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ROBUST RECURSIVE ESTIMATION OF GARCH MODELS

Tomáš Cipra and Radek Hendrych

The robust recursive algorithm for the parameter estimation and the volatility prediction
in GARCH models is suggested. It seems to be useful for various financial time series, in
particular for (high-frequency) log returns contaminated by additive outliers. The proposed
procedure can be effective in the risk control and regulation when the prediction of volatility is
the main concern since it is capable to distinguish and correct outlaid bursts of volatility. This
conclusion is demonstrated by simulations and real data examples presented in the paper.
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1. INTRODUCTION

Financial time series (in particular returns of financial assets) typically exhibit significant
kurtosis and volatility clustering. The assets are usually stocks or stock indices (see
e. g. [52]) or currencies (see e. g. [45]). The GARCH models introduced by [4] and [19]
are commonly applied in order to model these typical properties with the aim to describe
dynamics of conditional variances and forecast financial volatility. However, when fitted
to real time series the residuals of the estimated models have frequently excess kurtosis
explainable by the presence of outliers which are not captured by the GARCH models,
see e. g. [8, 9, 10, 23] (on the other hand, some authors argue that extreme observations
are not outliers and they should be incorporated into the model, see e. g. [2] or [20]).

The parameters of the GARCH models are routinely estimated by the (conditional)
maximum likelihood but they are rarely calibrated recursively. Nevertheless, recursive
estimates performed using recursive algorithms are undoubtedly advantageous. To eval-
uate the parameter estimates at a time step, recursive estimation methods operate only
with the current measurements and parameters estimated in previous steps (see e. g.
[1, 18, 26, 32, 37]). It is in sharp contrast to the non-recursive estimation where all
data are collected at first and then the model is fitted. Therefore, recursive estimation
techniques are effective in terms of memory storage and computational complexity. This
efficiency can be employed just in the framework of (high-frequency) financial time series
data. Alternatively, it is possible to adopt these methods to monitor or forecast volatility
on-line, to evaluate risk measures (e. g. Value at Risk or Expected Shortfall), to detect
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faults, to check model stability including detection of structural changes, etc. Moreover
due to the previous arguments, the recursive GARCH estimation should be resistant
(robust) to outliers. The primary goal of this paper is to suggest a robust recursive
algorithm which is effective enough in the context of GARCH models to estimate and
forecast volatility of contaminated (high-frequency) financial data.

Various methods of non recursive estimation of GARCH parameters and volatility
in presence of outliers consist either in (i) identifying and correcting additive outliers
(AO) or innovative outliers (IO) in (residual) time series (see e. g. [9, 10, 23, 24, 27,
28, 34]), or in (ii) robustifying classical statistical estimators of the type LS or ML to
the form of M estimators and similar robust versions (see e. g. [7, 33, 44, 49, 55]), or in
(iii) applying estimators with robust properties of the type LAD or median MAD (see
e. g. [3, 36, 39, 45, 46, 58]).

As robust recursive estimation of GARCH model is concerned, initially one should
remind a close connection to robustification of Kalman filter which is desirable including
various engineering applications in the context of state space modelling with outliers (see
e. g. [6, 12, 14, 21, 29, 30, 35, 38, 47, 48, 50, 53, 54]). Moreover, a special case of Kalman
filter robustification is the robust exponential smoothing including Holt-Winters method
(see e. g. [11, 13, 15, 16, 17, 25, 31, 43]).

The following sections of the paper deal in sequence with (1) the presentation of
self weighted recursive estimation algorithm for GARCH models, (2) its robustification,
(3) the simulation study for various types of outliers, and finally (4) real data applica-
tions.

2. GARCH MODELS: CONSTRUCTION OF RECURSIVE ESTIMATOR

The GARCH(p, q) process {yt}t∈Z in financial applications is commonly defined as (refer
to e. g. [22])

yt = σtεt, σ
2
t = ω +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j , (1)

where {εt}t∈Z is a sequence of i.i.d. random variables with zero mean and unit variance,
and ω, α1, . . . , αp, β1, . . . , βq are the parameters of the process. The first two conditional
and unconditional moments can be simply calculated as

E(yt|Ft−1) = 0, E(yt) = 0, var(yt|Ft−1) = σ2
t , var(yt) = E(σ2

t ), (2)

where Ft denotes the smallest σ-algebra with respect to which ys is measurable for all
s ≤ t. Sufficient conditions for σ2

t being positive are ω > 0, α1, . . . , αp, β1, . . . , βq ≥ 0. If
β1 = · · · = βq = 0, the model is reduced to the ARCH(p) process. Additionally, sufficient
conditions for yt being (weakly) stationary are ω > 0, α1, . . . , αp, β1, . . . , βq ≥ 0, and∑p
i=1 αi +

∑q
j=1 βj < 1. The stationary GARCH(p, q) model has the finite variance:

var(yt) =
ω

1−
∑p
i=1 αi −

∑q
j=1 βj

. (3)
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The one-step ahead prediction of σ2
t is expressed as

σ̂2
t+1|t = ω +

p∑
i=1

αiy
2
t+1−i +

q∑
j=1

βjσ
2
t+1−j . (4)

The GARCH models are routinely estimated by the non-recursive conditional maxi-
mum likelihood method with normal distribution being usually preferred since the corre-
sponding estimates stay consistent. Aknouche and Guerbyenne [1] proposed a couple of
two-stage recursive estimation schemes appropriate for the standard GARCH(p, q) mod-
els extending the ideas presented in [5]. However, they focused mainly on the derivation
and convergence analysis of the algorithm and not on its numerical evaluation, which
might be regarded as a (crucial) objection (consult [42]). In particular, the whole compu-
tational implementation is based on recursive pseudo-linear regression estimation scheme
applied to the following representation of the GARCH(p, q) process yt (see e. g. [22]):

y2
t = σ2

t (θ0) + νt, (5)

where σ2
t (θ0) is defined in (1) for the true values of model parameters collected in

the vector θ0 and νt = σ2
t (θ0)(ε2

t − 1) is white noise with E(νt) = 0 and var(νt) =
E(ν2

t ). Independently, such a recursive pseudo-linear regression algorithm has been also
proposed in [37] following analogical derivation schemes (see [26]).

Hendrych and Cipra [32] derived an alternative recursive formulas for estimating
parameters of the standard GARCH(p, q) model which is based on the principle of self-
weighted estimation (see also [40] and [57], but Hendrych and Cipra [32] made use of the
opportunity to formulate this principle conveniently in a recursive way). Even though
the Gaussian QMLE approach was applied for this purpose, theoretically it could be
generalized to other types of QMLE (see e. g. [56] for an overview), but with much
higher computational complexity.

The recursive identification instruments introduced by [41, 42], and [51] were applied
to deliver one-stage recursive estimation procedures (in contrast to two-stage procedure
suggested in [1]):

θ̂t = θ̂t−1 +
P̂ t−1ψ̂t(y

2
t − ϕ̂

>
t θ̂t−1)

λt(ϕ̂
>
t θ̂t−1)2 + ψ̂

>
t P̂ t−1ψ̂t

, (6a)

P̂ t =
1

λt

{
P̂ t−1 −

P̂ t−1ψ̂tψ̂
>
t P̂ t−1

λt(ϕ̂
>
t θ̂t−1)2 + ψ̂

>
t P̂ t−1ψ̂t

}
, (6b)

ϕ̂t+1 = (1, y2
t , . . . , y

2
t+1−p, ϕ̂

>
t θ̂t, . . . , ϕ̂

>
t+1−qθ̂t+1−q)

>, (6c)

ψ̂t+1 = ϕ̂t+1 +

q∑
j=1

β̂j,tψ̂t+1−j , (6d)

λt = λ̃ · λt−1 + (1− λ̃), λ0, λ̃ ∈ (0, 1), t ∈ N, (6e)

where the recursive estimates are collected in θ̂t (the parameters in (1) are ordered
to a single vector θ = (ω, α1, . . . , αp, β1, . . . , βq)

>). The forgetting factor {λt}t∈N is
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a deterministic sequence of positive real numbers less or equal to one. It represents
the observation weight over time. One commonly puts λ0 = 0.95 and λ̃ = 0.99. The
initialization of the algorithm is thoroughly discussed in [32] (see p. 320). Finally, one
should introduce the simple projection, which completes the algorithm (6) and ensures
that it will not degenerate:

[
θ̂t

]
DM

=

{
θ̂t if θ̂t ∈DM,
θ̂t−1 if θ̂t /∈DM,

(7)

whereDM := {θ ∈ Rp+q+1|δ̃1 ≤ θ1 ≤ ∆̃1; θi ≥ 0, i = 2, . . . , p+q+1;
∑p+q+1
j=2 θj ≤ 1−δ̃2}

and one usually puts 0 < δ̃1 ≤ ∆̃1 <∞, 0 < δ̃2 < 1, e. g. δ̃1 = 10−9 and ∆̃1 = 102.
The performance of this algorithm was (fairly) compared by means of the various

Monte Carlo experiments with other methods mentioned above. The one-stage recursive
estimate has proven to be at least competitive amongst the others (and usually better,
see [32]). The simulations have also shown that the initialization of the algorithms must
be handled carefully, since it can significantly influence the speed of its convergence. For
more details, consult [32] and the references therein.

Remark that the introduced recursive estimation technique (6) might be an appeal-
ing alternative to the moving-window estimation approach which can be also applied to
detect outliers and structural changes. The latter approach is based on repeating mini-
mization of the negative conditional log-likelihood function (after excluding the constant
term), which corresponds to the model (1) when assuming normally distributed innova-
tions εt. It can be expressed as follows:

θ̂
M

t = arg min
θ∈DM

t∑
τ=t−M+1

[
y2
τ

σ2
τ

+ log(σ2
τ )

]
, t ≥M, (8)

where M ∈ N denotes the moving-window width. At each time the minimum (8) is

repeatedly calculated and σ̂2
t+1 is evaluated using the most recent estimate θ̂

M

t and M
consecutive observations. The estimation can be initialized similarly as above. It is
obvious that the estimation can start only after observing at least M financial returns.
This scheme or its alternatives are frequently applied in practice. However, such an
estimator is computationally very complex since the optimization task is obviously solved
by an iterative procedure based on M consecutive measurements at each time. On the
contrary, recursive estimation algorithms of the type (6) are computationally much more
effective (as we stated in Section 1). Therefore, they are primarily preferred in real time
applications (especially in the context of high-frequency data).

3. ROBUST RECURSIVE ESTIMATION OF GARCH MODELS

Using GARCH models, it is necessary to be concerned about outliers that may occur in
data (see also the first introduction section and the last section on real data applications).
Outliers can be caused by many reasons, e. g. by additive innovations, measurement
failures, operational risk problems, management decisions, etc. They can influence the
estimation and prediction in the applied model considerably if no specific action is taken.
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Therefore, if such defects are expected in the data set, one should modify the estimation
algorithms to make them more robust. The outliers tend to appear as spikes in the
sequence of {yt/

√
σ2
t }, which obviously result in large contributions to the loss function.

There exist various ways how to robustify recursive estimation algorithms (refer to the
first introduction section above). In this contribution, a simple way of handling outliers
is applied based on testing a measurement at each time t. If it is large compared with
a given limit, it is indicated as erroneous and substituted immediately by another value
(see e. g. [13, 42, 47], and others). According to simulations, this strategy seems to be
efficient for additive outliers (AD) mainly.

Under the previous arguments, the algorithm (6) can be robustified to the following
form:

θ̂
rob

t = θ̂
rob

t−1 +
P̂
rob

t−1ψ̂
rob

t

[(
ŷrobt

)2 − (ϕ̂robt )>θ̂
rob

t−1

]
λt

[
(ϕ̂robt )>θ̂

rob

t−1

]2
+ (ψ̂

rob

t )>P̂
rob

t−1ψ̂
rob

t

, (9a)

P̂
rob

t =
1

λt

P̂ rob

t−1 −
P̂
rob

t−1ψ̂
rob

t (ψ̂
rob

t )>P̂
rob

t−1

λt

[
(ϕ̂robt )>θ̂

rob

t−1

]2
+ (ψ̂

rob

t )>P̂
rob

t−1ψ̂
rob

t

 , (9b)

ϕ̂robt+1 =
(

1,
(
ŷrobt

)2
, . . . ,

(
ŷrobt+1−p

)2
, (ϕ̂robt )>θ̂

rob

t , . . . , (ϕ̂robt+1−q)
>θ̂

rob

t+1−q

)>
, (9c)

ψ̂
rob

t+1 = ϕ̂robt+1 +

q∑
j=1

β̂robj,t ψ̂
rob

t+1−j , (9d)

λt = λ̃ · λt−1 + (1− λ̃), λ0, λ̃ ∈ (0, 1), t ∈ N, (9e)

where the recursive estimates are collected in θ̂
rob

t (the {λt}t∈N is the same as in (6e)).
To complete (9), one defines the outlier-corrected series {ŷrobt } as follows:

(
ŷrobt

)2
=



(ϕ̂robt )>θ̂
rob
t−1

+sign
(
y2t − (ϕ̂robt )>θ̂

rob
t−1

)
(u1−α/2)

2

√[
(ϕ̂robt )>θ̂

rob
t−1

]2
+ (ψ̂

rob
t )>P̂

rob
t−1ψ̂

rob
t /λt

for
∣∣∣y2t − (ϕ̂robt )>θ̂

rob
t−1

∣∣∣ > (u1−α/2)
2

√[
(ϕ̂robt )>θ̂

rob
t−1

]2
+ (ψ̂

rob
t )>P̂

rob
t−1ψ̂

rob
t /λt,

y2t otherwise.

(9f)

Note that ŷrobt = sign (yt)
√

(ŷrobt )2 and that u1−α/2 denotes the corresponding quan-
tile of the standard normal distribution, where one usually puts α = 0.05. The initial-
ization settings and projection rule (7) remain similar as in the previous section. The
algorithm is based on the robustified version of Kalman filter derived in [13] (see Ap-
pendix) which is applied to the GARCH models written in the form (5). The assumption
of normality can be replaced by other distributions.

Parallelly one can construct the robust recursive prediction of volatility, e. g. the
one-step ahead prediction has the form (compare with (4)):

(σ̂robt+1|t)
2 = ω̂robt +

p∑
i=1

α̂robit (ŷrobt+1−i)
2 +

q∑
j=1

β̂jt(σ̂
rob
t+1−j)

2. (10)
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A theoretical analysis of the introduced algorithm can follow the general schemes
considered by [42]; it is rather technical and uses instruments known mainly in the
ordinary differential equation theory. Under the corresponding (mostly technical) gen-
eral assumptions, it can be shown that the estimated parameters converge to their true
counterparts. Additionally, they are asymptotically normally distributed (consult [42]).

4. SIMULATIONS

The suggested procedure (9) has been studied by means of simulations {y∗t } using seven
simulation scenarios described in Table 4:

y∗t = yt + δt, t = 1, . . . , T, T = 20000, (11a)

yt = σtεt, σ
2
t = 0.0001 + 0.05y2

t−1 + 0.94σ2
t−1, εt ∼ i.i.d. N(0, 1), (11b)

where the term δt represents the additive outlier. According to Table 4, this simula-
tion study covers various ways of contamination of the generic processes in the first
scenario (Model 0) without outliers (e. g., the t-distribution with the degree of freedom
one denoted as t(1) represents the contamination by outliers with heavy tails). For each
scenarios one has simulated 1000 realizations of length 20000 and applied the robust
recursive estimation procedure (9) with the same initialization settings and projection
rule (7) (in particular, α = 0.05, δ̃1 = δ̃2 = 10−9, and ∆̃1 = 102). The simulation results
for innovative outliers (IO) are not presented in this paper.

Figures 1 – 7 present the corresponding probability densities of estimated parameters
ω = 0.0001, α1 = 0.05, β1 = 0.94 in time t = 20000 calculated over 1000 realizations
(see also the median absolute deviations MAD in Table 2). Moreover, Figure 8 shows
the time records of medians of estimated parameters ω, α1, β1 in Model 1 (i. e., the
single additive outlier of size 10 in time t = 10000) before and after the robustification.
Figure 9 presents the corresponding boxplots in times t = 5000, 10000, 20000 for this
model.

Similar results have been obtained for other configurations of true parameters (the
presented case corresponds to the extreme situation close to the border of model stabil-
ity). In general, the simulations show that the robustification improves the behaviour
of suggested recursive procedure in a substantial way.

Model 0 δt = 0 for all t

Model 1 δt = 10× It, It =

{
1, t = 10000
0, otherwise

Model 2 δt = 10× It, It ∼ i.i.d. Alt
(

1
20000

)
for all t

Model 3 δt = 10× It, It ∼ i.i.d. Alt
(

4
20000

)
for all t

Model 4 δt = st × It, It ∼ i.i.d. Alt
(

4
20000

)
, st ∼ i.i.d. t(1) for all t

Model 5 δt = st × It, It ∼ i.i.d. Alt
(

20
20000

)
, st ∼ i.i.d. t(1) for all t

Model 6 δt = st × It, It ∼ i.i.d. Alt
(

200
20000

)
, st ∼ i.i.d. t(1) for all t

Tab. 1. Various simulation scenarios for additive outliers in (11)

[Alt ∼ the alternative distribution, t(1) ∼ the Student t1-distribution].
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[non-robustified estimates ∼ dashed lines, robustified estimates ∼ solid lines].
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Model 0 ω̂t ω̂robt α̂1t α̂rob1t β̂1t β̂rob1t

5,000 0.00003 0.00004 0.00635 0.00636 0.00940 0.00939
10,000 0.00002 0.00002 0.00343 0.00341 0.00473 0.00480
20,000 0.00001 0.00001 0.00240 0.00238 0.00292 0.00292

Model 1 ω̂t ω̂robt α̂1t α̂rob1t β̂1t β̂rob1t

5,000 0.00004 0.00004 0.00681 0.00673 0.01032 0.01022
10,000 0.00002 0.00002 0.00499 0.00397 0.00654 0.00497
20,000 0.00008 0.00001 0.01435 0.00227 0.02334 0.00298

Model 2 ω̂t ω̂robt α̂1t α̂rob1t β̂1t β̂rob1t

5,000 0.00005 0.00004 0.00885 0.00688 0.01281 0.00989
10,000 0.00003 0.00002 0.00732 0.00371 0.00989 0.00478
20,000 0.00007 0.00001 0.01267 0.00229 0.01972 0.00303

Model 3 ω̂t ω̂robt α̂1t α̂rob1t β̂1t β̂rob1t

5,000 0.00022 0.00004 0.02682 0.00694 0.05244 0.01073
10,000 0.00027 0.00002 0.03274 0.00363 0.06364 0.00527
20,000 0.00065 0.00001 0.04147 0.00235 0.08291 0.00321

Model 4 ω̂t ω̂robt α̂1t α̂rob1t β̂1t β̂rob1t

5,000 0.00007 0.00004 0.01030 0.00703 0.01660 0.01101
10,000 0.00006 0.00002 0.00948 0.00370 0.01441 0.00523
20,000 0.00009 0.00001 0.01221 0.00242 0.02092 0.00318

Model 5 ω̂t ω̂robt α̂1t α̂rob1t β̂1t β̂rob1t

5,000 0.00058 0.00007 0.03504 0.00765 0.09018 0.01327
10,000 0.00077 0.00004 0.04377 0.00413 0.09973 0.00619
20,000 0.00098 0.00003 0.04786 0.00280 0.10609 0.00378

Model 6 ω̂t ω̂robt α̂1t α̂rob1t β̂1t β̂rob1t

5,000 0.00630 0.00050 0.05000 0.01550 0.25070 0.04070
10,000 0.00660 0.00040 0.05000 0.01440 0.17110 0.02000
20,000 0.00630 0.00020 0.05000 0.01710 0.08070 0.01230

Tab. 2. Median absolute deviations MAD of estimated parameters

[calculated in times t = 5000, 10000, 20000 over 1000 realizations].
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Fig. 9. Boxplots of estimated parameters in Model 1 in times

t = 5000, 10000, 20000 before and after robustification.
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5. REAL DATA APPLICATIONS

Figure 10 plots the log returns of the daily currency rate CHF/EUR for the period
January 2000 - May 2017 which shows an apparent burst of volatility in January 2015
(the initial segment of the data is not displayed due to initialization of the recursive
algorithm: the recursive estimates generally tend to be volatile here).1 It has a clear
explanation, i. e. the end of currency regulation of CHF by the Swiss National Bank
since 2015: ”CHF was pegged to the Euro for around two years, with the minimum rate
(or the floor) at 1.2. As of today, this link has been removed (consequence of recent
appreciation of USD against EUR and of CHF weakening against USD).”2

2005 2010 2015

−0
.1

5
−0

.1
0

−0
.0

5
0.

00
0.

05
0.

10
0.

15

Date

Fig. 10. Log returns of daily currency rate CHF/EUR for the period

January 2002 – May 2017.

It was natural to apply the algorithm (9) to handle this time series. This estimation
scheme has indeed identified the value of January 2015 as an outlier and corrected it in
a proper way. Figure 11 with the recursively estimated parameters of the GARCH(1,1)
model displays that one should not ignore the presence of outlier; otherwise there occurs
a jump in the estimated parameters. Moreover, another legitimate reason for the ap-
plication of the algorithm (9) is that it enables the adaptation in the case of parameter
changes. Similarly, the one-day-ahead predictions of volatility (see (4) and (10)) would
be out of reality without the robustification (see Figure 12). The estimation algorithm
(9) has been applied to forty currency rates */EUR (daily log returns) and in some of
them the declared robustification has been activated (see Table 3). The results for these
daily log returns are not reported here since the figures are just of the type presented
herein.

1https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_

rates/html/index.en.html, last accessed 9th June 2017
2https://www.currencyfair.com/blog/what-happened-to-the-swiss-franc-chf-today/, last ac-

cessed 31st July 2017

https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/index.en.html
https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/index.en.html
https://www.currencyfair.com/blog/what-happened-to-the-swiss-franc-chf-today/
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Fig. 11. Time records of estimated parameters for daily log returns

of the currency rate CHF/EUR [non-robustified estimates ∼ dashed lines,

robustified estimates ∼ solid lines].
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Fig. 12. One-day-ahead predictions of volatility for daily log returns

of the currency rate CHF/EUR [non-robustified estimates ∼ dashed line,

robustified estimates ∼ solid line].
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Currency Months of identified outliers
USD 1999-07-26
HUF 2003-01-17
ROL 2000-01-04
RON 2006-05-15
CHF 2015-01-15
ISK 2008-11-06
TRL 2001-02-22
TRY 2006-05-12
CAD 2000-01-04
CNY 2006-01-23
MYR 2006-04-18
MYR 2008-03-17
MYR 2008-03-20
NZD 1999-08-25

Tab. 3. Times of activation of robustification in the algorithm (9) [for

some daily currency rates */EUR].

6. CONCLUSION

The robust recursive algorithm for the estimation parameters and the corresponding
volatility prediction of the GARCH model suggested in this paper seems to be effective
for financial data, especially for contaminated log returns in the risk control and reg-
ulation when the prediction of volatility is the main concern. The one-stage recursive
estimation procedure introduced for the GARCH process in [32] is robustified in such a
way that it can distinguish and correct outlaid bursts of volatility. The simulations and
real data examples also demonstrate that the suggested procedure enables corresponding
adaptations in the case parameter changes.

APPENDIX

The robustified recursive algorithm for estimation of GARCH model (refer to (9)) is
based on the robustified version of Kalman filter derived in [13] with the aim to robustify
the classical exponential smoothing in time series analysis:

Let us consider the dynamic linear model (DLM) in the form:

xt+1 = xt, (A1a)

yt = h>t xt + νt, νt ∼ i.i.d. N(0, w2
t ), (A1b)

where xt is the state vector in the signal equation (A1a) and ht is the vector of coefficients
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in the observation equation (A1b). Then the classical Kalman filter recursion is:

x̂t = x̂t−1 +
P t−1ht

h>t P t−1ht + w2
t

(
yt − h>t x̂t−1

)
, (A2a)

P t = P t−1 −
P t−1hth

>
t P t−1

h>t P t−1ht + w2
t

, (A2b)

which can be rewritten by means of the filter gain kt as

x̂t = x̂t−1 + kt

(
yt − h>t x̂t−1

)
, (A3a)

P t = P t−1 − kth>t P t−1, (A3b)

kt =
P t−1ht

h>t P t−1ht + w2
t

. (A3c)

The robust version according to [13] replaces (A3a) by

x̂robt = x̂robt−1 + ktΨ(et), (A4)

i. e. the prediction error

et = yt − ŷt+1|t = yt − h>t x̂t−1 ∼ N(0,h>t P t−1ht + w2
t ) (A5)

is trimmed by means of the robustifying function Ψ(·) defined as

Ψ(et) =

{
sign (et)u1−α/2

√
h>t P t−1ht + w2

t for |et| > u1−α/2

√
h>t P t−1ht + w2

t ,

et otherwise.
(A6)

For instance, if applying this scheme to the classical model AR(1) then the strong
consistency of the recursive formulas for the robust estimation of the autoregressive
parameter can be shown (see [14]).
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[10] A. Charles and O. Darné: Outliers and GARCH models in financial data. Econom. Lett.
86 (2005), 347–352. DOI:10.1016/j.econlet.2004.07.019

[11] T. Cipra: Robust exponential smoothing. J. Forecast. 11 (1992), 57–69.
DOI:10.1002/for.3980110106

[12] T. Cipra: Robust recursive estimation in nonlinear time-series. Comm. Statist. Theory
Methods 27 (1998), 1071–1082. DOI:10.1080/03610929808832146

[13] T. Cipra and T. Hanzák: Exponential smoothing for time series with outliers. Kybernetika
47 (2011), 165–178.

[14] T. Cipra and R. Romera: Robust Kalman filter and its applications in time series analysis.
Kybernetika 27 (1991), 481–494.

[15] R. Crevits and C. Croux: Forecasting using robust exponential smoothing with damped
trend and seasonal components. Working paper KBI 1714, KU Leuven, Leuven 2016
(DOI:10.13140RG.2.2.11791.18080).

[16] C. Croux and S. Gelper: Computational aspects of robust Holt-Winters smoothing based
on M-estimation. Appl. Math. 53 (2008), 163–176. DOI:10.1007/s10492-008-0002-4

[17] C. Croux, S. E. C. Gelper, and K. Mahieu: Robust exponential smoothing of
multivariate time series. Comput. Statist. Data Anal. 54 (2010), 2999–3006.
DOI:10.1016/j.csda.2009.05.003

[18] R. Dalhaus and S. S. Rao: A recursive online algorithm for the estimation of time-varying
ARCH parameters. Bernoulli 13 (2007), 389–422. DOI:10.3150/07-bej5009

[19] R. F. Engle: Autoregressive conditional heteroskedasticity with estimates of the variance
of United Kingdom inflation. Econometrica 50 (1982), 987–1007. DOI:10.2307/1912773

[20] B. Eraker, M. Johannes, and N. Polson: The impact of jumps in volatility and returns. J.
Finance 58 (2003), 1269–1300. DOI:10.1111/1540-6261.00566

[21] A. Fasso: Recursive least squares with ARCH errors and nonparametric modelling of
environmental time series. Working Paper 6, University of Bergamo 2009.
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e-mail: cipra@karlin.mff.cuni.cz

Radek Hendrych, Dept. of Probability and Mathematical Statistics, Faculty of Mathe-
matics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8. Czech Republic.
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