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Abstract. Let σ = {σi : i ∈ I} be some partition of the set of all primes P, G be a finite
group and σ(G) = {σi : σi ∩π(G) 6= ∅}. A set H of subgroups of G is said to be a complete
Hall σ-set of G if every non-identity member of H is a Hall σi-subgroup of G and H contains
exactly one Hall σi-subgroup of G for every σi ∈ σ(G). G is said to be σ-full if G possesses
a complete Hall σ-set. A subgroup H of G is σ-permutable in G if G possesses a complete
Hall σ-set H such that HA

x= A
x
H for all A ∈ H and all x ∈ G. A subgroup H of G is

σ-permutably embedded in G if H is σ-full and for every σi ∈ σ(H), every Hall σi-subgroup
of H is also a Hall σi-subgroup of some σ-permutable subgroup of G.
By using the σ-permutably embedded subgroups, we establish some new criteria for

a group G to be soluble and supersoluble, and also give the conditions under which a normal
subgroup of G is hypercyclically embedded. Some known results are generalized.

Keywords: finite group; σ-subnormal subgroup; σ-permutably embedded subgroup;
σ-soluble group; supersoluble group
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1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group.

If n is an integer, then the symbol π(n) denotes the set of all primes dividing n; as

usual, π(G) = π(|G|), the set of all primes dividing the order of G.

In what follows, σ = {σi : i ∈ I} is some partition of all primes P, that is, P =
⋃

i∈I

σi

and σi ∩ σj = ∅ for all i 6= j. We write σ(G) = {σi : σi ∩ π(G) 6= ∅}.

Following [20], [29], [30], G is said to be σ-primary if |σ(G)| 6 1; σ-soluble if every

chief factor of G is σ-primary. A set H of subgroups of G is said to be a complete
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Hall σ-set of G if every non-identity member of H is a Hall σi-subgroup of G for

some σi and H contains exactly one Hall σi-subgroup for every σi ∈ σ(G). G is said

to be σ-full if G possesses a complete Hall σ-set; σ-nilpotent if G has a complete Hall

σ-set H = {H1, H2, . . . , Ht} such that G = H1×H2× . . .×Ht. Clearly, a σ-nilpotent

group is σ-soluble. G is said to be a σ-full group of Sylow type if every subgroup

of G is a Dσi
-group for all σi ∈ σ(G). A subgroup H of G is said to be σ-subnormal

in G if there exists a subgroup chain H = H0 6 H1 6 . . . 6 Hn = G such that

either Hi−1 is normal in Hi or Hi/(Hi−1)Hi
is σ-primary for all i = 1, . . . , n.

Let L be some nonempty set of subgroups of G and K 6 G. Following [29],

a subgroup H of G is called L-permutable if HA = AH for all A ∈ L; LK -permutable

if HAx = AxH for all A ∈ L and all x ∈ K. In particular, a subgroup H of G is

σ-permutable in G if G has a complete Hall σ-set H such that H is HG-permutable.

It is well known that embedded subgroups play an important role in the theory of

finite groups. For example, a subgroup H of G is said to be normally embedded in G

(see [12], page 250) if for each prime p dividing the order of H , a Sylow p-subgroup

of H is also a Sylow p-subgroup of some normal subgroup of G. A subgroup H of G

is said to be permutably embedded in G (see [5]) if for each prime p dividing the order

of H , a Sylow p-subgroup of H is also a Sylow p-subgroup of some permutable sub-

group of G. (Note that a subgroupH of G is said to be permutable in G if HS = SH

for any subgroup S of G.) A subgroup H of G is said to be s-permutably embedded

in G (see [8]) if for each prime p dividing the order of H , a Sylow p-subgroup of H

is also a Sylow p-subgroup of some s-permutable subgroup of G. (Note that a sub-

group H of G is said to be s-permutable in G if HP = PH for any Sylow subgroup P

of G.) A subgroup H of G is σ-permutably embedded in G (see [19]) if H is σ-full

and for every σi ∈ σ(H), every Hall σi-subgroup of H is also a Hall σi-subgroup of

some σ-permutable subgroup of G. By using the above embedded subgroups, the

researchers have obtained a series of interesting results (see, for example, [3], [5], [8],

[19], [24], [31]).

Some properties of σ-permutably embedded subgroups were analysed in [19]. In

this paper, we continue the research of σ-permutably embedded subgroups.

We first obtain the following result.

Theorem 1.1. Let G be a σ-full group of Sylow type and H = {H1, H2, . . . , Ht}

be a complete Hall σ-set of G such that Hi is a supersoluble σi-subgroup for all

i = 1, . . . , t. If every maximal subgroup of non-cyclic Hi is σ-permutably embedded

in G, then G is supersoluble.

Recall that a normal subgroup E of G is called hypercyclically embedded in G

([25], page 217) if every chief factor of G below E is cyclic. Hypercyclically embedded

subgroups play an important role in the theory of soluble groups (see [6], [9], [15], [25])
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and the conditions under which a normal subgroup is hypercyclically embedded in G

were found by many authors (see books [6], [9], [15], [25] and, for example, the recent

papers [16], [18], [23], [27], [28], [32]).

In this paper, we also get the following results in this line researches.

Theorem 1.2. Let G be a σ-full group of Sylow type and H = {H1, H2, . . . , Ht}

be a complete Hall σ-set of G such that Hi is a nilpotent σi-subgroup for all i =

1, . . . , t. Let E be a normal subgroup of G. If every maximal subgroup of any non-

cyclic Hi ∩ E is σ-permutably embedded in G, then E is hypercyclically embedded

in G.

Theorem 1.3. Let G be a σ-full group of Sylow type and H = {H1, H2, . . . , Ht}

be a complete Hall σ-set of G such that Hi is a supersoluble σi-subgroup for all

i = 1, . . . , t. Let E be a normal subgroup of G. If every cyclic subgroup H of any

non-cyclic Hi ∩ E of prime order and order 4 (if the Sylow 2-subgroup of E is non-

abelian and H � Z∞(G)) is σ-permutably embedded in G, then E is hypercyclically

embedded in G.

In Section 3 and Section 4 we give the proofs of Theorems 1.1, 1.2 and 1.3. In

Section 5 we will give some applications of our results.

All unexplained terminologies and notations are standard. The reader is referred

to [12], [15] if necessary.

2. Preliminaries

We use Sσ to denote the class of all σ-soluble groups and Fσ(G) to denote the

product of all normal σ-nilpotent subgroups of G.

Lemma 2.1 ([29], Lemma 2.1). The class Sσ is closed under taking direct prod-

ucts, homomorphic images and subgroups. Moreover, any extension of a σ-soluble

group by a σ-soluble group is a σ-soluble group as well.

Lemma 2.2 ([29], Lemma 2.6 (11)). Let G be a σ-full group and A be a σ-

subnormal subgroup of G. If A is σ-nilpotent, then A is contained in Fσ(G).

Lemma 2.3 ([19], Lemma 2.6 (i)). Fσ(G) is σ-nilpotent.

Lemma 2.4 ([29], Lemma 2.8). Let H , K and N be subgroups of G. Let H =

{H1, H2, . . . , Ht} be a complete Hall σ-set of G and L = HK . Suppose that H is

L-permutable and N is normal in G.
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(1) The subgroup HN/N is L∗-permutable, where

L∗ = {H1N/N, . . . , HtN/N}KN/N .

In particular, if H is σ-permutable in G, then HN/N is σ-permutable in G/N .

(2) If G is a σ-full group of Sylow type and E/N is a σ-permutable subgroup of

G/N , then E is σ-permutable in G.

Lemma 2.5 ([29], Theorem B). Let H be a subgroup of a σ-full group G. If H is

σ-permutable in G, then H is σ-subnormal in G and HG/HG is σ-nilpotent.

Lemma 2.6. Let H 6 K and N be subgroups of G. Suppose that N is normal

in G.

(1) If G is a σ-full group of Sylow type and H is σ-permutably embedded in G,

then H is σ-permutably embedded in K.

(2) If H is σ-permutably embedded in G, then HN/N is σ-permutably embedded

in G/N .

(3) If G is a σ-full group of Sylow type and H/N is σ-permutably embedded in

G/N , then H is σ-permutably embedded in G.

P r o o f. (1)–(2) can be found in [19], Lemma 2.2.

(3) Let Hi be a Hall σi-subgroup of H , where σi ∈ σ(H). Then HiN/N is a Hall

σi-subgroup of H/N . By the hypothesis, there exists a σ-permutable subgroup T/N

of G/N such that HiN/N is a Hall σi-subgroup of T/N . Then T is σ-permutable

in G by Lemma 2.4 (2). Since N 6 H , HiN 6 H and so Hi is a Hall σi-subgroup

of HiN . It follows that |T : Hi| = |T : HiN ||HiN : Hi| is a σ′

i-number. Hence, Hi is

a Hall σi-subgroup of T . This shows that H is σ-permutably embedded in G. �

Following [29], [20], we use Oσi(G) to denote the subgroup of G generated by all

σ′

i-subgroups of G, and Oσi
(G) and Oσ′

i
(G) to denote the subgroup of G generated

by all normal σi-subgroups and normal σ
′

i-subgroups of G, respectively.

Lemma 2.7 ([29], Lemma 3.1). Let H be a σ1-subgroup of a σ-full group G.

Then H is σ-permutable in G if and only if Oσ1 (G) 6 NG(H).

Let P be a p-group. If P is not a non-abelian 2-group, then we use Ω(P ) to

denote Ω1(P ). Otherwise, Ω(P ) = Ω2(P ).

Lemma 2.8 ([17], Lemma 4.3). Let C be a Thompson critical subgroup of

a p-group P (see [13], page 185).

(1) If p is odd, then the exponent of Ω(C) is p.

(2) If P is a non-abelian 2-group, then the exponent of Ω(C) is 4.
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The following lemma is a corollary of [17], Lemma 4.4 and [11], Lemma 2.12.

Lemma 2.9. Let P be a normal p-subgroup of G and C be a Thompson critical

subgroup of P . If either P/Φ(P ) is hypercyclically embedded in G/Φ(P ) or Ω(C)

is hypercyclically embedded in G, then P is hypercyclically embedded in G.

Lemma 2.10 ([28], Theorem C). Let E be a normal subgroup of G. If F ∗(E) is

hypercyclically embedded in G, then E is hypercyclically embedded in G.

In this lemma, F ∗(E) is the generalized Fitting subgroup of E, that is, the largest

normal quasinilpotent subgroup of E (see [22], Chapter X).

Recall that a class of groups F is said to be a formation provided that (i) if

G ∈ F and N E G, then G/N ∈ F, and (ii) if G/M ∈ F and G/N ∈ F, then

G/(M ∩ N) ∈ F for any normal subgroup M,N of G. A formation F is said to be

saturated if G/Φ(G) ∈ F implies that G ∈ F.

Lemma 2.11 ([26], Lemma 2.16 or [15], Theorem 1.2.7 (b)). Let F be a saturated

formation containing all supersoluble groups and E be a normal subgroup of G such

that G/E ∈ F. If E is cyclic, then G ∈ F.

3. Proofs of Theorems 1.1 and 1.2

The following fact is one of the main steps in the proofs of Theorems 1.1 and 1.2.

Proposition 3.1.LetG be a σ-full group of Sylow type andH={H1, H2, . . . , Ht}

be a complete Hall σ-set of G such thatHi is a soluble σi-subgroup for all i = 1, . . . , t,

and let the smallest prime p of π(G) belong to σ1. If every maximal subgroup of H1

is σ-permutably embedded in G, then G is soluble.

P r o o f. Assume that this is false and let (G,H1) be a counterexample with min-

imal |G|+ |H1|. Then p = 2 ∈ π(H1) by the Feit-Thompson theorem.

(1) G is not σ-soluble, and so |σ(G)| > 1. Assume that G is σ-soluble. Then for

every chief factor, H/K of G is σ-primary, that is, H/K is a σi-group for some i.

But since Hi is soluble, H/K is an elementary abelian group. It follows that G is

soluble. This contradiction shows that (1) holds.

(2) Oσ1
(G) = 1. Assume that Oσ1

(G) 6= 1. Let N = Oσ1
(G). If N = H1,

then G/N is soluble by Feit-Thompson theorem, and so G is σ-soluble, contrary to

claim (1). Hence N 6= H1, and so H1/N is a non-identity Hall σ1-subgroup of G/N .

Let M/N be a maximal subgroup of H1/N . Then M is a maximal subgroup of H1.

By the hypothesis and Lemma 2.6 (2), M/N is σ-permutably embedded in G/N .
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Then, clearly, the hypothesis holds for (G/N,H1/N). Hence G/N is soluble by the

choice of (G,H1). Consequently, G is σ-soluble, which contradicts claim (1). Hence

we have (2).

(3) Oσ′

1
(G) = 1. Assume that K = Oσ′

1
(G) 6= 1. Then H1K/K is a Hall

σ1-subgroup of G/K. Let W/K be a maximal subgroup of H1K/K. Then W =

(H1 ∩W )K is a maximal subgroup of H1K. If H1 ∩W is not a maximal subgroup

of H1, then there exists a subgroup E of H1 such that H1 ∩W < E < H1. Since

(|H1|, |K|) = 1, W < EK < H1K. This contradiction shows that H1 ∩W is a max-

imal subgroup of H1. By the hypothesis and Lemma 2.6 (2), W/K is σ-permutably

embedded in G/K. This shows that (G/K,H1K/K) satisfies the hypothesis, so

G/K is soluble by the choice of (G,H1). But since K is soluble by Feit-Thompson

theorem, it follows that G is soluble. This contradiction shows that (3) holds.

(4) Let R be a minimal normal subgroup of G. Then R is not σ-soluble and

G/R is soluble. Assume that R is σ-soluble. Then R is a σi-group for some i.

Hence, R 6 Oσ1
(G) or R 6 Oσ′

1
(G), which contradicts claim (2) or (3). Hence,

R is not σ-soluble. By the hypothesis and Lemma 2.6 (1), it is easy to see that

(RH1, H1) satisfies the hypothesis. If RH1 < G, then RH1 is soluble by the choice

of G. It follows that R is soluble, a contradiction. Hence, G = RH1, and so

G/R = H1R/R ∼= H1/(H1 ∩R) is soluble since H1 is soluble.

(5) R is the unique minimal normal subgroup of G and Fσ(G) = 1. This directly

follows from claim (4).

(6) Final contradiction. Let L be any maximal subgroup ofH1. By the hypothesis,

there exists a σ-permutable subgroup T of G such that L is a Hall σ1-subgroup of T .

If TG = 1, then T is σ-nilpotent and σ-subnormal in G by Lemma 2.5. Then

by Lemma 2.2 and claim (5), we get that T 6 Fσ(G) = 1. This implies that

L = 1, and so |G| = 2n, where n is an odd number. It follows that G is soluble,

a contradiction. Hence, TG 6= 1, and so R 6 T by claim (5). Then T > RL. Hence,

L = T ∩ H1 > RL ∩ H1 = (R ∩ H1)L for any maximal subgroup L of H1. This

implies that R ∩ H1 6 Φ(H1). Then by [21], Lemma IV.4.6, there exists a normal

subgroup M of R such that R/M is a σ1-group and |R ∩ H1| | |R/M |. It follows

that Oσ1 (R) 6 M . Since Oσ1 (R) charR E G, we have Oσ1 (R) E G, so Oσ1 (R) = 1

or R by claim (5). If Oσ1 (R) = 1, then R 6 H1, witch contradicts claim (2). Hence

Oσ1 (R) = R, and thereforeM = R. Moreover, since |R∩H1| | |R/M |, we obtain that

R∩H1 = 1. But clearly, R∩H1 is a Hall σ1-subgroup of R. Thus, R is a σ
′

1
-subgroup,

so R 6 Oσ′

1
(G) = 1, contrary to claim (4). This completes the proof. �

P r o o f of Theorem 1.1. Assume that this is false and let G be a counterexample

of minimal order. Then: (1) G is soluble. By Feit-Thompson theorem, we may

assume that 2 | |G|. Without loss of generality, we may assume that 2 ∈ π(H1).
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If H1 is cyclic, then G has a cyclic Sylow 2-subgroup. Hence G is 2-nilpotent by [21],

Theorem IV.2.8, and so G is soluble. If H1 is non-cyclic, then G is soluble by

Proposition 3.1.

(2) Let R be a minimal normal subgroup of G. Then G/R is supersoluble. It

is clear that H = {H1R/R,H2R/R, . . . , HtR/R} is a complete Hall σ-set of G/R

and HiR/R ∼= Hi/Hi ∩R is supersoluble. By claim (1), R is an elementary abelian

p-group for some prime p. Without loss of generality, we may assume that R 6 H1.

Assume that H1/R is non-cyclic. Then H1 is non-cyclic. Let M/R be a maximal

subgroup of H1/R. Then M is a maximal subgroup of H1. By the hypothesis

and Lemma 2.6 (2), M/R is σ-permutably embedded in G/R. Now let Mi/R be

a maximal subgroup of HiR/R, where i 6= 1, and suppose that HiR/R is non-cyclic.

Then Mi = (Hi ∩Mi)R is a maximal subgroup of HiR. With the same discussion

as for claim (3) in the proof of Proposition 3.1, we have that Hi ∩Mi is a maximal

subgroup of Hi. Then by the hypothesis and Lemma 2.6 (2), Mi/R is σ-permutably

embedded in G/R. This shows that the hypothesis holds for G/R. The choice of G

implies that G/R is supersoluble.

(3) R is the unique minimal normal subgroup of G, Φ(G) = 1, CG(R) = R, R is

an elementary abelian p-group for some prime p and |R| > p. This directly follows

from claims (1), (2) and [12], Theorem A.15.2.

Without loss of generality, we may assume that p ∈ π(H1). Then R 6 H1.

(4) Final contradiction. Since Φ(G) = 1, R � Φ(H1) by [21], Lemma III.3.3.

Hence, there exists a maximal subgroupK ofH1 such thatH1 = RK. Let E = R∩K.

By claim (3), we have that E E H1. Since H1 is supersoluble, |R : E| = |RK : K| =

|H1 : K| is a prime. Hence, E is a maximal subgroup of R, and so E 6= 1 by

claim (3). Since R is not cyclic by claim (3) and R 6 H1, H1 is non-cyclic. Then

by the hypothesis, there exists a σ-permutable subgroup T of G such that K is

a Hall σ1-subgroup of T . If TG = 1, then T is σ-nilpotent and σ-subnormal in G by

Lemma 2.5. It follows from Lemma 2.2 that T 6 Fσ(G). But since R 6 Fσ(G) and

CG(R) = R, we have that T is a σ1-group by Lemma 2.3, so T = K. It follows from

Lemma 2.7 that Oσ1(G) 6 NG(K). Hence Oσ1 (G) 6 NG(K ∩ R) = NG(E). This

implies that E E G, which contradicts the minimality of R. Hence TG 6= 1. Then by

claim (3), R 6 TG 6 T . Consequently, K < H1 6 T . But K is a Hall σ1-subgroup

of T , a contradiction. This completes the proof. �

P r o o f of Theorem 1.2. Assume that this is false and let (G,E) be a coun-

terexample with minimal |G| + |E|. Then: (1) E is supersoluble. It is clear that

H∗ = {H1∩E,H2∩E, . . . , Ht∩E} is a complete Hall σ-set of E, Hi∩E is nilpotent

and E is a σ-full group of Sylow type. By Lemma 2.6 (1) and Theorem 1.1, we get

that E is supersoluble.
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(2) Let R be a minimal normal subgroup of G contained in E. Then R is an

elementary abelian p-group for some prime p, E/R is hypercyclically embedded in

G/R and R is non-cyclic. By claim (1), R is an elementary abelian p-group for

some prime p. Without loss of generality, we may assume that R 6 H1. Clearly,

H = {H1/R,H2R/R, . . . , HtR/R} is a complete Hall σ-set of G/R and HiR/R ∼=

Hi/(Hi ∩R) is nilpotent. Assume that (H1/R)∩ (E/R) is non-cyclic. Then H1 ∩E

is non-cyclic. Let M/R be a maximal subgroup of (H1/R) ∩ (E/R). Then M is

a maximal subgroup of H1 ∩E. Hence, M/R is σ-permutably embedded in G/R by

the hypothesis and Lemma 2.6 (2). Now assume that Mi/R is a maximal subgroup

of some non-cyclic (HiR/R)∩ (E/R), where i 6= 1. Then HiR ∩E is non-cyclic and

Mi = (Hi∩Mi)R is a maximal subgroup ofHiR∩E. With the same discussion as for

claim (3) in the proof of Proposition 3.1, we have that Hi∩Mi is a maximal subgroup

of Hi ∩ E. Then by the hypothesis and Lemma 2.6 (2), Mi/R is σ-permutably

embedded in G/R. This shows that (G/R,E/R) satisfies the hypothesis. Hence

E/R is hypercyclically embedded in G/R by the choice of (G,E).

(3) R is the unique minimal normal subgroup of G contained in E. Let L be

a minimal normal subgroup of G contained in E such that L 6= R. Then E/L is also

hypercyclically embedded in G/L by claim (2). It follows that RL/L is hypercycli-

cally embedded in G/L. Then |R| = p for RL/L ∼= R, contrary to claim (2). Hence

we have (3).

Without loss of generality, we may assume that p ∈ π(H1).

(4) E is a p-group, and so E 6 H1. Let Q be a Sylow q-subgroup of E, where q

is the largest prime belong to π(E). Since E is supersoluble by claim (1), we obtain

that Q char E E G and so Q E G. Hence, R 6 Q, p = q and F (E) = Q is a Sylow

p-subgroup of E by claim (3). It follows from [14], Theorem 1.8.18, that CE(Q) 6 Q.

Moreover, since Q 6 H1∩E and H1 is nilpotent, we obtain that Q = H1∩E. Hence,

H1∩Q = Q = H1∩E and Hi∩Q = 1 for all i = 2, . . . , t. This implies the hypothesis

holds for (G,Q). Assume that Q < E. Then Q is hypercyclically embedded in G

by the choice of (G,E). It follows that R is hypercyclically embedded in G, so R is

cyclic, contrary to claim (2). Hence E = Q is a p-group, and so E 6 H1.

(5) Φ(E) = 1, so E is an elementary abelian p-group. Assume that Φ(E) 6= 1.

Then R 6 Φ(E) by claim (3). Hence E/Φ(E) is hypercyclically embedded in G/Φ(E)

by claim (2) and [15], Theorem 1.2.6 (d). It follows from claim (4) and Lemma 2.9

that E is hypercyclically embedded in G. This contradiction shows that (5) holds.

(6) Final contradiction. Let R1 be a maximal subgroup of R such that R1 E H1.

Then |R1| > 1 by claim (3). By claim (5), there exists a complement S of R in E

(maybe S = 1). Let V = R1S. Then clearly R1 = R ∩ V and V is a maximal

subgroup of E. By the hypothesis and claims (2)–(5), there exists a σ-permutable

subgroup T of G such that V is a Hall σ1-subgroup of T . We show that V is also

18



σ-permutable in G. Let L be a Hall σi-subgroup of G. If i = 1, then V 6 L by

claim (4). This implies that V L = LV . If i 6= 1, then V is a Hall σ1-subgroup

of TL = LT . (Note that since T is σ-permutable in G, TL = LT .) Since E is

normal in G, V is subnormal in G by claim (4), so V is also subnormal in TL.

But as V is a Hall σ1-subgroup of T , V is normal in TL. Hence V L = LV . This

implies that V is σ-permutable in G. Then by Lemma 2.7, Oσ1(G) 6 NG(V ), and so

Oσ1 (G) 6 NG(V ∩R) = NG(R1). Moreover, since R1 E H1, we obtain that R1 E G.

This contradiction completes the proof. �

4. Proof of Theorem 1.3

In order to prove Theorem 1.3, we first prove the following:

Lemma 4.1. Let G be a σ-full group of Sylow type and H = {H1, H2, . . . , Ht}

be a complete Hall σ-set of G such that Hi is a supersoluble σi-subgroup for all

i = 1, . . . , t. Let P be a normal p-group of G and P 6 Hj for some j. If every cyclic

subgroup H of P of prime order and order 4 (if P is a non-abelian 2-group and

H � Z∞(G)) is σ-permutably embedded in G, then P is hypercyclically embedded

in G.

P r o o f. Assume that this is false and let (G,P ) be a counterexample with mini-

mal |G|+ |P |. Without loss of generality, we may assume that j = 1.

(1) Let P/N be a chief factor of G. Then N is hypercyclically embedded in G.

Hence, N is a unique normal subgroup of G such that P/N is a chief factor of G and

|P/N | > p.

It is clear that (G,N) satisfies the hypothesis. Hence, N is hypercyclically em-

bedded in G by the choice of (G,P ). Assume that G has another normal subgroup

R 6= N such that P/R is a chief factor of G. Then R is also hypercyclically embedded

in G. It follows that P/N = RN/N is hypercyclically embedded in G/N . Hence,

P is hypercyclically embedded in G. This contradiction shows that N is a unique

normal subgroup such that P/N is a chief factor of G. It is also clear that |P/N | > p.

(2) The exponent of P is p or 4 (if P is a non-abelian 2-group). Let C be a Thomp-

son critical subgroup of P (see [13], page 185). If Ω(C) < P , then Ω(C) 6 N is hy-

percyclically embedded in G by claim (1). Hence, by Lemma 2.9, P is hypercyclically

embedded in G, a contradiction. Hence, Ω(C) = P , so by Lemma 2.8, the exponent

of P is p or 4 (if P is a non-abelian 2-group).

(3) Final contradiction. Since H1/N is supersoluble and |P/N | > p, H1/N has a

minimal normal subgroupL/N such that 1 6= L/N < P/N and L/N is cyclic. Let x ∈

L \N and H = 〈x〉. Then L = HN and |H | = p or 4 (if P is a non-abelian 2-group)
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by claim (2). If H 6 Z∞(G), then L/N = HN/N 6 Z∞(G)N/N 6 Z∞(G/N)

by [15], Theorem 1.2.6 (d). So Z∞(G/N) ∩ P/N 6= 1. Hence, P/N 6 Z∞(G/N)

since P/N is a chief factor of G. It follows from claim (1) that P is hypercyclically

embedded in G. This contradiction shows thatH � Z∞(G). Then by the hypothesis,

there exists a σ-permutable subgroup T of G such that H is a Hall σ1-subgroup of T .

With a similar argument as for claim (6) in the proof of Theorem 1.2, we have that

H is σ-permutable in G. Then HN/N is σ-permutable in G/N by Lemma 2.4 (1).

Hence, Oσ1(G/N) 6 NG/N (HN/N) by Lemma 2.7. Moreover, since L/N E H1/N ,

we obtain that HN/N = L/N E G/N , and so L E G. This contradiction completes

the proof. �

P r o o f of Theorem 1.3. Assume that this is false and let (G,E) be a counterex-

ample with minimal |G| + |E|. Let P be a Sylow p-subgroup of E, where p is the

smallest prime contained in π(E). Without loss of generality, we may assume that

P 6 H1 ∩ E.

(1) H1 ∩E is non-cyclic. Assume that H1 ∩E is cyclic. Then P is cyclic. By [21],

Theorem IV.2.8, E is p-nilpotent. Let Ep′ be a normal Hall p′-subgroup of E. Then

Ep′ E G. If Ep′ = 1, then E is cyclic, so E is hypercyclically embedded in G,

a contradiction. Hence Ep′ 6= 1. Clearly, Hi ∩ Ep′ = Hi ∩ E for i = 2, . . . , t. This

shows the hypothesis holds for (G,Ep′ ), so Ep′ is hypercyclically embedded in G by

the choice of (G,E). But as E/Ep′
∼= P is cyclic, it follows that E is hypercyclically

embedded in G. This contradiction shows that (1) holds.

(2) If E = P , then E is hypercyclically embedded in G. This directly follows from

Lemma 4.1 and claim (1).

(3) E is not p-nilpotent. Assume that E is p-nilpotent. Let Ep′ be a normal Hall

p′-subgroup of E. Then Ep′ E G. By claim (2), Ep′ 6= 1. Clearly, H = {H1Ep′/Ep′ ,

H2Ep′/Ep′ , . . . , HtEp′/Ep′} is a complete Hall σ-set of G/Ep′ and HiEp′/Ep′
∼=

Hi/Hi ∩ Ep′ is supersoluble.

We claim that the hypothesis holds for (G/Ep′ , E/Ep′). In fact, HiEp′/Ep′ ∩

E/Ep′ = 1 for i = 2, . . . , t and H1Ep′/Ep′ ∩ E/Ep′ = E/Ep′ . It is trivial when

E/Ep′ is cyclic. We may therefore assume that E/Ep′ is non-cyclic. Let H/Ep′ be

a cyclic subgroup of E/Ep′ of order p or 4 (if the Sylow 2-subgroup of E/Ep′ is non-

cyclic and H/Ep′ � Z∞(G/Ep′)). Then by Schur-Zassenhaus theorem, H = Ep′ ⋊L

and without loss of generality, we may assume that L 6 E ∩ H1. Note that if

L 6 Z∞(G), then H/Ep′ = LEp′/Ep′ 6 Z∞(G)Ep′/Ep′ 6 Z∞(G/Ep′) by [15],

Theorem 1.2.6 (d). Hence, L is of order p or 4 (if the Sylow 2-subgroup of E is

non-cyclic and L � Z∞(G)). Then by Lemma 2.6 (2), we see that the hypothesis

holds for (G/Ep′ , E/Ep′). Hence, E/Ep′ is hypercyclically embedded in G/Ep′ by

the choice of (G,E). On the other hand, it is clear that the hypothesis holds for
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(G,Ep′ ), so Ep′ is hypercyclically embedded in G by the choice of (G,E). Therefore

E is hypercyclically embedded in G, a contradiction. Hence we have (3).

(4) Final contradiction. By claim (3), [21], Theorem IV.5.4, and [14], Theorem

3.4.11, E has a p-closed Schmit subgroup S = P1 ⋊ Q, where P1 is a Sylow p-

subgroup of S of exponent p or 4 (if P1 is non-abelian 2-group), Q is a Sylow q-

subgroup of S for some prime q 6= p, P1/Φ(P1) is an S-chief factor, Z∞(S) = Φ(S)

and Φ(S) ∩ P1 = Φ(P1).

We claim that |P1 : Φ(P1)| = p. If q ∈ π(H1), then S is a σ1-group, and so

S 6 Hg
1
for some g ∈ G since G is a σ-full group of Sylow type. Since H1 is

supersoluble and P1/Φ(P1) is an S-chief factor, |P1 : Φ(P1)| = p. Now we consider

that q /∈ π(H1). Assume that there exists a minimal subgroup D/Φ(P1) of P1/Φ(P1)

such that D/Φ(P1) is not σ-permutable in S/Φ(P1). Let x ∈ D\Φ(P1) and U = 〈x〉.

Then D = UΦ(P1) and |U | = p or 4 (if P1 is non-abelian 2-group). If U 6 Z∞(G),

then U 6 Z∞(S) ∩ P1 = Φ(S) ∩ P1 = Φ(P1), a contradiction. Hence U � Z∞(G).

Then by the hypothesis and Lemma 2.6 (1), there exists a σ-permutable subgroup T

of S such that U is a Hall σ1-subgroup of T . Let K be a Hall σi-subgroup of S,

where σi ∩ π(S) 6= ∅. If i = 1, then K = P1, and so UK = KU = P1. If i 6= 1,

then U is a Hall σ1-subgroup of TK = KT . But as D < P1 6 S and p ∈ σ1, we

have that TK < S. Hence, TK is nilpotent, and so U E TK. Thus UK = KU .

This implies that U is σ-permutable in S. It follows from Lemma 2.4 (1) that

D/Φ(P1) = UΦ(P1)/Φ(P1) is σ-permutable in S/Φ(P1). This contradiction shows

that every minimal subgroup of P1/Φ(P1) is σ-permutable in S/Φ(P1). Consequently,

every minimal subgroup of P1/Φ(P1) is s-permutable in S/Φ(P1) since π(S) = {p, q}

and q /∈ π(H1). Then by [26], Lemma 2.12, we also have that |P1 : Φ(P1)| = p.

Hence, P1 is cyclic of exponent p. This implies that P1 is a group of order p. Since

NS(P1)/CS(P1) . Aut(P1) is a group of order p − 1 and p is the smallest prime

contained in π(E), it follows that CS(P1) = NS(P1) = S. Thus Q E S. This

contradiction completes the proof. �

5. Some applications of the results

It is clear that every σ-permutable subgroup of G is σ-permutably embedded

in G. In the case when σ = {{2}, {3}, . . .}, every normal subgroup, every normally

embedded subgroup, every permutable subgroup, every permutably embedded sub-

group, every s-permutable subgroup and every s-permutably embedded subgroup

of G are all σ-permutably embedded in G. However, the converse is not true in

general (see [19], Example 1.2). Hence, the following results directly follow from

Theorem 1.1.
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Corollary 5.1 ([31], Theorem 1). If all maximal subgroups of every Sylow sub-

group of G are normal in G, then G is supersoluble.

Corollary 5.2 ([5], Theorem 4). If all maximal subgroups of every Sylow sub-

group of G are permutably embedded in G, then G is supersoluble.

Corollary 5.3 ([31], Theorem 2). If all maximal subgroups of every Sylow sub-

group of G are s-permutable in G, then G is supersoluble.

Corollary 5.4 ([8], Theorem 1). If all maximal subgroups of every Sylow sub-

group of G are s-permutably embedded in G, then G is supersoluble.

By Theorems 1.2 and 1.3, we may obtain the following results.

Corollary 5.5. Let F be a saturated formation containing all supersoluble groups

and let E be a normal subgroup of G with G/E ∈ F. Suppose that G is a σ-full

group of Sylow type and H = {H1, H2, . . . , Ht} is a complete Hall σ-set of G such

that Hi is a nilpotent σi-subgroup for all i = 1, . . . , t. If every maximal subgroup of

any non-cyclic Hi ∩E is σ-permutably embedded in G, then G ∈ F.

Corollary 5.6. Let F be a saturated formation containing all supersoluble groups

and let E be a normal subgroup of G with G/E ∈ F. Suppose that G is a σ-full

group of Sylow type and H = {H1, H2, . . . , Ht} is a complete Hall σ-set of G such

that Hi is a supersoluble σi-subgroup for all i = 1, . . . , t. If every cyclic subgroup H

of any non-cyclic Hi ∩ E of prime order and order 4 (if the Sylow 2-subgroup of E

is non-abelian and H � Z∞(G)) is σ-permutably embedded in G, then G ∈ F.

Theorems 1.2–1.3 and Corollaries 5.5–5.6 cover a lot of known results, in particular,

[4], Theorem 4.1, [8], Corollary, [2], Theorem 1.3, [3], Theorem 3.3, [10], Theorem 3,

[1], Theorem 3.1, [24], Theorem 3.3 and [7], Theorem 2 and Theorem 5.

Corollary 5.7. Let F be a saturated formation containing all supersoluble groups

and let E be a normal subgroup of G with G/E ∈ F. Suppose that G is a σ-full

group of Sylow type and H = {H1, H2, . . . , Ht} is a complete Hall σ-set of G such

that Hi is a nilpotent σi-subgroup for all i = 1, . . . , t. If every maximal subgroup of

any non-cyclic Hi ∩ F ∗(E) is σ-permutable embedded in G, then G ∈ F.

P r o o f. By the hypothesis and Theorem 1.2, we have that F ∗(E) is hypercycli-

cally embedded in G. Then E is hypercyclically embedded in G by Lemma 2.10.

Therefore G ∈ F by Lemma 2.11. �
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By using a similar argument as in the proof of Corollary 5.7, we deduce the

following corollary from Theorem 1.3.

Corollary 5.8. Let F be a saturated formation containing all supersoluble groups

and let E be a normal subgroup of G with G/E ∈ F. Suppose that G is a σ-full

group of Sylow type and H = {H1, H2, . . . , Ht} is a complete Hall σ-set of G such

that Hi is a supersoluble σi-subgroup for all i = 1, . . . , t. If every cyclic subgroup H

of any non-cyclic Hi ∩ F ∗(E) of prime order and order 4 (if the Sylow 2-subgroup

of F ∗(E) is non-abelian and H � Z∞(G)) is σ-permutably embedded in G, then

G ∈ F.

Corollaries 5.7 and 5.8 also cover many known results, in particular, [24], The-

orem 3.1, Theorem 3.4 and Corollary 3.5, [2], Theorem 1.4, [3], Corollary 3.4, [4],

Theorem 3.2 and [8], Theorem 2.
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