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Balcar’s theorem on supports

Lev Bukovský

To the memory of Bohuslav Balcar

Abstract. In A theorem on supports in the theory of semisets [Comment. Math.
Univ. Carolinae 14 (1973), no. 1, 1–6] B. Balcar showed that if σ ⊆ D ∈ M
is a support, M being an inner model of ZFC, and P(D \ σ) ∩ M = r“σ with
r ∈ M , then r determines a preorder “�” of D such that σ becomes a filter on
(D,�) generic over M . We show that if the relation r is replaced by a function
P(D \σ)∩M = f−1(σ), then there exists an equivalence relation “∼” on D and
a partial order on D/∼ such that D/∼ is a complete Boolean algebra, σ/∼ is
a generic filter and [f(u)]∼ = −

∑
(u/∼) for any u ⊆ D, u ∈ M .
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Classification: 03E40

1. Introduction

B. Balcar in [1] has found very nice and important proof of a theorem on
supports by P. Vopěnka in [4]. Actually, B. Balcar proved a theorem of the
theory of semisets. The translations of the theorem to the set theory is rather
immediate. Following ideas of this proof we show a related result.

We shall follow the terminology and notations of T. Jech in [3].
If M is an inner model then a set σ ⊆ D ∈ M , σ /∈ M is a support over M if

for any binary relations r1, r2 ∈ M there exists a binary relation r ∈ M such that

r“σ = r1“σ \ r2“σ.

Note that r“σ = {y ∈ ran(r) : ∃x ∈ σ [x, y] ∈ r}. If f is a function, then
f−1(σ) = {x ∈ dom(f) : f(x) ∈ σ}. If “∼” is an equivalence relation on a set A,
then for any x ∈ A we denote the equivalence class of x by [x]∼. If B ⊆ A, then
B/∼= {[x]∼ : x ∈ B}.

By Balcar’s proof in [1], see also [2, pages 365–370], we obtain

Theorem 1. Let M be an inner model. Let σ be a subset of a set D ∈ M ,

σ /∈ M . Then the following are equivalent

a) σ is a support over M ;

b) there exists a binary relation r ∈ M such that P (D \ σ) ∩M = r“σ;
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c) there exists a preorder “�” on D such that σ is a filter on (D, �) generic
over M ;

d) there exist a Boolean algebra B ∈ M complete in M , a filter G ⊆ B
generic over M , a binary relation r ∈ M and a function f ∈ M such that

G = r“σ and σ = f−1(G).

P. Vopěnka in [4] has proved the implication a) ⇒ d). B. Balcar in [1] has
proved the implication b) ⇒ c) of Theorem 1. The other implications are known
from the theory of semisets and from the theory of Boolean valued models.

The condition c) of Theorem 1 is equivalent to the following:

◦ there exist an equivalence relation ∼ ∈ M on D
◦ and a partial order ≤ ∈ M on D/∼ such that
◦ σ/∼ is a filter on (D/∼,≤) generic over M .

If B ∈ M is a Boolean algebra complete in M and G ⊆ B is a filter generic
over M , we define a function f : P(B) ∩M −→ B as

(1) f(u) = −
∑

u for u ⊆ B, u ∈ M.

Then the condition b) of Theorem 1 holds true with f−1 instead a binary relation
as

(2) P (B \G) ∩M = f−1(G).

We shall study how we can change the assertion c) if we replace the relation r
in b) by the inverse of a function f−1 as above. We show

Theorem 2. Assume that M is an inner model. Let σ be a subset of a set

D ∈ M , σ /∈ M , and let f : P(D)∩M −→ D be a function in the model M . Then

the following are equivalent

a) P (D \ σ) ∩M = f−1(σ);
b) there exist an equivalence relation ∼ ∈ M on D and a partial order

≤ ∈ M on D/ ∼ such that (D/ ∼, ≤) is a Boolean algebra complete

in M , σ/∼ is a filter on (D/∼, ≤) generic over M , and for any u ⊆ D,

u ∈ M , we have

[f(u)]∼ = −
∑

{[x]∼ : x ∈ u}.

2. Getting a partial order

In the next we assume that

D ∈ M, σ ⊆ D, f : P (D) ∩M −→ D, f ∈ M, P (D \ σ) ∩M = f−1(σ).

We set

(3) s(x) = {y ∈ D : ∃u ∈ P (D) ∩M u ∩ {x, y} 6= ∅ ∧ f(u) ∈ {x, y}}.
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The intended interpretation is that s(x) is the set of elements of the partially
preordered set D incompatible with x.

Immediately from the definition we obtain

y ∈ s(x) → x ∈ s(y) for any x, y ∈ D,
and

(4) u ⊆ s(f(u)) for any u ⊆ D, u ∈ M.

If x ∈ s(x), then by definition there is u ∈ P (D) ∩ M such that x ∈ u and
f(u) = x. Hence x /∈ σ. Moreover then u∩{x, y} 6= ∅ and f(u) ∈ {x, y} for every
y ∈ D. Thus

(5) if x ∈ s(x), then x /∈ σ,

and

(6) x ∈ s(x) if and only if s(x) = D.

If we take u = {x} in the definition (3), we obtain

x ∈ s(f({x})) and f({x}) ∈ s(x) for any x ∈ D.

We define a preorder “�” of the set D setting

x � y if and only if s(y) ⊆ s(x).

By (6), any x ∈ D such that x ∈ s(x) plays the role of the least element in this
preorder.

The preorder “�” induces an equivalence relation “≈” defined by

x ≈ y if and only if s(x) = s(y).

The preorder “�” becomes a partial order on the quotient set D/≈. We iden-
tify elements of D with their equivalence classes and subsets of D with the set
of corresponding equivalence classes. So, speaking about x ∈ D we mean the
equivalence class [x]≈ in D/≈. Similarly for a subset of D.

Let
A0 = {x ∈ D : x ∈ s(x)}, D0 = D \A0.

It is easy to see that A0 is hereditary downward, i.e.,

(7) (y � x ∧ x ∈ A0) → y ∈ A0.

Since f(D) ∈ D = s(f(D)) we have

(8) D \D0 6= ∅.

By (6), A0 is the �-least equivalence class of D/ ≈ and D0/ ≈ is the set of
nonzero elements of D/≈.
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Note the following:

if z � y and y ∈ s(x), then z ∈ s(x).

Indeed, if z � y and y ∈ s(x), then x ∈ s(y) ⊆ s(z). Hence z ∈ s(x).
Let X ⊆ D. We say that elements x, y ∈ D are incompatible in X , if for every

z � x, z � y we have z /∈ X . If x, y ∈ D0 are incompatible in D0 we shall write
x ⊥ y.

We show that for any x ∈ D0, every element of the set s(x)∩D0 is incompatible
with x.

If y ∈ s(x), z � x, z � y, x, y ∈ D0, then z /∈ D0.

So, assume that y ∈ s(x) and s(x) ⊆ s(z), s(y) ⊆ s(z). Then y ∈ s(z) and
therefore also z ∈ s(y). Thus z ∈ s(z). Hence

(9) if y ∈ s(x), then x ⊥ y for any x, y ∈ D0.

By (4) we obtain that

(10) if s(x) ∪ s(f(u)) ⊆ s(y) for some x ∈ u, then y ∈ s(y).

In particular,

if s(x) ∪ s(f({x})) ⊆ s(y) for some x, then y ∈ s(y).

Lemma 3. a) s(x) ⊆ D \ σ for each x ∈ σ.
b) If u ⊆ D \ σ, u ∈ M , then there exists an x ∈ σ such that u ⊆ s(x).

Proof: a) Let x ∈ σ. If y ∈ s(x), then by (3) there exists a set u ∈ P (D) ∩M
such that

u ∩ {x, y} 6= ∅ ∧ f(u) ∈ {x, y}.

We have four possibilities. If x ∈ u and f(u) = x then u ⊆ D \ σ, a contradic-
tion. If x ∈ u and f(u) = y then u * D \ σ, hence we obtain that y = f(u) /∈ σ.
If y ∈ u and f(u) = x then u ⊆ D \ σ, therefore y /∈ σ. If y ∈ u and f(u) = y,
then y ∈ σ implies that u ⊆ D \ σ, a contradiction. Thus y /∈ σ.

b) Let u ⊆ D \ σ, u ∈ M . Then x = f(u) ∈ σ. By (4) we obtain u ⊆ s(x). �

Lemma 4. The set σ is a filter on (D0, �) generic over M .

Proof: By (5) we have σ ⊆ D0.
Let x ∈ σ, x � y. Assume that y /∈ σ. Then s(x) ∪ {y} ⊆ D0 \ σ, hence by

Lemma 3 b), there exists a z ∈ σ such that s(x)∪ {y} ⊆ s(z). Since y ∈ s(z) also
z ∈ s(y) ⊆ s(x) ⊆ D0 \ σ, a contradiction.

Let x, y ∈ σ. Then by Lemma 3 a) s(x)∪ s(y) ⊆ D \σ. Thus, by Lemma 3 b),
there exists a z ∈ σ such that s(x) ∪ s(y) ⊆ s(z). Then z � x and z � y.

Assume that u ⊆ D0 \ σ, u ∈ M . By Lemma 3 b), there exists an x ∈ σ such
that u ⊆ s(x). By (9) every element of u is incompatible with x, therefore u is
not dense in D0. �
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We denote by q1 the quotient mapping q1 : D0 −→ D0/≈ defined as q1(x) =
[x]≈. Since

(x ≈ y ∧ x ∈ σ) → y ∈ σ,

q1(σ) is a filter on 〈D0/≈,�〉 generic over M .
The function f : P(B) ∩ M → B defined by (1) may be easily changed still

keeping (2) true. E.g. take u, v ⊆ B such that f(u), f(v) ∈ G, f(u) 6= f(v). If
you exchange the values f(u) and f(v), (2) is true and (1) fails. However the
restriction of f to P(B|(f(u) · f(v))) will satisfy (1).

So we must consider some “inconvenient” elements in D which we must omit.
It turns out that none of those elements is in σ. We show that

(11) if x ⊥ y for every y ∈ u and x ⊥ f(u), then x /∈ σ.

Assume that x ∈ σ. Then by Lemma 4 we obtain u ⊆ D \ σ. Therefore f(u) ∈ σ,
which is a contradiction with x ⊥ f(u).

In particular,
if x ⊥ y and x ⊥ f({y}), then x /∈ σ.

3. Getting a complete Boolean algebra

There exist an equivalence relation “≍” on D0/≈ and the quotient mapping
q2 : D0/≈ → (D0/≈)/≍, see [3, page 205], preserving inequalities “�” and � /≍
and compatibility of elements in both sides, such that ((D0/ ≈)/ ≍, � / ≍) is
a separative partially ordered set. We denote by “∼” the equivalence relation on
D0 defined as

x ∼ y if and only if [x]≈ ≍ [y]≈,

and the partial order “≤” on D0/∼, compare [3, page 205], defined as

[x]∼ ≤ [y]∼ ≡ ∀ z � x [z]≈ is compatible with [y]≈ in D0/≈ .

Then (D0/∼, ≤) is a separative partially ordered set. We denote

q = q1 ∗ q2 : D0 −→ D0/∼ .

Then q(σ) is a filter on D0/∼ generic over M .
Hence there exists a Boolean algebra B0 ∈ M complete in M and a mapping

e : D0 −→ B0 such that e“D0 is dense in B0, and

∀x, y ∈ D0 x � y → e(x) ≤ e(y),(12)

∀x, y ∈ D0 x ⊥ y ≡ e(x), e(y) are incompatible in B0.(13)

We can assume that D0/ ∼⊆ B0 and the partial order “≤” coincides with the
order of the Boolean algebra B0. Then

e(x) = [x]∼ for any x ∈ D0.
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We set

A = {x ∈ D : ∃u ⊆ D, u ∈ M (x ⊥ f(u) ∧ ∀ y ∈ u x ⊥ y)},

C = D \A.

Evidently A0 ⊆ A and therefore C = D0 \A. By (11) we have

σ ⊆ C.

By (7) and by the definition, the set A is hereditary downward.
Let a = e(f(A)) ∈ B0. We denote B = B0|a = {x ∈ B0 : x ≤ a}. We set

h(x) =

{

e(x) · a if x ∈ C,
0 if x ∈ D \ C.

We show that h“C is dense in B \ {0}. So let b ∈ B, b 6= 0. Then b ≤ a. Since
e“D0 is dense in B0 \ {0}, there exists z ∈ D0 such that 0 6= e(z) ≤ b. Assume
that z ∈ A. Then z ∈ s(f(A)), hence z ⊥ f(A). Hence e(z) = e(z) · a = 0,
a contradiction. Thus z ∈ C.

Evidently
∀x, y ∈ D x � y → h(x) ≤ h(y).

Let u ⊆ C, u ∈ M . By (10) we obtain that for any x ∈ u, the elements x and
f(u) are incompatible in (D0, �). Hence by (13) we obtain h(f(u)) ·

∑

h“u = 0.
By the definition of A, we have

∑

e“u+ e(f(u)) ≥ a in B0. If f(u) ∈ C, then
∑

h“u+ h(f(u)) = 1 in B and

h(f(u)) = −
∑

h“u in B.

If f(u) /∈ C then
∑

e“u ≥ a, i.e.,
∑

h“u = 1 in B and −
∑

h“u = 0 = h(f(u)).
In particular we obtain that h(f({x})) = −h(x) for any x ∈ C.
If x ∈ B, x 6= 0 then x =

∑

h′′u, where u = {y ∈ C : h(y) ≤ x}. Since
∑

h′′u = h(f({f(u)})), we obtain that B \ {0} ⊆ h“C. By (8), D \C 6= ∅, hence
0 ∈ h“D. Thus h is a surjection.

Since σ ⊆ C, we obtain that

σ/∼ = q(σ) is a filter on B generic over M.

If we redefine the equivalence relation “∼” as

x ∼ y if and only if h(x) = h(y)

for any x, y ∈ D, we obtain the assertion of the theorem.
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