200 ho201 ho2o2  hozi1 ho2i2 ho222
hiio h111 112 hi1oo Pator Pito2 Paiin hitiz hiize
hi20 hi21 h122  hi200 hi201 Rizo2  Pi2in hi2iz hi2ee
ha2o ha21 hasa  ha200 ha201 Mooz hozii haziz  hoooo

Due to symmetry we have

hi;k hk:;i
hi;k,l = hk,l;z
hi,j;k = hk;i,]
hijiki = i

873
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so (4.3) became

{2X2}Hsym —

hooo h10o h200
hoot 101 h2o1
hoo2 h1o2 hoo2

hOll hlll h211
h012 h112 h212

ho22 hi22 hooo

W. MAGIERA, U. LIBAL AND A. WIELGUS

hoooo hooo1 hooo2
hooot o101 hoio2
hooo2 ho102 ho202

hOOll h0111 h0211
h0012 h0112 h0212

hoo22 ho122 ho222

hoo ho1 ho2 hooo oot hooz hoi1 hoi2
hio hi1 hi2 h1oo h1o1 hio2 hiit hi12
hoo hi2 hoo haoo hoo1 hoo2 ha11 ho12

hoo11 hoo12
hot11 hot12
hoz211 ho212

hllll h1112
h1112 h1212

hi122 h1222

ho2o
hi22
haoo

hoo22
ho122

ho222

h1122
h1222

ha222

If the process is stationary (in a weak fourth-order sense), we obtain (for index i — the
same properties are valid for other indices)

i hi—s

hikg = Pk—ii—i
hijik = hj_ir—i
hijikg = hj—ik—ii—i

so that (4.1) becomes a block-Toeplitz multi-indexed matrix; i.e.,

i ho hl h2 ho,o h0,1 h0,2 hl,l
h1 ho h1 hi,0 hi1 hi,2 ho,o
ha h1 ho hao  hon ha2  hip
hoo hio h2o ho,,0 hoo1 hooz2 hoain

2x2b g hopi  hii hen hoo,1 hio1 hio2 hiin
st —

ho2 hi2 hae ho,0,2 hio2 h2o2 h2i1

hi1 hoo hipo hoi,1 hiii h2i1 hooo

hi2 hoi hia hoi,2 hii2 h2i2 hooa

L h2,2 hi1 hopo ho22 hi22 ha22 hoia

hi2
ho,1
hi,1

ho,1,2
hi,1,2

ha.1,2

ho,o,1
h1,0,1

hi1,1

ha 2
hi1
ho,o

ho,2,2
hi,2,2

h2,2,2

ho,1,1
hii1

ho,0,0

(4.6)

In Figure we present example of block-Toeplitz fourth-order covariance matrix
202, The matrix was obtained according to eq.

(2
13).

which came from symmetry (4.4) and stationarity (

2|) for n = 2, after simplifications
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V/
y

4
4

@
.

)
4

4
4

% 1%

ﬁ
UL
6|0

Fig. 1. Example of block-Toeplitz fourth-order covariance matrix
292 [ of narrow band time-series.

Gaussian case. If the process was Gaussian, we would have [I1]

YIh;,.,, if m+u is even

hil,...im;kl,...,ku_{ 0 i om4u is odd (4.7)

where the symbol XII stands for the summation over all distinct ways of partitioning the
m + u random variables into products of averages of their pairs. This means that in the
Gaussian case, each higher-order covariance of even-order can be expressed in terms of
the second-order covariance values while all odd-order covariances vanish. Therefore, it
is sufficient to treat a Gaussian stochastic sequence as the second-order sequence (as its
higher-order statistics do not contain any ‘new’ statistical information). If the process
was white Gaussian, would become

YI1d;,.,, if m+u is even

hil""i’”;kl"”’k“_{ 0 if m+wu is odd (4.8)

where 9; .. denotes the Kronecker delta (see Figure [2)).

ir;
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2.5

1.5

0.5

i

100
100

40

| | M" ‘ \ ‘ f ~
g

20
0 o

Fig. 2. Multi-indexed covariance matrix {2x2} j of Gaussian white
noise.

4.2. Isomorphism of the space of nonlinear observations and the space of
sample-product coefficient-vectors

Consider a set of samples of a fourth-order time-series
{yOa v ayT}

and employ the (bra|ket) notation, following [2]. Define a (column) ket-vector

|y>T = [yov"wyT]/ (49)
where ’ stands for transpose. According to Kolmogorov isomorphism [I], we have

yi © |2y)r

y-iy—; < |2'y-2y)r

where the delay operator is defined as

12y =10...0 yo,...,yr_i]"
i
Then we can introduce the entries of the Gram-matrix, being the estimates of higher-
order covariances of the process y, as

hige = (Zylz"y)r (4.10)
iLi;k,l = <Z y\zy ZY>

hijw = (Z'y-2lylzFy)r
hijwa = (2'y-2ylzhy - 2ly)r
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We assume that the process y is ergodic. That is why the length T' of a sample vector
(4.9) should be long enough.

5. IMPLEMENTATION OF HIGHER-ORDER STATISTICS ESTIMATION
5.1. Algorithm for fourth-order covariance matrices

Below we present the Matlab implementation of the proposed earlier algorithms for
measurement /estimation algorithms for second-, third- and fourth-order covariance ma-
trices estimates. The function cov_reduced returns the estimate of the multi-indexed
covariance matrix 2%2} H_ in accordance with .

function [H] = cov_reduced(n, y)
% The function returns 4-order covariance matrix H
Hil=zeros(n+1,n+1);
for i=1:n+1

for k=1:n+l1

H11(i,k)=h11(y,i-1,k-1);

end

end

Hi2=zeros (n+1, (n+1) *(n+2)/2);
for i=1:n+1
ind=1;
for k=1:n+1
for 1=k:n+1
H12(i,ind)=h12(y,i-1,k-1, 1-1);
ind=ind+1;
end
end
end

H21=H12’;

H22=zeros ((n+1) *(n+2) /2, (n+1) *(n+2) /2) ;
ind1=0;
for i=1:n+1
for j=i:n+1
indl=ind1+1;
ind2=1;
for k=1:n+1
for 1=k:n+l
H22(ind1,ind2)=h22(y,i-1,j-1,k-1, 1-1);
ind2=ind2+1;
end
end
end
end
% 4-order covariance matrix
H=[[H11, H12]; [H21, H221]1;
end
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5.2. Simulations results

We present simulation results for higher-order time-series. In Figures and 5| we
show the results for pseudo-random realizations (Matlab randn source) with band-pass
spectral density obtained from band-pass filtering of a ‘white’ time-series of full range
PSD (with the normalized frequencies from 0.00—1.00). For example, time-series used in
Figure 4| was filtered by a FIR pass-band filter with the lower cut-off frequencies 0.1 and
0.2, and the upper cut-off frequencies 0.3 and 0.4. In Figure [6] we used pseudo-random
narrow-band time-series |y)r from Figure [3| but squared (i.e. |y-y)r). Sine-type time-
series were illustrated in Figures [7] and The ‘length’ of time-series was T' = 1000
samples while the dimension of second, third and fourth-order covariance matrix was set
to n = 10.

0.5 1

o

0.5

Fig. 3. Time-series |y)r with frequency band (0.03,0.09): a)
trajectory, b) power spectral density, ¢) (2*2} H matrix, d) *®1H
matrix, e) '®2H matrix, f) 2®? H matrix.

In the Gaussian case, presented in Figures [3g), |4k), )7 third-order statistics '®2H
and 2®' H disappears — see eq. (4.8)). Narrowing the band we obtain stronger correlation
— compare Figure 4| with Figure |3l The band shift to from lower-frequencies (Figure [3))
to higher-frequencies (Figure 5| causes weaker correlation. Taking time-series of squared
samples produces non-zero third-order statistics — see Figures ) and @3)
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0.5

30

20

10

Fig. 4. Time-series |y)r with frequency band (0.1,0.4): a) trajectory,
b) power spectral density, ¢) (22} H matrix, d) "®'H matrix, ) '®?H
matrix, f) *®2H matrix.

a)

10

Fig. 5. Time-series |y)r with frequency band (0.23,0.29): a)
trajectory, b) power spectral density, c) 2x2} /' matrix, d) g
matrix, e) ‘%2 H matrix, f) **2H matrix.
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Fig. 6. Time-series |y - y)r ( with frequency band (0.03,0.09)):
a) trajectory, b) power spectral density, c) (22} H matrix, d) *®'g
matrix, e) '®2H matrix, f) ?®? H matrix.

0 0.5

Fig. 7. Time-series |y)r = sin(270.05¢): a) trajectory, b) power
spectral density, c) 2x2} /' matrix, d) "®'H matrix, ¢) '®? H matrix,
£) 292 H matrix.
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Fig. 8. Time-series |y)r = sin(270.05t) 4 sin(270.3t): a) trajectory,
b) power spectral density, ¢) (22} H matrix, d) "®'H matrix, ) '®?H
matrix, f) *®2H matrix.

6. ADAPTIVE ESTIMATION

881

In the Section, we present adaptive estimation algorithm, used to find minimal time-
series length T, necessary for proper representation of time-series statistics. Another
approach, for stationary case, can be found in [I0]. At the end of the Section, we show

simulation results.

6.1. Algorithm

Let us rewrite the estimates (4.10) in a way indicating that the estimates employ the
time-series of the ‘length’ T' which may be from now on treated as a ‘current time’; i.e.,

T=12...
Wl = <Zyledy)r
ﬁz:k,l = <ZiY|ZkY'ZZYT
Wl = <2y 2ylFy)r

T ; ikl
gkt = <Zz'y-2ylty -2y
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This gives the estimates of the covariance matrices

1@1HT —

T
hi;k}i,k:O,...,n
1@2HT 7

[

[Pk )0, s k=0, s 1=
wigt = [ilg:j;k]izo,...,n s j=i,..m ; k=0,...,n

[

22T _ [T
H hijkali=0,..n s j=irn s k=0,..n ; I=k,....n

yielding the overall higher-order statistics estimate (actually the generalized Gram ma-
trix)
1@1HT 1@2HT

{QXQ}HT: 201 gT 202[T

Computational complexity of the higher-order statistics estimation crucially depends on
the ‘length’ T" of the time-series realization. When the estimation procedure is started,
we can hardly predict which value of the parameter 71" should be chosen to obtain the
resulting estimates of satisfactory accuracy. We can propose, instead, an adaptive esti-
mation algorithm, based on the observation that

T+1
(@ly)ri =D wwe = (@ly)r + vroayrn
t=0
following from (2.28). Hence,
BTH = R ATH
h;FI-:ll = zkl+A?Ij;
T = it ol
h,zrjlil = Wi+ AT ey
and consequently,
WOl g+l _ 101 T (161 AT+
@2 T+l _ 102[T 182 A\T+1
W T+l _ 201 T 201 AT+1
2T+ _ 202 T | 262 AT+1

resulting in
{(2x2} gT+1 _{2x2} gT 42x2 AT+1,

Hence, at each step, we can use a criterion based — for example — on the Frobenius

distance
(22T — 22 HT| b benius

||{2X2}HT HFrobenius

and decide to terminate the estimation algorithm for a given value of the parameter §.
The Frobenius norm for a matrix A = [a;;];,; was calculated in the following way

||A||Frobenius - ZZ |aij‘2~ (62)
\/ i g

<4 (6.1)
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We chose the Frobenius distance, because it can be interpreted as least squares error for
matrices. It gives us possibility to stop the adaptive procedure for time-series length 7T'.
This means that we can find minimal value of parameter T, instead of the larger, fixed
and presumed value in ‘classical’ procedure.

The Matlab implementation of the adaptive algorithm implementation is presented
below.

function [h, frobnorm] = cov_adaptive(u,n,wxl,wx2,wyl,wy2,threshold)
% The function returns adaptive covariance matrix with given order {(wxil
yo.o.,wx2) x (wyl,...,wy2)} for given delta
h_old = []1;
T = size(u);
for t =1 : T 7Y
h = [1;
for w = wxil wx2
hy = []1;
for k = wyl : wy2
hy = [hy cov_adaptive_update(u(il:t),n,w,k)];
end
h = [h; hyl;

end
frobnorm(t) = frob(h-h_old)/frob(h_old);
if frobnorm(t) < threshold
return
end
h_old = h;
end
end

function h = cov_adaptive_update(u,n,wx,wy)
% The function returns covariance matrix of update values for time t+1 w.r
.t t with given order {wx x wy}

function y = frob(h)
% The function returns frobenius norm of matrix h
y = 03
for w = 1 : size(h,1)
for k = 1 : size(h,2)
y y + h(w,k)"2;
end

end
y = sqrt(y);
end

6.2. Simulations results

The Frobenius norm can be used as a stop criterion for the procedure listed above in
cov_adaptive Matlab function (line 15). In the performed simulations we take three
threshold values of § = 0.5, 0.15, 0.01. Lower § value provides better estimation, due
to lower relative difference between correlation matrices obtained for 7" and T + 1.

The Frobenius distance calculated on each step (for each T' = 1,2,...) according

to equation (6.1)) is on left-hand side of Figures [9} and The corresponding
generalized covariance matrices are placed on right-hand side.
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a) b)

0 20 40 60

Fig. 9. Narrow-band time-series |y)r with frequency-band (0.1,0.6).
Adaptive estimation of the 2*2} H matrix (right side) and
Frobenius-norm (left side) for 6 = 0.5 a)-b), 6 = 0.15 c¢)-d),

0 =0.01 e)-f).
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05 = h“\:\}"“‘"‘“‘},ﬁ“" . [
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% 10 20 30 40 0 i

Fig. 10. Time-series |y)r = sin(270.05¢). Adaptive estimation of the
{2x2} /I matrix (right side) and Frobenius-norm (left side) for
§=0.5 a)-b), 5 = 0.15 ¢)-d), 6 = 0.01 e)-f).
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Fig. 11. Time-series |y)r = sin(270.05¢t) + sin(270.3t). Adaptive
estimation of the 22} H matrix (right side) and Frobenius-norm (left
side) for 6 = 0.5 a)-b), § = 0.15 c)-d), 6 = 0.01 e)-f).
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0.5

0.5

0
0 50 100

Fig. 12. Time-series |y)r = randn(1,T). Adaptive estimation of the
{2x2} /I matrix (right side) and Frobenius-norm (left side) for § = 0.5
a)-b), § = 0.15 ¢)-d), 6 = 0.01 e)-f).
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In Figure 11 for sum of two sines, we see that for the value of § = 0.5 the length of
time-series obtained from adaptive procedure was very short 7' = 6 (see Figure 11a). In
this case covariance estimation (see Figure 11b) did not reproduce the real covariance
matrix, presented in Figure 8c (for ‘classical’ procedure and 7' = 1000). For much
smaller § = 0.01, the covariance estimation was performed with better results, shown
in Figure 11f. In that case, time-series length was T' = 120 (see Figure 11f), which is
longer than T taken for § = 0.5, but much smaller than 7" = 1000. Similar observations
can be made for simpler example — one sine. Compare Figure 10 to Figure 7.

For Gaussian white noise, the estimated covariance matrix for 6 = 0.01, shown in
Figure 12f, is quite similar to the theoretical covariance matrix, illustrated in Figure 2.
We observe peaks on diagonal and smaller peaks for fourth-order statistics, however
there are still some non-zero values for third-order statistics.

We can observe that there is a global decreasing trend for Frobenius-norm (left-
hand side in Figures @7, but there are some local fluctuations — the decrease is not
monotonic.

7. FINAL REMARKS

At the beginning, we defined linear and nonlinear least-squares estimation problem using
second- and higher-order statistics, respectively eq. and . We defined general-
ized multi-indexed matrix ¥ *M} H and we used it to analyse time-series features such as
stationarity (block-Toeplitz for fourth-order statistics), gaussianity (zeroed third-order
statistics), frequency band width and shift. We also verified the convergence speed of
proposed method, with respect to relative Frobenius norm .

We proposed new efficient algorithm for estimation of higher-order statistics — see
Sec. [6] Higher-order statistics allow us to perform a deeper analysis of time-series.

Our future research will focus on applying fourth-order statistics in nonlinear least-
squares estimation problem. Also problem of determining proper value of § for a given
time-series is not clear and should be investigated in the future.

(Received August 18, 2017)
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