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Abstract. Let G be a finite group with exactly two nonlinear non-faithful irreducible
characters. We discuss the properties of G and classify finite p-groups with exactly two
nonlinear non-faithful irreducible characters.
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1. Introduction

Iranmanesh and Saeidi [4] studied finite groups with exactly one nonlinear non-

faithful irreducible character. And Saeidi [6] classified solvable groups with a unique

nonlinear non-faithful irreducible character. We consider the following case in this

note.

Hypothesis (∗):

A finite group has exactly two nonlinear non-faithful irreducible characters.

Let G be a finite group with exactly two nonlinear non-faithful irreducible char-

acters χ1, χ2. Let K1 = kerχ1, K2 = kerχ2, and write L = K1 ∩K2.

In this note, we will show some properties of groups which satisfy Hypothesis (∗).

Our main conclusion is the classification of finite p-groups with exactly two nonlinear

non-faithful irreducible characters. In fact, we have the following result.
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Theorem 1.1. A p-group G has exactly two nonlinear non-faithful irreducible

characters if and only if one of the following assertions holds.

(1) G is a 2-group with nilpotence class 2, G/Z(G) is elementary abelian, Z(G) ∼=

C2 × C2 and |G′| = 2.

(2) G is a group of order 32 of nilpotence class 3 and Z(G) ∼= C2 or Z(G) ∼= C4.

(3) G is a group of order 81 of nilpotence class 3.

All groups considered in this note are finite. The notation and terminology are

standard, and one can refer to [5] and [3].

2. Preliminaries

We first discuss the intersection of the kernels of irreducible nonlinear characters of

a finite group. There is a modular form of the intersection of the kernels of irreducible

Brauer characters in [8]. Moreover, in this section, we give some properties of groups

which satisfy Hypothesis (∗), and state facts which are important to prove the main

theorem of this note.

Proposition 2.1. Let Irr(G) and Lin(G) be the sets of irreducible characters and

linear characters of a group G, respectively. If Irr(G) ) Lin(G), then

(i)
⋂

ϕ∈Irr(G)−Lin(G)

kerϕ = 1. In particular, if G has a unique nonlinear irreducible

character χ, then χ is faithful; and if G has exactly two nonlinear irreducible

characters χ, ϕ, then kerχ ∩ kerϕ = 1.

(ii) if G satisfies Hypothesis (∗) and L > 1, then Z(G) is cyclic, where Z(G) is the

center of G;

(iii) if G satisfies Hypothesis (∗), then every normal subgroup of G not containing G′

is among K1, K2 and L;

(iv) if Z(G) 6= 1 and G satisfies Hypothesis (∗) and L > 1, then L is a minimal

normal subgroup ofG of a prime order. Moreover, ifG′∩L = 1, then G′∩Ki = 1

for i = 1, 2.

P r o o f. Write U =
⋂

ϕ∈Irr(G)−Lin(G)

kerϕ and h ∈ U . Then ϕ(h) = ϕ(1) for

ϕ ∈ Irr(G) − Lin(G). For any λ ∈ Lin(G), λ can act on Irr(G) by multiplication.

Then ∃ θ ∈ Irr(G)− Lin(G) such that ϕ = λθ. Thus

ϕ(1) = ϕ(h) = λ(h)θ(h) = λ(h)θ(1) = λ(h)ϕ(1), λ(h) = 1.
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Since λ is arbitrary, it follows that h ∈
⋂

λ∈Lin(G)

kerλ = G′, where G′ is the derived

subgroup of G, and then

h ∈ U ∩G′ =
⋂

µ∈Irr(G)

kerµ = 1.

Therefore, we have that
⋂

ϕ∈Irr(G)−Lin(G)

kerϕ = 1. Immediately, if G has a unique

nonlinear irreducible character χ, then kerχ = 1.

If G satisfies Hypothesis (∗) and L > 1, then G has at least one nonlinear faithful

irreducible character and so Z(G) is cyclic.

Let G satisfy Hypothesis (∗) and let N be a normal subgroup of G not contain-

ing the derived subgroup G′. Then the number of nonlinear irreducible characters

of G/N is no more than 2. Let Irr1(G) denote the set of all the nonlinear irreducible

characters of G. So we have the following two cases.

Case (a): When |Irr1(G/N)| = 1, it follows that Irr1(G/N) = {χ̂1} or {χ̂2}, where

χ̂i(Ng) = χi(g) for g ∈ G, i = 1, 2. If Irr1(G/N)| = {χ̂1}, we deduce that ker χ̂1 = 1

by (i). Therefore N = kerχ1 since kerχ1/N = ker χ̂1. If Irr1(G/N)| = {χ̂2}, for the

same reason as above, we have N = kerχ2.

Case (b): When |Irr1(G/N)| = 2, it follows that Irr1(G/N) = {χ̂1, χ̂2}. By (i),

we have that ker χ̂1 ∩ ker χ̂2 = 1. Since (kerχ1/N) ∩ (kerχ2/N) = ker χ̂1 ∩ ker χ̂2, it

follows that N = kerχ1 ∩ kerχ2 = L.

By the above proof, we have that N is among K1, K2 and L.

By (iii), it follows that G′ ∩L = 1 or G′ ∩L = L. In both cases, we have that L is

a minimal normal subgroup of G. If G′ ⊆ Z(G), then G′ is cyclic and so L ⊆ Z(G)

and then L is of a prime order. If Z(G) is not containing G′, then it follows by (iii)

that Z(G) is among K1,K2 and L. Thus L ⊆ Z(G) and so L is of a prime order.

Also, if G′ ∩ L = 1, then G′ ∩Ki = 1 for i = 1, 2. Otherwise, G′ ∩Ki = L by (iii)

and we have that

L = G′ ∩Ki = G′ ∩Ki ∩ L = (G′ ∩ L) ∩Ki = 1,

a contradiction. �

Seitz proved in [7] the following lemma which will be used many times in the next

section.

Lemma 2.1. Let G be a finite group. Then G has exactly one nonlinear irre-

ducible character if and only if one of the following conditions holds.

(i) G is an extraspecial 2-group.

(ii) G is a Frobenius group with elementary abelian Frobenius kernel G′ and a cyclic

Frobenius complement H , where |G′| − 1 = |H |.
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Zhang classified in [9] the groups with exactly two nonlinear irreducible characters.

Lemma 2.2. Let G be a finite group with exactly two nonlinear irreducible char-

acters. Then one of the following assertions holds.

(1) G is an extraspecial 3-group.

(2) G is a Frobenius group with abelian Frobenius complement H and elementary

abelian Frobenius kernel N , and 2|H | = |N | − 1.

(3) G = (C3 × C3)⋊Q8 is a Frobenius group with Frobenius complement Q8.

(4) G is a 2-group with nilpotence class 3 with a normal series G ⊲ G′ ⊲ Z(G) ⊲ 1,

and G/Z(G) is an extraspecial 2-group, |G′| = 4, |Z(G)| = 2.

(5) G is a 2-group with nilpotence class 2 with a normal series G ⊲ Z(G) ⊲ G′ ⊲ 1,

and G/Z(G) is elementary abelian, |Z(G)| = 4, |G′| = 2. Furthermore,

|G| = 22m, m ∈ Z. (See [1], Theorem 6, page 281).

3. p-groups

Suppose G satisfies Hypothesis (∗), and L < K1, L < K2. The following lemma

indicates that we only need to consider 2-groups if we study p-groups satisfying those

conditions.

Lemma 3.1. Let a p-group G satisfy Hypothesis (∗). Let L = K1 ∩ K2 and

L � K1, L � K2. Then p = 2 and |K1| = |K2| = 4 if L > 1, |K1| = |K2| = 2 if

L = 1.

P r o o f. Notice that G/K1 has only one nonlinear irreducible character. Also,

since G is a finite p-group, we have that p = 2 by Lemma 2.1.

Assume that K1/M is a chief factor of G. Then G
′ � M . Otherwise, G′ 6 K1 and

χ1 ∈ Irr(G/K1), a contradiction. Also, since L � K2, we have M 6= K2. Therefore,

M = L by Proposition 2.1 (iii) and then K1/L is a chief factor of G. Similarly, K2/L

is also a chief factor of G.

Since every chief factor of a p-group has order p, it follows that |K1| = |K2| = 2

if L = 1. If L > 1, then it follows by Proposition 2.1 (iv) that |L| = 2 and so

|K1| = |K2| = 22. �

A p-group G is said to satisfy the strong condition on normal subgroups provided

that for any N E G either G′ 6 N or N 6 Z(G). If for any N E G, either G′ 6 N or

|NZ(G) : Z(G)| 6 p, then we sayG satisfies the weak condition on normal subgroups.

Fernández-Alcober and Moretó in [2] gave some results about finite groups satisfying

the strong condition or the weak condition on normal subgroups.
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Lemma 3.2. Let G be a p-group.

(1) If G satisfies the strong condition on normal subgroups, then it has nilpotence

class c(G) 6 3. Furthermore,

(i) if c(G) = 2, then expG/Z(G) = expG′ = p;

(ii) if c(G) = 3, then |G : Z(G)| = p3 and |G| 6 p5. Moreover, |G| = 24 for

p = 2.

(2) If G satisfies the weak condition on normal subgroups, then it has nilpotence

class c(G) 6 4. Furthermore,

(i) if c(G) = 2, then expG/Z(G) = expG′ = p or p2. Moreover, in the latter

case G/Z(G) ∼= Cp2 × Cp2 and G′ ∼= Cp2 ;

(ii) if c(G) = 4, then |G : Z(G)| = p4, whereas for c(G) = 3 we have |G :

Z(G)| = p3, p4 or p6 for odd p, and |G : Z(G)| = 23, 24 when p = 2;

(iii) if c(G) = 4 and p = 2, then |G| = 25.

P r o o f. See Theorem D, Theorem F and Theorem G of [2]. �

Let a p-group G satisfy Hypothesis (∗). Obviously, there are three cases for

K1 ∩K2: case (i) L = 1; case (ii) 1 < L < Ki, i = 1, 2; and case (iii) K1 6 K2

(or K2 6 K1, but without loss of generality, we may assume K1 6 K2). Next, we

respectively discuss the structure of G according to the above cases. First, we have

the following theorem.

Theorem 3.1. A p-group G satisfies Hypothesis (∗) with L = 1 if and only if G

is a 2-group of nilpotence class 2, G/Z(G) is elementary abelian, Z(G) ∼= C2 × C2

and |G′| = 2.

P r o o f. When G is a 2-group of nilpotence class 2, G/Z(G) is elementary abelian,

Z(G) ∼= C2 × C2 and |G′| = 2, by Lemma 2.2 (5) and since Z(G) is not cyclic, we

know that G has exactly two nonlinear irreducible characters and both of them are

non-faithful. It follows that L = 1 from Proposition 2.1.

Now, we assume that a p-group G satisfies Hypothesis (∗) and L = 1. First we

have p = 2 and |K1| = |K2| = 2 by Lemma 3.1. Hence both K1,K2 are minimal

normal subgroups of G and K1,K2 6 Z(G). Using the fact that the nontrivial

normal subgroups of G not containing G′ are K1 and K2, we have that G satisfies

the strong condition and so c(G) 6 3. If c(G) = 3, then G′ � Z(G) and hence

Z(G) = K1 or Z(G) = K2. When Z(G) = K1, we get that K2 6 K1, contradicting

that L = 1. Thus Z(G) 6= K1. For the same reason, Z(G) 6= K2. Therefore,

we obtain that c(G) = 2. Also we have that G/Z(G) is elementary abelian and

expG′ = 2 by Lemma 3.2. Furthermore, G/Ki is extra-special, we can deduce

that Z(G)/Ki = Z(G/Ki) ∼= C2, and hence |Z(G)| = 4. We claim that |G′| = 2,

otherwise, we must have that Z(G) = G′ ∼= C2×C2. Thus we can obtain three normal
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subgroups of G which are different from one another and do not contain G′. That is

impossible as the nontrivial normal subgroups of G not containing G′ areK1 andK2.

Then the claim follows. Therefore by Lemma 2.2 (5) we have that G has exactly two

nonlinear irreducible characters. Thus G has no faithful irreducible characters, and

so Z(G) is not cyclic, which implies that Z(G) ∼= C2 × C2. �

In the next Lemma, we give some properties of p-groups which satisfy Hypothe-

sis (∗) and L > 1.

Lemma 3.3. Let a finite p-group G satisfy Hypothesis (∗) and let L > 1. Then

L < G′ and G satisfies the weak condition on normal subgroups.

P r o o f. By Proposition 2.1 (iv), we have that G′∩L = 1 or L < G′. If G′∩L = 1,

then G′ ∩Ki = 1, i = 1, 2 by Proposition 2.1. Thus G′ and L are all minimal normal

subgroups of G and since G is a p-group, we have L,G′ ⊆ Z(G). Since Z(G) is cyclic,

we have that L = G′, a contradiction. So L < G′.

Next, we prove that G satisfies the weak condition. First, L 6 Z(G). And

by Proposition 2.1 (iii), we only need to prove that |KiZ(G) : Z(G)| = |Ki/

(Ki ∩ Z(G))| 6 p, i = 1, 2. Since L 6 Ki ∩ Z(G) 6 Ki, and Ki/L are chief

factors of G or Ki/L = 1, i = 1, 2, the proof follows. �

In the rest of this paper, we consider the cases (ii) and (iii) stated above.

Theorem 3.2. A p-group G satisfies Hypothesis (∗) with 1 < L < K1 and

1 < L < K2 if and only if G is a group of nilpotence class 3, order 32, and Z(G) ∼= C2

or C4.

P r o o f. A computation in GAP using the GAP libraries shows that the groups G

of order 32 and nilpotence class 3 are ((C4 × C2) ⋊ C2) ⋊ C2, (C8 ⋊ C2) ⋊ C2,

C2((C4 × C2) ⋊ C2) = (C2 × C2)(C4 × C2), (C2 ×D8) ⋊ C2, (C2 × Q8) ⋊ C2 with

Z(G) ∼= C2 and (C4×C4)⋊C2, C4D8 = C4(C4×C2), (C8×C2)⋊C2 with Z(G) ∼= C4.

Using GAP’s program to compute character tables we verified that in each case

Hypothesis (∗) holds for G with 1 < L < K1 and 1 < L < K2.

Now we assume that G satisfies Hypothesis (∗), and 1 < L < K1, 1 < L < K2.

First, p = 2 by Lemma 3.1. Notice that L < G′ by Lemma 3.3. Then L is the unique

minimal normal subgroup of G. And we have that the nilpotence class satisfies

c(G) 6 4 by Lemma 3.2.

If c(G) = 2, then G′ 6 Z(G) and so G′ is cyclic. By Lemma 3.2, it follows

that expG′ = 2 or 22. We must have expG′ = 22, otherwise, |L| = |G′| = 2

and since L,G′ ⊆ Z(G), we get that L = G′, a contradiction. Thus G′ ∼= C4 and

G/Z(G) ∼= C4×C4. Note that G/L has exactly two nonlinear irreducible characters.
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By Lemma 2.2 and c(G/L) = 2, it follows that |Z(G/L)| = 4 and then |Z(G)/L| 6 4,

|Z(G)| 6 8. Also, by [1], Theorem 6, page 281 we have that |G/L| = 22m, m ∈ Z.

Since G′ 6 Z(G), it follows that |Z(G)| = 8 or 4. If |Z(G)| = 4, then |G| = 26 and

|G/L| = 25, a contradiction. Thus Z(G) ∼= C8. Also, note that G/K1 has only one

nonlinear irreducible character. By Lemma 2.1 (Seitz’s Theorem), it follows that

2 = |Z(G/K1)| = |Z(χ1) : K1|.

Since |K1| = 4, it follows that |Z(χ1)| = 8. Therefore Z(G) = Z(χ1) ⊃ K1. Since

K1 ⊆ Z(G) and G′ ⊆ Z(G), we have that K1 = G′ as they have the same order,

a contradiction.

If c(G) = 4, by Lemma 3.2 it follows that |G| = 25, that is, G has maximal class.

And then G′ has index 4 in G and so |G′| = 8. Since G/L has exactly two nonlinear

irreducible characters χ̂1, χ̂2 and ker χ̂i = Ki/L 6= 1 for i = 1, 2, it follows that

Z(G/L) is not cyclic and hence |(G/L)′| = |G′/L| = 2 by Lemma 2.2. So |G′| = 4.

We arrive at a contradiction.

The remaining case is c(G) = 3. By Lemma 3.2 it follows that |G : Z(G)| = 23

or 24. Note that G′ � Z(G). So Z(G) ∈ {L,K1,K2} by Proposition 2.1 (iii). Thus

|Z(G)| = 2 or 22. Again by |G/L| = 22m, we have that |G| = 25. �

Theorem 3.3. A p-group G satisfies Hypothesis (∗) and K1 6 K2 if and only

if G is a group of nilpotence class 3 and order 34.

P r o o f. First assume that G satisfies Hypothesis (∗) andK1 6 K2. Then L = K1

and so by Proposition 2.1 we have that Z(G) cyclic and K1 is a minimal normal

subgroup of G with K1 6 Z(G). Hence |K1| = p. Moreover, Lemma 3.3 and

Lemma 3.2 show that K1 < G′ and c(G) 6 4.

Assume that K1 � K2. Then Irr1(G/K2) = {χ̂2}, where Irr1(G/K2) denotes the

set of nonlinear irreducible characters of G/K2. So p = 2 by Lemma 2.1. Moreover,

we have Irr1(G/K1) = {χ̂1, χ̂2}. It follows that c(G/K1) = 2 or 3 by Lemma 2.2.

Case (1), when c(G/K1) = 3.

If c(G) = 4, then |G| = 25 by Lemma 3.2, and so |G/K1| = 24. But groups with

order 24 and nilpotence class 3 have three nonlinear irreducible characters, which is

a contradiction.

If c(G) = 3, then |G/Z(G)| = 23 or 24 by Lemma 3.2. Note that G′ � Z(G),

hence Z(G) = K1 or K2. If Z(G) = K1, then |Z(G)| = 2 and so |G| = 24 or 25.

When |G| = 24, since c(G) = 3, it follows that G has just one nonlinear non-faithful

irreducible character. This is a contradiction. When |G| = 25, we would obtain

a contradiction in the same way as in the situation of c(G) = 4. If Z(G) = K2,

then G satisfies the strong condition on normal subgroups. By Lemma 3.2, we have
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|G| = 24 which is not possible as above. Since c(G/K1) = 3, it is not possible that

c(G) = 2.

Case (2), when c(G/K1) = 2.

By Lemma 2.2, we get |G′/K1| = 2 and |Z(G/K1)| = 4. Since G/K1 has a faithful

nonlinear irreducible character χ̂1, it follows that Z(G/K1) = C4. Therefore, we

deduce that G′/K1 is the unique minimal normal subgroup of G/K1. Thus we get

that all nonlinear irreducible characters of G/K1 are faithful, contradicting the fact

that χ̂2 is non-faithful for G/K1.

Therefore we get that K1 = K2.

Write K1 = K2 = K. Then K is the only nontrivial normal subgroup of G which

does not contain G′. Since K 6 Z(G), it follows that G satisfies the strong condition

on normal subgroups and hence c(G) 6 3. If c(G) = 2, then G′ is cyclic asG′ 6 Z(G).

Therefore |G′| = p as expG′ = p. It follows that K = G′, a contradiction. So

c(G) = 3. If p = 2, then |G| = 24 by Lemma 3.2. That is impossible as above.

Hence p 6= 2. Note that G/K has exactly two nonlinear irreducible characters. Then

G/K must be an extra-special 3-group by Lemma 2.2 and so p = 3. Moreover, by

Lemma 3.2, we have |G : Z(G)| = 33. Since G′ � Z(G) and by Proposition 2.1 (iii),

we obtain that K = Z(G). It follows that |Z(G)| = 3. Hence |G| = 34 and G has

maximal class.

Conversely, assume that |G| = 34 and c(G) = 3. Then |Z(G)| = 3 and G/Z(G)

is an extra-special 3-group by the properties of groups of order 34 with maximal

class. Hence G/Z(G) has exactly two nonlinear irreducible characters by Lemma 2.2

and they are faithful. It indicates that there are χ1, χ2 ∈ Irr1(G) and kerχ1 =

kerχ2 = Z(G). Since kerχ1 ∩ kerχ2 6= 1, it follows that G must have ϕ ∈ Irr1(G)

and ϕ 6= χ1, χ2. Suppose kerϕ 6= 1. Since Z(G) 6 kerϕ, it follows that ϕ ∈

Irr1(G/Z(G)). So we find three nonlinear irreducible characters in G/Z(G), which

is impossible. Consequently, ϕ must be faithful and so G has exactly two nonlinear

non-faithful irreducible characters. �

Finally, the proof of Theorem 1.1 in Introduction is immediately available by

Theorems 3.1, 3.2 and 3.3.
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