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Coloring Cantor sets and resolvability

of pseudocompact spaces

István Juhász, Lajos Soukup, Zoltán Szentmiklóssy

Dedicated to the memory of our old friend Bohus Balcar

Abstract. Let us denote by Φ(λ, µ) the statement that B(λ) = D(λ)ω , i.e. the

Baire space of weight λ, has a coloring with µ colors such that every homeomor-
phic copy of the Cantor set C in B(λ) picks up all the µ colors.

We call a space X π-regular if it is Hausdorff and for every nonempty open
set U in X there is a nonempty open set V such that V ⊂ U . We recall that
a space X is called feebly compact if every locally finite collection of open sets
in X is finite. A Tychonov space is pseudocompact if and only if it is feebly
compact.

The main result of this paper is the following: Let X be a crowded feebly
compact π-regular space and µ be a fixed (finite or infinite) cardinal. If Φ(λ, µ)
holds for all λ < ĉ(X) then X is µ-resolvable, i.e. X contains µ pairwise disjoint
dense subsets. (Here ĉ(X) is the smallest cardinal κ such that X does not contain
κ many pairwise disjoint open sets.)

This significantly improves earlier results of [van Mill J., Every crowded pseu-
docompact ccc space is resolvable, Topology Appl. 213 (2016), 127–134], or
[Ortiz-Castillo Y. F., Tomita A. H., Crowded pseudocompact Tychonoff spaces
of cellularity at most the continuum are resolvable, Conf. talk at Toposym 2016].

Keywords: pseudocompact; feebly compact; resolvable; Baire space; coloring;
Cantor set

Classification: 54D30, 54A25, 54A35, 54E35

1. Introduction

It is well-known that any compact Hausdorff space X is maximally resolvable,
i.e. ∆(X)-resolvable, where ∆(X) is the smallest cardinality of a nonempty open
set in X . The question if this is also true for countably compact regular spaces,
however, is completely open.

E.G. Pytkeev proved in [9] that crowded countably compact regular spaces are
ω1-resolvable and this result was extended in [4] to crowded countably compact π-
regular spaces. The space X is π-regular if it is Hausdorff and for every nonempty
open set U in X there is a nonempty open set V such that V ⊂ U . The terminol-
ogy is explained by the fact that the latter is equivalent to the condition that the
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regular closed sets form a π-network in X . Since any π-regular crowded countably
compact space X satisfies ∆(X) ≥ c, the natural question was raised there if ω1

can at least be replaced here by c in ZFC (the acronym for Zermelo–Fraenkel set
theory with the axiom of choice).

If one weakens countably compact to pseudocompact, an even tougher problem
seems to arise: It is still unknown in ZFC whether all crowded pseudocompact
spaces are at least (2-)resolvable. We recall that E. Hewitt in [2] defined pseudo-
compact spaces as those Tychonov spaces on which every continuous real valued
function is bounded.

S. Mardešić and P. Papić defined in [5] feebly compact spaces by having the
property that every locally finite collection of open sets in them is finite and
showed that a Tychonov space is pseudocompact if and only if it is feebly compact.
In his survey paper [8] on problems on resolvability, in addition to the problem
if pseudocompact spaces are resolvable, O. Pavlov also asked if crowded regular
feebly compact spaces are resolvable.

The first significant advance on the problem if pseudocompact spaces are re-
solvable was done by J. van Mill in [6] where it was shown that any crowded
pseudocompact space X is c-resolvable, provided that c(X) = ω, i.e. X is CCC
(countable chain condition). Of course, this also means that crowded CCC count-
ably compact Tychonov spaces are c-resolvable.

At the 2016 TOPOSYM in Prague, A.H. Ortiz-Castillo and Y. F. Tomita an-
nounced the following (partial) improvement of J. van Mill’s result: Every crowded
pseudocompact space X that satisfies c(X) ≤ c is resolvable, see [7]. (It is not
clear from [7] if their proof actually gives c-resolvability of X .)

Our main result improves those of J. van Mill and A.H. Ortiz-Castillo and
Y. F. Tomita and, in addition, also gives a partial affirmative answer to P. Pavlov’s
second question mentioned above. To help to formulate it, we introduce some
notation and terminology.

We denote by B(λ) the ωth power of the discrete space on λ, i.e. the Baire
space of weight λ. Moreover, given some cardinals λ and µ we denote by Φ(λ, µ)
the statement that B(λ) has a coloring with µ colors such that every homeomor-
phic copy of the Cantor set C in B(λ) is omnichromatic, i.e. picks up all the µ

colors. Using the arrow notation of partition calculus, Φ(λ, µ) can be written as
B(λ) 9 [C]1µ. Finally, we recall from [3] that for any space X we denote by ĉ(X)
the smallest cardinal κ such that X does not contain κ many pairwise disjoint
open sets.

Theorem 1.1. Let X be a crowded feebly compact π-regular space and µ be

a fixed cardinal. If Φ(λ, µ) holds for all λ < ĉ(X) then X is µ-resolvable.

Note that the statement Φ(ω, 2) is just Bernstein’s classical decomposition
theorem, stated for B(ω), the space of the irrationals rather than the reals. Ex-
tensions of Bernstein’s theorem to colorings of wider classes of spaces and with c

colors were studied by a number of authors and these works culminated in some
very strong and general results in [1]. Theorem 3.5 in [1] says that if ̺ < c is
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a regular cardinal then for every topological space X of cardinality at most c+̺

there is a coloring c : X → c such that all T1 subspaces of X that admit a closed
continuous map onto C are omnichromatic. But for every n < ω we clearly
have

(

c
+n

)ω
= c

+n < c
+ω, hence Φ(λ, c) holds for all λ < c

+̺. Consequently any
crowded feebly compact π-regular space is c-resolvable, provided that c(X) < c

+ω.
The same theorem combined with Corollary 1.9 of [1] implies that every space

X has a coloring c : X → c as above, provided that for every singular cardinal ν
of countable cofinality both νω = ν+ and �ν are valid. (A slightly weaker result
was obtained earlier by W. Weiss in [10].) Consequently, under these conditions
Φ(λ, c) holds for all cardinals λ. This in turn implies the consistency of the c-
resolvability of all crowded feebly compact π-regular spaces, moreover that the
consistency of the negation of this requires large cardinals.

Finally we mention the following unpublished result of W. Weiss (oral com-
munication): If ω1 Cohen reals are added to any ground model V , note that this
forcing preserves the cardinal arithmetic of the ground model, then the generic
extension V Fn(ω1,2) satisfies Φ(λ, ω1) for all cardinals λ. So, in these models all
crowded feebly compact π-regular spaces are ω1-resolvable.

2. The proof of Theorem 1.1

Let us fix the crowded feebly compact π-regular spaceX and the cardinal µ ≤ c

such that Φ(λ, µ) holds for all λ < κ = ĉ(X). Note that then κ is an uncountable
regular cardinal, see e.g. 4.1 of [3]. The topology of X is denoted by τ and we
write τ+ = τ \ {∅}.

We call a sequence
#”

U = 〈Un : n < ω〉 of members of τ+ strongly decreasing (in
short: SD) if Un+1 ⊂ Un holds for every n < ω. We shall denote by SD(X) the
family of all strongly decreasing sequences.

For
#”

U = 〈Un : n < ω〉 ∈ SD(X) we put ∩
#”

U =
⋂

{Un : n < ω}. Clearly, ∩
#”

U

is always closed in X , moreover it is nonempty because X is feebly compact, see
Lemma 2.1 below. (It can be shown that the converse of this is also true if X is

π-regular.) Finally, for any
#”

U ∈ SD(X) we shall denote by ∂
#”

U the boundary of

∩
#”

U .
The following simple lemma will play a crucial role in our proof.

Lemma 2.1. Assume that
#”

U = 〈Un : n < ω〉 ∈ SD(X) and V ∈ τ are such that

for every n < ω we have

V ∩ (Un \ ∩
#”

U ) 6= ∅.

Then V ∩ ∂
#”

U 6= ∅ as well.

Proof: Let us put Wn = V ∩ (Un \ ∩
#”

U ). Then 〈Wn : n < ω〉 is a decreasing
sequence of nonempty open sets in X , hence there is a point x with x ∈ Wn for
infinitely many, hence all n ∈ ω, because X is feebly compact. But then we have
x ∈ Wn ⊂ V and also
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x ∈ ∩
#”

U \ Int(∩
#”

U ) = ∂
#”

U

because Wn ∩
(

∩
#”

U
)

= ∅ implies Wn ∩ Int(∩
#”

U ) = ∅. �

Next, using thatX is both crowded and π-regular, we fix for every open U ∈ τ+

a maximal family S(U) ⊂ τ+ with |S(U)| > 1 such that

(i) V ∈ S(U) implies V ⊂ U ;
(ii) if V,W ∈ S(U) are distinct then V ∩W = ∅.

Clearly then the union of S(U) is dense in U .
Using the operation S(U) we now define a tree T whose nodes are members of

τ+ and the tree ordering is reverse inclusion in the following natural way. The
levels Tα are defined by transfinite recursion, starting with T0 = {X}.

If Tα has been defined then we put

Tα+1 =
⋃

{S(U) : U ∈ Tα}

where, of course, the immediate successors of any U ∈ Tα are the members
of S(U).

Finally, if α is a limit ordinal and T ↾ α =
⋃

β<α Tβ has been defined then Tα

consists of all sets of the form Int(∩B), where B is any cofinal branch of T ↾ α

such that Int(∩B) 6= ∅.
Let θ be the height of T , i.e. the smallest ordinal for which Tθ = ∅. Clearly,

θ is a limit ordinal. Note that every branch B = {Uα : α < γ} of T (where, of
course, Uα ∈ Tα) has cardinality less than κ because

{Uα \ Uα+1 : α < γ} ⊂ τ+

is a pairwise disjoint collection of open sets. This implies that θ ≤ κ.
It is also obvious that every antichain of T , in particular every level Tα, also

has cardinality less than κ, hence if θ = κ then T is a κ-Suslin tree, however we
shall not need this fact.

Let us denote by E the set of all ordinals α ≤ θ with cf(α) = ω. Then
for every α ∈ E we may fix a strictly increasing sequence 〈αn : n < ω〉 with
sup{αn : n < ω} = α. We then have

κα = sup{|Tαn
| : n < ω} < κ

because κ is an uncountable regular cardinal and every level of T has size less
than κ.

Consequently, for every α ∈ E there is by our assumptions a coloring bα :
B(κα) → µ such that every homeomorphic copy of the Cantor set in B(κα) picks
up all colors ν ∈ µ.

To simplify our notation, using that |Tαn
| ≤ κα, we consider each level Tαn

of
T embedded in κα, hence their product

∏

n<ω Tαn
is embedded in κα

ω = B(κα).
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Then it makes sense to put

Yα = SD(X) ∩
∏

n<ω

Tαn
.

In other words, Yα consists of all strongly decreasing sequences
#”

U = 〈Un :
n < ω〉 ∈ SD(X) for which there is a cofinal branch B of T ↾ α such that
for every n < ω we have B ∩ Tαn

= {Un}. Since Yα ⊂ B(κα), the coloring bα is
defined, in particular, on Yα.

Next we move back to the space X and define

Yα =
⋃

{∂
#”

U :
#”

U ∈ Yα}.

It is clear from our construction of the tree T that for distinct
#”

U,
#”

V ∈ Yα we have
∂

#”

U ∩ ∂
#”

V = ∅. Moreover, if α and β are distinct elements of E then Yα ∩ Yβ = ∅
as well.

Thus we may define for each α ∈ E the coloring hα : Yα → µ by putting

hα(y) = bα(
#”

U ) for y ∈ Yα, where
#”

U is the unique element of Yα such that

y ∈ ∂
#”

U . Moreover, h =
⋃

α∈E hα is a well-defined coloring of Y =
⋃

α∈E Yα

with µ colors. Our aim now is to show that h establishes the µ-resolvability of X
because h−1{ν} is dense in X for every ν < µ. Equivalently, this means that for
every open set U ∈ τ+ we have h[U ] = µ. Actually, we shall prove the following
stronger statement.

Lemma 2.2. For every U ∈ τ+ there is an α ∈ E such that

hα[U ] = µ.

Proof: Let us define for every open U ∈ τ+ the ordinal γU as follows:

γU = min{γ ≤ θ : (∪Tγ) ∩ U = ∅}.

The ordinal γU exists because ∪Tθ = ∅, moreover it is clear from our construction
of the tree T that γU is a limit ordinal.

Let us say that W ∈ τ+ is good if for every V ∈ τ+ with V ⊂ W we have
γV = γW . It is clear from our assumptions that for every U ∈ τ+ there is a good
W ∈ τ+ such that W ⊂ U . Consequently, it suffices to show that for every good
W ∈ τ+ there is an α ∈ E such that hα

[

W
]

= µ.

So, consider any good W ∈ τ+ and put γW = γ. We are going to define
a strictly increasing sequence of ordinals βn < γ and an injective map f : 2<ω →
T ↾ γ such that for every n < ω and s ∈ 2n we have f(s) ∈ Tβn

and f(s)∩W 6= ∅.
The ordinals βn and the map f will be defined by recursion on n < ω, using the
following claim.
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Claim 2.2.1. For every V ∈ τ+ with V ⊂ W there is an ordinal β(V ) < γ such

that for any β ∈ [β(V ), γ) we have

|{U ∈ Tβ : V ∩ U 6= ∅}| > 1.

Proof: Indeed, for every β < γ there is some U ∈ Tβ such that U ∩ V 6= ∅
because γ = γV . But if no other member of Tβ intersects V then V ⊂ U since
otherwise, as W is good, γ(V \U) = γ would result in a contradiction. Thus if we

had cofinally many β < γ with a unique Uβ ∈ Tβ intersecting V , then there would
be a cofinal branch B of T ↾ γ with V ⊂ ∩B, contradicting the choice of γV = γ.
Thus Claim 2.2.1 has been proven. �

Now we define the ordinals βn < γ and the injection f : 2<ω → T ↾ γ by
recursion as follows. First we choose β0 < γ arbitrarily and then put f(∅) = U0

where U0 is any member of Tβ0
such that W ∩ U0 6= ∅. This is possible because

β0 < γ = γW .
If we have already defined βn and f(s) for all s ∈ 2n appropriately, then we

may apply Claim 2.2.1 to each nonempty open subset W ∩ f(s) of W with s ∈ 2n

and choose βn+1 < γ above βn and the finitely many values β(W ∩ f(s)) for
s ∈ 2n. Clearly, this recursion goes through and results in the desired sequence
of ordinals βn and injection f .

Now, we clearly have sup{βn : n < ω} = α ∈ E and we claim that hα

[

W
]

= µ.
To see this, note first that for every x ∈ C = 2ω the sequence 〈f(x ↾ n) : n < ω〉
determines a cofinal branch Bx of the cut off tree T ↾ α. This branch Bx then
determines the sequence

#”

Ux = 〈Ux,n : n < ω〉 ∈ Yα, where Ux,n is the unique
element of Bx on the level Tαn

. The injectivity of f clearly implies that if x 6= x′

then Bx 6= Bx′ .

In this way we also obtain a map F : C → Yα ⊂ B(κα) defined by F (x) =
#”

Ux.
This map F is clearly injective. Moreover, F considered as a map from C to
B(κα) is also uniformly continuous. Indeed, for every n < ω there is m < ω such
that αn ≤ βm, and then for any x, x′ ∈ 2ω with x ↾ m = x′ ↾ m we clearly have

F (x) ↾ n =
#”

U x ↾ n =
#”

U x′ ↾ n = F (x′) ↾ n.

But this means that F actually is a homeomorphism, hence we have bα[F [C]] = µ.

For every x ∈ C we have F (x) =
#”

Ux ∈ Yα ⊂ SD(X) and by our construction,
for every n < ω there are m, k < ω with αk > βm > αn and then ∅ 6= W ∩ (Ux,n \

Ux,k) ⊂ W ∩ (Ux,n \ ∩
#”

Ux). Consequently we may apply Lemma 2.1 to conclude

that W ∩ ∂(
#”

U x) 6= ∅. So, let us pick for each x ∈ C a point yx ∈ W ∩ ∂(
#”

Ux) and

recall that we have hα(yx) = bα(
#”

U x) = bα(F (x)). Consequently, we indeed have
hα[W ] = bα[F [C]] = µ. This completes the proof of Lemma 2.2 and with that
the proof of Theorem 1.1. �
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