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RECONSTRUCTIBILITY OF BOOLEAN CONTROL
NETWORKS WITH TIME DELAYS IN STATES

Ping Sun, Lijun Zhang and Kuize Zhang

This paper deals with the reconstructibility of Boolean control networks (BCNs) with time
delays in states. First, a survey on the semi-tensor product, weighted pair graph, constructed
forest and finite automata is given. Second, by using the weighted pair graph, constructed forest
and finite automata, an algorithm is designed to judge whether a Boolean control network with
time delays in states is reconstructable or not under a mild assumption. Third, an algorithm is
proposed to determine the current state. Finally, an illustrative example is given to show the
effectiveness of the proposed method.

Keywords: Boolean control network, reconstructibility, semi-tensor product of matrices,
weighted pair graph, finite automaton, formal language

Classification: 94C10, 03D05, 68Q45, 05C22

1. INTRODUCTION

In the investigation of cellular networks, Kauffman firstly proposed the Boolean network
[16]. It has become a powerful tool in describing, analyzing and simulating the cellular
networks and genetic regulatory networks [9, 21]. In Boolean networks, a gene expression
level is modeled by a binary value, 0 or 1, indicating two transcriptional states, either
active (on) or inactive (off), respectively. Moreover, interactions between the state of
each gene can be determined by Boolean functions, which calculate the state of a gene
from the activation or inhibition of other genes. Boolean networks have been investigated
widely. It was pointed out in [1] that “One of the major goals of systems biology is
to develop a control theory for complex biological systems.” Hence, it is of practical
significance to investigate the control problems of Boolean networks.

As for Boolean control networks, it was pointed out by [14] that “Gene-regulatory
networks are defined by trans and cis logic. . . . Both of these types of regulatory networks
have input and output.” From here one easily sees that a Boolean network with input(s)
and output(s), called a Boolean control network, is a proper way to describe the dynamics
of gene-regulatory networks.

Recently, a new tool, called the semi-tensor product (STP) of matrices [3], has been
used to study Boolean (control) networks, including the analysis of Boolean networks
[4, 5, 29] and the control design of Boolean control networks [6, 7]. In [5], the algebraic
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form of a Boolean network is introduced, which provides a framework for this new
approach. Using it, some formulas are obtained to calculate the fixed points, cycles,
basins of the attractors and transient periods. In [29], using the input-state analysis,
the structure of attractors of a Boolean network is investigated. The basic idea is to
convert the logical dynamic model of a Boolean (control) network into a discrete time
dynamic system by using the vector expression of logic. The series of works showed that
the semi-tensor product is a powerful tool in analyzing the structure of Boolean networks
and the synthesis of Boolean control networks. On the other hand, the STP method has
wide applications in the engineering related fields [12] and in logical networks and other
finite-valued systems [20].

Systematic analysis of biological systems is an important topic in systems biology. Re-
constructibility is one of the fundamental concepts in control theory of Boolean control
networks. The concept of reconstructibility of Boolean control networks was proposed
in [10, 28]. There have been many studies on the reconstructibility of dynamic systems,
e. g. [2, 22, 23]. But when it comes to the reconstructibility problem of Boolean (con-
trol) networks, there have been only very few results, because there are a shortage of
systematic tools to deal with logical systems. There are some recent papers concerning
this problem, e. g. [10, 28]. They all study the reconstructibility of Boolean (control)
networks without time delays. But we can see that time delay phenomena are very
common in real world, for instance, economic, biological and physiological systems and
so on. It is well known that, in many cases, time delay cannot be avoided in practice and
it often results in some poor performance. Also, the presence of time delays makes the
analysis of the reconstructibility of Boolean (control) networks much more complicated.
There has been some literature that discussed Boolean (control) networks with time
delays in states. In [18, 19, 13], the controllability and observability of Boolean control
networks with time-invariant delays in states were investigated, respectively. In [26, 27],
the controllability of time-variant Boolean networks and Boolean control networks with
multiple time-variant and bounded time delays in states by showing simple test matrix
criteria were investigated, respectively. But to the best of our knowledge, there has been
no result in the literature concerning the reconstructibility of Boolean control networks
with time delays in states. Motivated by the above analysis, in our paper, we investigate
the reconstructibility problem of Boolean control networks with time-variant delays in
states.

The rest of this paper is organized as follows. Section 2 introduces necessary pre-
liminaries about the semi-tensor product of matrices, Boolean control networks with
their algebraic forms and some notations. Section 3, first, we convert Boolean control
networks with time-variant delays into discrete time delayed systems using the semi-
tensor product of matrices. Second, we show how to construct a weighted pair graph for
a Boolean control network with time-variant delays. Third, algorithms are designed to
use the weighted pair graph of a Boolean control network to determine its reconstructibil-
ity. Lastly, algorithms are designed to determine the current state of the reconstructible
Boolean control networks. In section 4, the efficiency of the results is demonstrated
using examples. The last section is a short conclusion.
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2. PRELIMINARIES

In this paper, the matrix product used is the semi-tensor product (STP) of martrices.
Consider an m×n martrix A, a p×q martrix B. The STP of A and B, denoted by AnB,
is defined as AnB := (A⊗ I t

n
)(B⊗ I t

p
), where t is the least common multiple of n and

p, ⊗ denotes the Kronecker product. The STP of martrices is a generalization of the
conventional matrix product. Based on this, we can omit the symbol n. [8] introduces
the definition and the basic properties of STP in detail.

Next, we define some notations:

• Z: the set of integers

• N: the set of all natural numbers

• D: the set {0, 1}

• δin: the ith column of the identity matrix In

• ∆n: the set {δ1
n, . . . , δ

n
n} (∆ := ∆2)

• δn[i1, . . . , is]: the logical matrix [δi1n , . . . , δ
is
n ] (1 ≤ i1, . . . , is ≤ n and i1 . . . , is are

integers)

• Ln×s: the set of all n×s logical matrices, i. e., {δn[i1, . . . , is]|i1, . . . , is ∈ {1, 2, . . . , n}}

• [1, N ]: the consecutive integer set {1, 2, . . . , N}

• 1k:
∑k
i=1 δ

i
k

• Coli(A): The ith column of a matrix A.

3. MAIN RESULTS

In this paper, we mainly investigate the following BCNs with n state nodes, m input
nodes and q output nodes, and time delays in states:

x1(t+ 1) =f1(u1(t), . . . , um(t),

x1(t− τ(t)), . . . , xn(t− τ(t))),

x2(t+ 1) =f2(u1(t), . . . , um(t),

x1(t− τ(t)), . . . , xn(t− τ(t))),

...

xn(t+ 1) =fn(u1(t), . . . , um(t),

x1(t− τ(t)), . . . , xn(t− τ(t))),

yj(t) = hj(x1(t), . . . , xn(t)), j = 1, . . . , q,

(1)

where t = t0, t0 + 1, · · · ∈ Z denote time steps; xi(t), uk(t), yj(t) ∈ D, i = 1, 2, . . . , n,
k = 1, 2, . . . ,m, j = 1, 2, . . . , q, f1, . . . , fn : Dn+m → D, h1, . . . , hq : Dn → D are
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Boolean functions. τ : {t ∈ Z : t ≥ t0} → N is a mapping, called the time delay function.
Throughout this brief, without loss of generality, we assume that t − τ(t) ≥ t0 − τ(t0)
∀t ≥ t0 to ensure that the system (1) has a starting point. The trajectory of the system
(1) is determined by its initial state sequence x(t0 − τ(t0)), x(t0 − τ(t0) + 1), . . . , x(t0)
and the control sequence.

Hereinafter, denote N := 2n, M := 2m and Q := 2q for short, respectively.
By using STP [25], (1) is represented equivalently as

x(t+ 1) = Lu(t)x(t− τ(t)),

y(t) = Hx(t),
(2)

where x(t) ∈ ∆N , u(t) ∈ ∆M and y(t) ∈ ∆Q denote the state, input and output,
respectively. L ∈ LN×(NM), H ∈ LQ×N , t and τ(t) are the same as those in the system
(1).

3.1. Reconstructibility of Boolean control networks

In the following, we consider the reconstructibility problem of BCN (1), equivalently (2).

Definition 3.1. Consider a BCN (2). For any given initial time t0, any given time
delay function τ(t) : {t0, t0 + 1, . . .} → N, a BCN (2) is called reconstructible, if there
exists an input sequence {u(t0), u(t0 + 1), . . .} ⊂ Dm (called “homing input sequence”)
such that there exists a time step T , the state at any time step t ≥ T is determined by
the corresponding output sequence.

3.2. Finite automata and formal languages

We next introduce finite automata and formal languages to support our discussion.
We use Σ, a nonempty finite set to denote the alphabet Elements of Σ are called

letters. A word is a finite sequence of letters. The empty word is denoted by ε. The set
of all words over alphabet Σ is denoted by Σ∗. For example,

{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . . }.

A formal language is defined as a subset of Σ∗.
A language over alphabet Σ is called regular, if it is recognized by a deterministic

finite automaton (DFA).
A DFA is a 5-tuple A = (S,Σ, σ, s0, F ):

• Finite state set S. At all times the internal state is some s ∈ S.

• Input alphabet Σ. The automaton only operates on words over the alphabet.

• The transition partial function describes how the automaton changes its internal
state. It is a partial function

σ : S × Σ→ S

from (state, input letter)-pairs to states, that is, σ is a function defined on a subset
of S × Σ. If the automaton is in state s, the present input letter is a, then the
automaton changes its internal state to σ(s, a) and moves to the next input letter,
if σ is well defined at (s, a); and stop, otherwise.
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• Initial state s0 ∈ S is the internal state of the automaton before any letters have
been read.

• Set F ⊂ S of final states specifies which states are accepting and which are reject-
ing. If the internal state of the automaton, after reading the whole input, is some
state of F then the word is accepted, otherwise rejected.

We call a DFA complete if σ is a function from S × Σ to S.

In order to represent regular languages, we introduce an extended transition function
σ∗ : S × Σ∗ → S. σ∗ is recursively defined as

• σ∗(s, ε) = s for all s ∈ S.

• σ∗(s, wa) = σ(σ∗(s, w), a) for all s ∈ S, w ∈ Σ∗ and a ∈ Σ, if σ is well defined at
(σ∗(s, w), a) and σ∗ is defined on (s, w).

Particularly, one has for all s ∈ S, all a ∈ Σ, σ∗(s, a) = σ(σ∗(s, ε), a) = σ(s, a), if σ is
well defined at (s, a). Hence we will use σ to denote σ∗ briefly, since no confusion will
occur. Hereinafter, if we write “σ(s, a)”, we mean that σ is well defined at (s, a).

Given a DFA A = (S,Σ, σ, s0, F ). A word w ∈ Σ∗ is called accepted by this DFA,
if σ(s0, w) ∈ F . A language L ⊂ Σ∗ is called recognized by this DFA, if L = {w ∈
Σ∗|σ(s0, w) ∈ F}, and is denoted by L(A).

In order to visualize and represent a DFA and transform a BCN into a DFA related
to its reconstructibility, we introduce the transition graph of a DFA A = (S,Σ, σ, s0, F ).

A weighted digraph GA = (V,E,W ) is called the transition graph of the DFA A, if
the vertex set V = S, the edge set E ⊂ V × V and the weight function W : E → 2Σ,
where 2Σ is the power set of Σ, are defined as follows: For all (si, sj) ∈ V ×V , (si, sj) ∈ E
iff there is a letter a ∈ Σ such that σ(si, a) = sj . If (si, sj) ∈ E, then W ((si, sj)) equals
the set of all letters s ∈ Σ such that σ(si, a) = sj .

In a transition graph of a DFA, usually an input arrow is added to the vertex denoting
the initial state, double circles are used to denote the final states, the curly bracket “{}”
in the weights of edges are not drawn. See the following example.

Example 3.2. The graph in Figure 1 represents the DFAA = ({s0, s1, s2}, {0, 1}, σ, s0, {s0, s1}),
where

σ(s0, 0) = s0, σ(s1, 0) = s0, σ(s2, 0) = s2,

σ(s0, 1) = s1, σ(s1, 1) = s2, σ(s2, 1) = s1.

It is easy to see that ε ∈ L(A), 0101111 ∈ L(A) and 010110 /∈ L(A).

Proposition 3.3. (Zhang et al. [28]) Given a DFA A = (S,Σ, s0, F ), assume that
F = S, and for each s in S, there is a word u ∈ Σ∗ such that σ(s0, u) = s. Then
L(A) = Σ∗ iff A is complete.
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s0start s1 s2

0 0

0

1 1

1

Fig. 1. The transition graph of the DFA A in Example 3.2.

3.3. Constructed forest

The concept of the “constructed forest” [25] is introduced to support our discussion.

Definition 3.4. (Zhang and Zhang [25]) A directed graph G(V,E) is said to be the
constructed forest of (2) if the vertex set V = {t ∈ Z : t ≥ t0 − τ(t0)}, i. e., the time
sequence of (2), and the edge set E = {(t′, t′′) : t′ = t′′ − 1− τ(t′′ − 1)} ⊂ V × V .

For the sake of discussion, we present several concepts as follows

1. Let {Tt0−τ , Tt0−τ+1, . . . , Tt0} be the constructed forest G(V,E), where each Ti is
a tree.

2. Let Pt0−τ+i and Ni be any one given longest path of the tree Tt0−τ+i and the
length of Pt0−τ+i, respectively, i = 0, 1, . . . , τ (If Pt0−τ+j has an infinite number
of vertices, set Nj = +∞, j = 0, 1, . . . , τ. ).

3. Let Po and No be any one given shortest path of the set {Pt0−τ , Pt0−τ+1, . . . , Pt0}
and the length of Po, respectively. Po is called an observability contructed path.

To obtain the main result, we show that any given observability constructed path Po
can be identified with a subsystem that generates it.

Denote by
{t0, t1, . . . , tN}(or{t0, t1, . . .}) ⊂ Z (3)

one of the observability constructed paths of (2), where t0 − τ(t0) ≤ t0 ≤ t0, ti+1 > ti
for all i ≥ 0. Then, we identify the observability constructed path (3) with the following
subsystem (4) of (2). In (4), we still use t0 to denote t0 when confusion does not occur{

x(tk+1) = Lu(tk+1 − 1)x(tk)

y(tk) = Hx(tk)
(4)

where x ∈ ∆2n , u ∈ ∆2m , L, H are the same as those in (2). In fact, it is easy to see
that any path of (2) with its root in the set {t0− τ, t0− τ + 1, . . . , t0} has the same form
as (4).

Note that (4) is a system with no time delays if the subscript of t is regarded as its
time sequence.

Next we give an assumption for the system (2), and an equivalent condition for the
reconstructibility of (2) under this assumption.
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Assumption 1. The number of the observability constructed paths (3) of (2) is finite,
while the length is +∞.

Theorem 3.5. If a system (2) satisfies Assumption 1, then (2) is reconstructible iff
each subsystem of the set {Pt0−τ(t0), Pt0−τ(t0)+1, . . . , Pt0} is reconstructible.

P r o o f . If a system (2) is reconstructible, then by Definition 3.1 and Assumption 1, each
subsystem Pt0−τ(t0)+i, i = 0, . . . , τ(t0) is of infinite length, and hence reconstructible.

Assume that for a system (2), each subsystem Pt0−τ(t0)+i, i = 0, . . . , τ(t0), is recon-
structible, then each observability constructed path of (2) is also reconstructible. For
each observability constructed path i, there exists Ti > 0 s.t. ∀t ≥ Ti, if t belongs to the
time sequence of the path, then the state of (2) at time step t can be determined (by
the corresponding input sequence and output sequence). Since there are finitely many
observability constructed paths, we choose the maximum of all these Ti’s, then after
that time step, the states of (2) can be determined, i. e., (2) is reconstructible. �

Theorem 3.6. If a system (2) satisfies Assumption 1, then (2) is reconstructible if and
only if system Po is reconstructibility.

P r o o f . By Theorem 3.5, if system Po is reconstructible, system Pt0−τ(t0)+i is recon-
structible, i = 0, 1, . . . , τ(t0), then (2) is reconstructible. If system Po is not recon-
structible, then (2) is not reconstructible by Theorem 3.5 �

3.4. An algorithm to judge whether a BCN is reconstructable

Now we define the weighted pair graph for BCN (2).

Definition 3.7. (Zhang et al. [28]) Consider a BCN (2) with τ(t) ≡ 0. A weighted
digraph G = (V, E ,W, 2∆M ), where V denotes the vertex set, E ⊂ V×V denotes the edge
set, and W : E → 2∆M denotes the weight function, is called a weighted pair graph of
BCN (2) if V = {{x, x′} ∈ ∆N ×∆N : x 6= x′, Hx = Hx′}, for all (x1, x

′
1), (x2, x

′
2) ∈ V ×

V, ((x1, x
′
1), (x2, x

′
2)) ∈ E iff there exists u ∈ ∆M such that Lux1 = x2 and Lux′1 = x′2,

or Lux1 = x′2 and Lux′1 = x2, for all edges e = ((x1, x
′
1), (x2, x

′
2)) ∈ E , W(e) = {u ∈

∆M |Lux1 = x2 and Lux′1 = x′2, or, Lux1 = x′2 and Lux′1 = x2}.

According to Definition 3.1, to judge whether a BCN (2) is reconstructible, we need
to check the set of all vertices of its weighted pair graph (V, E ,W).

Now we design an algorithm to construct a DFA for a System Po according to its
weighted pair graph. The new DFA is denoted by AVn , and will be used to obtain the
main results.

Based on [[28], Theorem 3.4] and Algorithm 1 the following theorem holds.

Theorem 3.8. If a system (2) satisfies Assumption 1, then its observability constructed
path Po is not reconstructable if and only if the DFA AV generated by Algorithm 1
recognizes language (∆M )∗, i. e., L(AV) = (∆M )∗.
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Algorithm 1 (Zhang et al. [28]) An algorithm for returning a DFA that determines
the reconstructibility of the Observability constructed path Po of BCN (2).

Input: The observability constructed path Po of BCN (2) and its weighted pair graph
G = (V, E ,W)

Output: A DFA AV
1: S := {V}.S1

temp := V.S2
temp := ∅

2: while S1
temp 6= ∅ do

3: for all s ∈ S1
temp and j ∈ [1,M ] do

4: sj := {vs ∈ V| there is v ∈ s such that (v, vs) ∈ E and δjM ∈ W((v, vs))}
5: if sj 6= ∅ and sj /∈ S then

6: S := S ∪ {sj}.S2
temp := S2

temp ∪ {sj}.τ(s, δjM ) := sj
7: else if sj 6= ∅ then

8: τ(s, δjM ) := sj
9: else

10: τ is not well defined at (s, δjM )
11: end if
12: end for
13: S1

temp := S2
temp.S

1
temp := ∅

14: end while

P r o o f . Since for (2), the observability constructed path is of infinite length, the path
coincides with (2) with τ(t) ≡ 0, and the BCN considered in [[28], Theorem 3.4]. Hence
this result holds. �

Based on Theorem 3.8 and Algorithm 1 the following theorem holds.

Theorem 3.9. If a system (2) satisfies Assumption 1, then A BCN (2) is not recon-
structible if and only if for its observability constructed path Po, the DFA AV generated
by Algorithm 1 recognizes language (∆M )∗, i. e., L(AV) = (∆M )∗.

P r o o f . Since the observability constructed path of the system (2) is of infinite length,
an equivalent condition for the observability of the path is obtained by Theorem 3.8.
In addition, by Theorem 3.6, the reconstructibility of the path is equivalent to the
reconstructibility of (2). Hence this result holds. �

3.5. Determining the current state.

We have shown how to determine whether a given BCN (2) is reconstructible. One also
sees that each U outside of L(AV) is a homing input sequence. Next we show how to
use a homing input sequence to determine the current state.

Assume a reconstructible Boolean control network (2) satisfies Assumption 1. where
the initial state sequence (x(t0−τ(t0)), x(t0−τ(t0)+1), . . . , x(t0)) ∈ Dn(τ(t0)+1) is given
and unknown. By Theorem 3.9. the language recognized by the DFA AV generated by
Algorithm 1 is a proper subset of (∆M )∗. Then for each given homing input sequence
U = u0 . . . up−1 ∈ (∆M )∗\L(AV) and the corresponding output sequence Y = y(t0 −
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τ(t0)), y(t0 − τ(t0) + 1), . . . , y(t0), y(t1), . . . , y(tT ) ∈ (∆Q)p+1 , Algorithm 3.10 returns
the current state x(tT ). X0 in Algorithm 3.10 contains all possible states producing
output y0 and hence contains x0. At each time step 1 ≤ t ≤ p. Xt contains all states
that are driven from initial state x0 by input sequence u0 . . . ut−1 and correspond to
output sequence y0 . . . yt. Then by Theorem 3.9. Xp is a signleton. and the unique
element of Xp is the current state.

Algorithm 3.10. 1. Based on Definition 3.4. find the output sequence Y = y0 . . . yp
of an observability path Pt0−τ(t0)+i of the tree Tt0−τ(t0)+i that includes vertice
x(t0 + T ) and the length p of a shortest observability path Pt0−τ(t0)+i, i =
0, 1, . . . , τ(t0).

2. set X0 := {x|x ∈ ∆N , Hx = y0}, k = 0.

3. set Xk+1 = {x|x ∈ ∆N , HLuix = yi+1}, k = k + 1.

4. if k = p stop. Else go back to Step 3.

4. ILLUSTRATIVE EXAMPLES

The following Example 4.1 illustrates the constructed forest, the weighted pair graph,
how Algorithm 1 works, and how to use a homing input sequence to determine the
current state

Example 4.1. Consider the following Boolean control network:

x(t+ 1) = δ4[3, 1, 2, 4, 1, 3, 4, 2]u(t)x(t− τ(t)),

y(t) = δ2[1, 2, 1, 1]x(t),
(5)

where t = 0, 1, . . ., x ∈ ∆4, y, u ∈ ∆,

τ(t) =


τ(t) =

t+ 1

2
, t is odd and t0 ≤ t ≤ t0 + 13

τ(t) =
t

2
, t is even and t0 ≤ t ≤ t0 + 13

τ(t) = 7, t ≥ t0 + 14

(6)

The constructed forest of (5) shown in Figure 2 satisfies Assumption 1. The weighted
pair graph of the observability constructed path of the Boolean control network (5)
is show in Figure 3. Putting the constructed forest and weighted pair graph into Al-
gorithm 1, Algorithm 1 returns a DFA AV . From Figure 4 it follows that AV is not
complete, then by Theorem 3.9, the Boolean control network (5) is reconstructible.

Base on Algorithm 3.10, find the output sequences Y = y(0)y(2)y(6) of an observ-
ability path of the tree in Figure 2 that includes vertice x(6) and the length p+ 1 = 7.
Note that δ2

2 ∗ δ2
2 ∗ ∗ /∈ L(AV) where ∗ represent δ0

2 or δ1
2 by Figure 4; then δ2

2 ∗ δ2
2 ∗ ∗

is a homing input sequence. Next we use δ2
2 ∗ δ2

2 ∗ ∗ to determine the current state
x(6). Choose as an unknown initial state x(0) = δ1

4 . Then the output sequence is
y(0) = 1, y(1) = 1, y(2) = 1, y(3) = 1, y(4) = 0, y(5) = 3, y(6) = 2. According to Al-
gorithm 3.10, choose the observability constructed path is 0 → 2 → 6 → 14 → 22 . . .
and the length is 3, then y(0) = 1, y(2) = 1, y(6) = 2, X0 = {δ1

4 , δ
3
4 , δ

4
4}, X1 = {δ1

4 , δ
4
4},

X2 = {δ4
4}. Hence the current state is x(6) = δ4

4 .
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Fig. 2. Constructed forest of (5) with the time delay function (6)

where the number in each circle denotes the time step.

13 14 34
2 1

Fig. 3. Weighted pair graph of Boolean control network (5), where

number ij in each circle denotes state pair {δi4, δj4}, and number k

beside each edge denotes weight {δk2} of the corresponding edge.

The following Example 4.2 shows that without Assumption 1, None of the Theorem
3.5, Theorem 3.6 and Theorem 3.9 holds.

Example 4.2. Consider the following Boolean control network:

x(t+ 1) = δ4[3, 2, 4, 1, 1, 2, 4, 2]u(t)x(t− τ(t))
y(t) = δ2[1, 2, 2, 1]x(t)

(7)

where t = 0, 1, . . ., x ∈ ∆4, y, u ∈ ∆,{
τ(t) = t− f(m(t+ 1), n(t+ 1)− 1), if n(t+ 1) > t
τ(t) = t, otherwise,

(8)

where f(m, n) = C2
n+1 + (m− 1)n+ C2

m−1,
m(t) = t− C2

s(t),

n(t) = s(t)−m(t),

s(t) = b
√

2t− 3
4 + 3

2c

and b·c represents the maximal integer no greater than ·.
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Fig. 4. The DFA AV with respect to Boolean control networks (5)

generated process by Algorithm 1, where the number ij in each circle

denotes the state pair (δi4, δ
j
4), and the weight k beside each edge

denotes the input δk2 .

The delay function (8) contains infinitely many observability constructed paths and
the length of each of the observability constructed paths is infinite (cf. Figure 5), which
does not satisfies Assumption 1. Arbitrarily select one of the observability constructed
paths. The subsystem is with no delay and its form is shown in (4). Assume that the
subsystem is reconstructible, then there exists time T (e. g. T = 3), and the state of the
subsystem at time T can be determined by an input sequence and the corresponding
output sequence while the state at T = 1 cannot be determined, so the state at t =
1, 2, 4, 7, . . . (that is, the time in the first column in Figure 5) cannot be determined.
Therefore, the system (7) can not be reconstructible.
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Fig. 5. Constructed forest of (7) with the time delay function (8)

where the number in each circle denotes the time step.

5. CONCLUSION

In this paper, the reconstructibility of Boolean control networks with time delay in
states was studied under a mild assumption based on the theories of finite automata and
formal languages, weight pair graph and constructed forest. Based on this approach,
an equivalent test criterion has been given, and then an algorithm has been designed to
determine the reconstructibility and another algorithm has been designed to determine
the current state.
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