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Abstract. We compute the torsion group explicitly over quadratic fields and number fields
of degree coprime to 6 for a family of elliptic curves of the form E : y2 = x3 + c, where c is
an integer.
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1. Introduction

Let K be a number field and E be an elliptic curve defined over K. Then by the

Mordell-Weil theorem, the group E(K) of K-rational points is a finitely generated

abelian group. We have E(K) ∼= T ⊕Zr for some nonnegative integer r and for some

torsion subgroup T . When K = Q, by Mazur’s theorem, see [9], it is well-known that

the torsion subgroup of E(Q) is either cyclic of order m for some integer 1 6 m 6 10

or m = 12, or of the form Z/2Z⊕ Z/2mZ for some integer 1 6 m 6 4.

If K is a quadratic field, then, by a result of Kamienny in [6] and Kenku, Momose

in [7], the torsion subgroup is isomorphic to one of Z/mZ for 1 6 m 6 18, m 6= 17 or

one of Z/2Z⊕Z/2mZ for 1 6 m 6 6 or one of Z/3Z⊕Z/3mZ for m = 1, 2 or Z/4Z⊕
Z/4Z. Moreover in [5], it has been proved that if we let the quadratic fields vary,

then all of the 26 torsion subgroups described above appear infinitely often. However,

when we fix a quadratic field, it is still unknown which of the 26 listed groups are

actually appearing as torsion subgroup. Najman in [11] and [10] determined all

possible torsion subgroups of E(K) when K is a quadratic cyclotomic field, i.e. K =

Q(i) or Q(
√
−3).
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Recently, Najman in [12] found all possible torsion subgroups of E(K) for cu-

bic field K and Enrique González-Jiménez [4] found all possible torsion subgroups

of E(K) for quintic number field K whenever E is defined over Q.

The subject of torsion points on CM elliptic curves begins with a result of Olson,

see [13]. He showed that the torsion subgroup of E(Q) is isomorphic to one of: the

trivial group, Z/2Z, Z/3Z, Z/4Z, Z/6Z and Z/2Z×Z/2Z for any CM elliptic curve E

over Q. Then in [2], Bourdon, Clark and Stankewicz computed the torsion subgroup

for CM elliptic curves defined over number fields of odd degree.

In this paper, we deal with a family of CM elliptic curves of the form y2 = x3 + c,

where c ∈ Q. By a rational transformation, it is enough to assume that c is an

integer. For this family of curves, we derive precise torsion subgroup of E(K) for

any quadratic field K and for any number field K of degree coprime to 6.

2. The main results

For an elliptic curve E : y2 = x3 + c with c ∈ Z, we write c = c1t
6 for some

sixth power-free integer c1 and for some nonzero integer t. Then (x, y) is a point on

the elliptic curve E1 : y2 = x3 + c1 if and only if (t
2x, t3y) is a point on E. Thus,

it is enough to assume that c is a sixth power-free integer to compute the torsion

subgroup of E(K) for some number field K. We prove the following results.

Theorem 1. Let E : y2 = x3 + c be an elliptic curve for some sixth power-free

integer c and let Q(
√
d) be a quadratic field for some square-free integer d. If T is the

torsion subgroup of E(Q(
√
d)), then T is isomorphic to one of the following groups.

(1) Z/6Z

{

if c = 1 and d 6= −3,

or c = a3 with a 6= 1,−3 for some a ∈ Z and d = a;

(2) Z/3Z
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if c = 2t3 with t 6= 2,−6 for some t ∈ Z and

d is square-free part of 2t or −6t,

or c = b2 6= 1, 16 for some b ∈ Z,

or c = 16,−432 and d 6= −3,

or c is neither a cube nor a square, c 6= 2t3 for any t ∈ Z and

d is square-free part of c;

(3) Z/2Z if c = a3 with a 6= 1 for some a ∈ Z and d 6= a;

(4) Z/2Z× Z/6Z if c = 1,−27 and d = −3;

(5) Z/3Z× Z/3Z if c = 16,−432 and d = −3;

(6) Z/2Z× Z/2Z if c = a3 with a 6= 1,−3 for some a ∈ Z and d = −3;

(7) {O}, otherwise.
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Theorem 2. Let E : y2 = x3 + c be an elliptic curve for some sixth power-free

integer c and let K be a number field of degree coprime to 6. If T is the torsion

subgroup of E(K), then T is isomorphic to one of the following groups.

(1) Z/6Z if c = 1,

(2) Z/3Z if c 6= 1 is a square, or c = −432,

(3) Z/2Z if c 6= 1 is a cube,

(4) {O}, otherwise.

3. Preliminaries

In this section, we provide some useful tools which are essential to prove the main

results.

For any elliptic curve E over field L and for any positive integer n define

E(L)[n] = {P = (x, y) ∈ E(L) : nP = O} ∪ {O}.

Remark 1. Let E be an elliptic curve defined over a number field K. Also

let Ed be the d-quadratic twist of E for some d ∈ K∗/(K∗)2. Then it is well-known

that, for any odd positive integer n,

E(K(
√
d))[n] ∼= E(K)[n]× Ed(K)[n].

Proposition 1 ([4], Lemma 5). Let E be an elliptic curve defined over Q and let

R ∈ E(C) be a point of order n for some positive integer n. Then [Q(R) : Q] divides

|GL2(Z/nZ)|, where GL2(Z/nZ) is the set of all 2× 2 invertible matrices over Z/nZ

and the field Q(R) is the smallest field containing Q, x(R), y(R).

Proposition 2 ([8], Lemma 5.12, page 149). Let E : y2 = x3 + c be an elliptic

curve for some nonzero integer c. Let p ≡ 2 (mod 3) be an odd prime such that p ∤ ∆,

where ∆ is the discriminant of E. Then we have

|E(Fp)| = p+ 1,

where E is the elliptic curve obtained by reducing E modulo p.

Proposition 3 ([14], Theorem 4.12, page 103). For any prime p let |E(Fp)| =
p+1−a with |a| 6 2

√
p. Let X2−aX+p = (X−α)(X−β) be a quadratic equation

for some complex numbers α, β. Then

|E(Fpn)| = pn + 1− (αn + βn)

for all n > 1.
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Corollary 1. Let E : y2 = x3 + c be an elliptic curve for some nonzero integer c.

Let p ≡ 2 (mod 3) be an odd prime such that p ∤ ∆, where ∆ is the discriminant

of E. Then we have

|E(Fpn)| =
{

pn + 1 if n is odd,

(pn/2 + 1)2 if n ≡ 2 (mod 4).

P r o o f. We know that |E(Fp)| = p+ 1 − a for some integer a with |a| 6 2
√
p.

Hence, by Proposition 2, we have a = 0 as p ≡ 2 (mod 3). Consider the factorization

of the quadratic equation over C as

X2 + p = (X − i
√
p)(X + i

√
p).

By setting α = i
√
p and β = −i

√
p and by Proposition 3, we have

|E(Fpn)| =
{

pn + 1 if n is odd,

(pn/2 + 1)2 if n ≡ 2 (mod 4).

�

Proposition 4 ([3], Proposition 4). Let E : y2 = x3 + bx+ c be an elliptic curve

for some integers b and c. Let T be the torsion subgroup of E(K) for some number

field K. Also let OK be the ring of integers in K and P be a prime ideal lying
above odd prime p in OK . If E has good reduction at P , then let ϕ be the reduction
modulo P map on T . Then the reduction map ϕ is an injective homomorphism

except for finitely many prime ideals P .

Proposition 5 ([8], Theorem 5.3, page 134). Let E : y2 = x3 + c be an elliptic

curve for some sixth power-free integer c. If T is the torsion subgroup of E(Q),

then T is isomorphic to one of the following groups.

(1) Z/6Z if c = 1,

(2) Z/3Z if c 6= 1 is a square, or c = −432,

(3) Z/2Z if c 6= 1 is a cube,

(4) {O}, otherwise.
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4. Proof of Theorem 1

To prove Theorem 1, we need to formulate several lemmas.

Lemma 1. There does not exist any element of order 4 in T .

P r o o f. Let P be an element of order 4 in T . In that case, T contains an element

of order 2 which forces c to be a cube, say, a3 for some nonzero integer a.

Note that if P = (x, y) is an element of order 4, then y(2P ) = 0 ⇔ x6 + 20cx3 −
8c2 = 0 ⇔ x3 = −10c± 6c

√
3. Hence, for d = 3 we have x = (−1 ±

√
3)a ∈ Z[

√
3].

Therefore for d 6= 3 there does not exist any element of order 4.

For d = 3, since x ∈ Z[
√
3] and y2 = x3 + c ∈ Z[

√
3], we have y ∈ Z[

√
3]. Let

y = t1 + t2
√
3 for some nonzero integers t1 and t2. Since y

2 = x3 + c, we get two

relations which are t21 + 3t22 = −9c and t1t2 = ±3c. These two relations together

imply t2
1
+ 3t2

2
∓ 3t1t2 = 0. Putting t = t1/t2 ∈ Q, we have

t2 ∓ 3t+ 3 = 0 =⇒ t =
±3±

√
−3

2
,

a contradiction as t ∈ Q. Hence, we conclude that there does not exist any element

of order 4 in T . �

Lemma 2. Let q > 3 be any prime. Then there does not exist any element of

order q in T .

P r o o f. From Proposition 5 we see that E(Q) does not have any element of

order q. Therefore E(Q)[q] = {O}. Now, we consider the d-quadratic twist of E
which is Ed : y2 = x3 + cd3. Again by Proposition 5, Ed(Q) does not have any

element of order q. Therefore Ed(Q)[q] = {O}. Hence, by Remark 1, we have
E(Q(

√
d))[q] = {O}, which proves the lemma. �

Lemma 3. There does not exist any element of order 9 in T .

P r o o f. From Proposition 5 we see that E(Q) does not have any element of

order 9. Therefore E(Q)[9] ∼= Z/3Z or E(Q)[9] = {O}. Also by Proposition 5,
Ed(Q) does not have any element of order 9. Therefore Ed(Q)[9] ∼= Z/3Z or

Ed(Q)[9] = {O}. Hence, by Remark 1, we conclude that E(Q(
√
d))[9] is isomor-

phic to one of Z/3Z×Z/3Z, Z/3Z and {O}. Thus, there does not exist any element
of order 9 in T . �
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Lemma 4. Let P = (x, y) be a point of order 2 in T ⊆ E(Q(
√
d)). Then c = a3

for some nonzero square-free integer a and

P =

{

(−a, 0) for d 6= −3,

(−a, 0), (−aω, 0), (−aω2, 0) for d = −3,

where ω is a cube root of unity.

P r o o f. Note that P = (x, y) is a point of order 2 in T ⇔ P 6= O and 2P = O
⇔ P 6= O and P = −P ⇔ y = 0 ⇔ x3 + c = 0. Hence, [Q(x) : Q] 6 3. Since

x ∈ Q(
√
d) and [Q(

√
d) : Q] = 2, we conclude that [Q(x) : Q] 6 2. Hence the

polynomial x3 + c is reducible over Q and so it has an integer root. Therefore c = a3

for some nonzero integer a.

Then (−a, 0) is the only point of order 2 in T for d 6= −3. For d = −3, (−a, 0),

(−aω, 0) and (−aω2, 0) are the only points of order 2 in T . Hence the lemma. �

Lemma 5. Let P = (x, y) be a point of order 3 in T ⊆ E(Q(
√
d)). If c 6= 2t3 for

any integer t, then

P =

{

(0,±√
c) if c is a square,

(0,±√
c) if c is not a square and d is square-free part of c.

P r o o f. Note that P = (x, y) is a point of order 3 in T ⇔ P 6= O and
3P = O ⇔ P 6= O and 2P = −P .

Hence, if P is a point of order 3 in T , then

x(2P ) = x(−P ) ⇔ x(x3 − 8c)

4(x3 + c)
= x ⇔ x(x3 + 4c) = 0.

If x3 + 4c = 0, then [Q(x) : Q] 6 3. Since x ∈ Q(
√
d) and [Q(

√
d) : Q] = 2, we see

that [Q(x) : Q] 6 2. Hence the polynomial x3 + 4c is reducible over Q and so it has

an integer root. Therefore 4c = z3 for some nonzero integer z. Hence, we conclude

that c = 2t3 for some nonzero square-free integer t, which is a contradiction. So,

x3 + 4c 6= 0. Therefore x = 0 and y = ±√
c.

If c is a square, say c = b2 for some nonzero integer b, then (0,±b) are the only

points of order 3 in T for any d. If c is not a square, then (0,±√
c) are the only

points of order 3 in T when d is square-free part of c. Hence the lemma. �
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Lemma 6. Let P = (x, y) be a point of order 3 in T ⊆ E(Q(
√
d)). If c = 2t3 for

some square-free integer t, then

P =


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(0,±4) if t = 2 and d 6= −3,

(0,±4), (−4,±4
√
−3), (−4ω,±4

√
−3)

and (−4ω2,±4
√
−3) if t = 2 and d = −3,

(12,±36) if t = −6 and d 6= −3,

(0,±12
√
−3), (12,±36), (12ω,±36)

and (12ω2,±36) if t = −6 and d = −3,

(0,±t
√
2t) if t 6= 2 and d is square-free part of 2t,

(−2t,±t
√
−6t) if t 6= −6 and d is square-free part of − 6t.

P r o o f. Note that if P is a point of order 3 in T , then x(x3 +4c) = 0. If x = 0,

then y = ±√
c = ±t

√
2t. If 2t is a square, then t = 2 as t is square-free. In this

case, (0,±4) are points of order 3 for any d. Though for d = −3 we have 8 points of

order 3. If 2t is not a square, then (0,±t
√
2t) are the only points of order 3 when d is

square-free part of 2t.

If x 6= 0, then x3 = −4c = −8t3 and hence x is one of −2t, −2tω, −2tω2, where ω is

a cube root of unity. In this case, y = ±t
√
−6t. If −6t is a square, then t = −6

as t is square-free. In this case, (12,±36) are points of order 3 for any d. Though

for d = −3 we have 8 points of order 3. If −6t is not a square, then (12,±t
√
−6t)

are the only points of order 3 when d is square-free part of −6t. �

Now we are ready to prove Theorem 1.

P r o o f of Theorem 1. By Lemma 1, Lemma 2 and Lemma 3 we see that the

only possible orders for the nontrivial torsion points in T are 2, 3 and 6.

Case 1. c is a cube and a square.

In this case, c = 1 as c is sixth power-free.

If d 6= −3, then (0,±1) are the only points of order 3 by Lemma 5 and (1, 0) is the

only point of order 2 by Lemma 4. Since T is abelian, it has an element of order 6.

Hence, T ∼= Z/6Z.

If d = −3, then (0,±1) are the only points of order 3 by Lemma 5 and (1, 0),

(ω, 0), (ω2, 0) are the only points of order 2 in T by Lemma 4. Since T is abelian, it

has an element of order 6. Hence, T ∼= Z/6Z× Z/2Z.

Case 2. c is a cube, but not a square.

Write c = a3 for some nonzero square-free integer a 6= 1.

For d = −3, (−a, 0), (−aω, 0), (−aω2, 0) are the only points of order 2 in T by

Lemma 4. If a 6= −3, then there does not exist any element of order 3 for d = −3
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by Lemma 5. Hence, T ∼= Z/2Z × Z/2Z. If a = −3, then c = −27. In that case,

(0,±3
√
−3) are the only points of order 3 for d = −3 by Lemma 5. Since T is

abelian, it has an element of order 6. Hence, T ∼= Z/6Z× Z/2Z.

For d 6= −3, (−a, 0) is the only point of order 2 in T by Lemma 4. If −3 6= d = a,

then (0,±a
√
a) are the only points of order 3 by Lemma 5. Since T is abelian, it has

an element of order 6. Hence, T ∼= Z/6Z. If −3 6= d 6= a, then there does not exist

any element of order 3 in T by Lemma 5. Hence, T ∼= Z/2Z.

Case 3. c is a square, but not a cube.

If c = 2t3 for some square-free integer t, then c = 16 as c is a square. In this case,

there does not exist any element of order 2 in T by Lemma 4. For d = −3, T has

8 points of order 3 by Lemma 6. Hence, T ∼= Z/3Z×Z/3Z. For d 6= −3, (0,±4) are

the only points of order 3 by Lemma 6. Hence, T ∼= Z/3Z.

If c 6= 2t3 for any integer t, then write c = a2 for some integer a. Therefore (0,±a)

are the only points of order 3 in T by Lemma 5. Also there does not exist any

element of order 2 by Lemma 4. Hence, T ∼= Z/3Z.

Case 4. c is neither a square nor a cube.

If c = 2t3 for some square-free integer t, then t 6= 2 as c is not a square. Hence

there does not exist any element of order 2 in T by Lemma 4. Now by Lemma 6, we

conclude that for t = −6, T ∼= Z/3Z× Z/3Z for d = −3 and T ∼= Z/3Z for d 6= −3.

Also for t 6= −6, T ∼= Z/3Z if d is square-free part of 2t or −6t by Lemma 6.

If c 6= 2t3 for any integer t, then there does not exist any element of order 2 in T

by Lemma 4 and (0,±√
c) are the only points of order 3 in T when d is square-free

part of c by Lemma 5. Hence, T ∼= Z/3Z.

Thus, combining all the cases, Theorem 1 follows. �

5. Proof of Theorem 2

Throughout this section, we denote by OK a ring of integers in K. To prove

Theorem 2, we require the following lemmas.

Lemma 7. For any odd prime q > 3 there does not exist any element of order q

in T .

P r o o f. Suppose there exists an element of order q in T . Hence, q divides |T |.
Then, by Dirichlet theorem on primes in arithmetic progression [1], we can choose

a good prime p with p ≡ q2 + 1 (mod 3q) as (q2 + 1, 3q) = 1. Let pOK =

Pe1
1
Pe2
2

. . .Per
r be the ideal decomposition in OK , where P1,P2, . . . ,Pr are prime

ideals in OK lying above p and ei’s are ramification indices for Pi’s. Also, we know

that
r
∑

i=1

eifi = n, where fi’s are residual degrees for Pi’s.
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Since n is odd, there exists at least one fi which is odd. Let Pi be the corresponding

prime ideal and consider the reduction modulo Pi map. Since |OK/Pi| = pfi and fi is

odd, we have |E(OK/Pi)| = pfi + 1 by Corollary 1 as p ≡ 2 (mod 3). Hence by

Proposition 4, we conclude that q | pfi + 1. But we also have p ≡ 1 (mod q), which

implies pfi +1 ≡ 2 (mod q), which is a contradiction as q ∤ 2. Hence the lemma. �

Lemma 8. There does not exist any element of order 4 in T .

P r o o f. Suppose there exists an element of order 4 in T . Then 4 divides |T |.
Therefore, by Dirichlet theorem on primes in arithmetic progression, see [1], we

can choose a good prime p with p ≡ 5 (mod 12). Let pOK = Pe1
1
Pe2
2

. . .Per
r be

the ideal decomposition in OK , where P1,P2, . . . ,Pr are prime ideals in OK lying

above p and ei’s are ramification indices for Pi’s. Also, we know that
r
∑

i=1

eifi = n,

where fi’s are residual degrees for Pi’s.

Since n is odd, there exists at least one fi which is odd. Let Pi be the corresponding

prime ideal and consider the reduction modulo Pi map. Since |OK/Pi| = pfi and fi is

odd, we have |E(OK/Pi)| = pfi + 1 by Corollary 1 as p ≡ 2 (mod 3). Hence by

Proposition 4, we conclude that 4 | pfi + 1. But we also have p ≡ 1 (mod 4), which

implies pfi +1 ≡ 2 (mod 4), which is a contradiction. Therefore there does not exist

any element of order 4 in |T |. �

Lemma 9. Let P = (x, y) be a point of order 2 in T . Then c = a3 for some

nonzero square-free integer a and P = (−a, 0).

P r o o f. If P = (x, y) is a point of order 2, then x(P ) = x(−P ) ⇔ y = 0 ⇔
x3 + c = 0. Hence, [Q(x) : Q] 6 3. Since x ∈ K and [K : Q] is coprime to 6, we

conclude that x is an integer. Hence, c = a3 for some nonzero square-free integer a.

In this case, (−a, 0) is the only point of order 2 in T . Hence the lemma. �

Lemma 10. Let P = (x, y) be a point of order 3 in T . Then

P =

{

(0,±√
c) if c is a square,

(12,±36) if c = −432.

P r o o f. If P is a point of order 3 in T , then

x(2P ) = x(−P ) ⇔ x(x3 − 8c)

4(x3 + c)
= x ⇔ x(x3 + 4c) = 0.

If x = 0, then y = ±√
c. SinceK is a number field of odd degree, we see that y must

be an integer and hence c is a square.
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If x 6= 0, then x3 + 4c = 0. Hence, [Q(x) : Q] 6 3. Since x ∈ K and [K : Q]

is coprime to 6, we conclude that x is an integer. Hence c = 2t3 for some nonzero

square-free integer t. Therefore y = ±t
√
−6t. Since y ∈ K and K is a number field

of odd degree, we conclude that y must be an integer. Hence, −6t must be a square.

Since t is a square-free integer, we have t = −6. Hence, for c = −432, (12,±36) are

the only points of order 3 in T . Hence the lemma. �

Lemma 11. There does not exist any element of order 9 in T .

P r o o f. Let P = (x, y) be a point of order 9 in T . By Proposition 1, [Q(P ) : Q]

divides |GL2(Z/9Z)| = 35(32 − 1)(3 − 1) = 2435, which is a contradiction be-

cause Q(P ) is a subfield of K and [K : Q] is coprime to 6. �

Now we are ready to prove Theorem 2.

P r o o f of Theorem 2. By Lemma 7, Lemma 8 and Lemma 11, we see that the

only possible orders for the nontrivial torsion points in T are 2, 3 and 6.

Case 1. c is a cube and a square.

In this case, c = 1 as c is sixth power-free. Hence, (0,±1) are the only points of

order 3 in T by Lemma 10 and (1, 0) is the only point of order 2 in T by Lemma 9.

Since T is abelian, it has an element of order 6. Hence, T ∼= Z/6Z.

Case 2. c is a cube, but not a square.

Write c = a3 for some nonzero square-free integer a 6= 1. In this case, (−a, 0) is

the only point of order 2 in T by Lemma 9. There does not exist any element of

order 3 in T by Lemma 10. Hence, T ∼= Z/2Z.

Case 3. c is a square, but not a cube.

Suppose c = a2 for some nonzero integer a 6= 1. In this case, there does not exist

any element of order 2 in T by Lemma 9. Also (0,±a) are the only points of order 3

in T by Lemma 10. Hence, T ∼= Z/3Z.

Case 4. c is neither a square, nor a cube.

In this case, there does not exist any element of order 2 in T by Lemma 9. If

c = −432, then (12,±36) are the only points of order 3 in T by Lemma 10. Hence,

T ∼= Z/3Z for c = −432. If c 6= −432, then there does not exist any element of

order 3 in T by Lemma 10. Hence, T = {O} for c 6= −432.

Thus, combining all the cases, Theorem 2 follows. �
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