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Abstract. In this paper, we estimate the Douglas-Dirichlet functionals of harmonic map-
pings, namely Euclidean harmonic mapping and flat harmonic mapping, by using the ex-
tremal dilatation of finite distortion functions with given boundary value on the unit circle.
In addition, ∂̄-Dirichlet functionals of harmonic mappings are also investigated.
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1. Introduction

Let ∆ be the unit disk and ∂∆ be the unit circle. If H is a continuous homeomor-

phism mapping from ∂∆ onto ∂∆, consider the family of quasiconformal mappings

Q(H) = {f : f : ∆ → ∆ is a quasiconformal mapping, f |∂∆ = H(eiθ), θ ∈ [0, 2π)}.

Hence, the extremal complex dilatation KH of Q(H) can be defined by

KH = inf
f∈Q(H)

K[f ], K[f ] = ess sup
z∈∆

K(z, f) = ess sup
z∈∆

|fz|+ |fz̄|

|fz| − |fz|
.

Thus f0 ∈ Q(H) is said to be an extremal quasiconformal mapping if f0 satisfies

K[f0] = KH. It is well known that extremal quasiconformal mappings play an

important role in the theories of quasiconformal mapping and Teichmüller space.
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Quasiconformal mapping is a special case of finite distortion function which is

defined as follows. Let Ω and Ω′ be two bounded domains of C. Then a sense-

preserving homeomorphism mapping f : Ω → Ω′ is said to be a finite distortion

function if f ∈ W
1,1
loc(Ω,Ω

′) and there is a measure function K(z) ∈ [1,∞) such that

|Df |2 6 K(z)J(z, f),

where

|Df | = |fz|+ |fz̄|, J(z, f) = |fz|
2 − |fz̄|

2.

If H is a continuous homeomorphism mapping from ∂∆ onto ∂∆ or more generally

H ∈ L2(∂∆), it is natural to define the family of finite distortion functions which

have the same boundary value on ∂∆ as

FD(H) = {f : f : ∆ → ∆ is a finite distortion function, f |∂∆ = H(eiθ), θ ∈ [0, 2π)}.

Note that the boundary function of f ∈ FD(H) belongs to L2(∂∆) in the trace

sense here. Denote the outer distortion function K(z, f) as ‖Df‖2/J(z, f) when

J(z, f) > 0, and K(z, f) = 1 when J(z, f) = 0, where ‖Df‖ =
√

|fz|2 + |fz̄|2 is

a normalized Hilbert-Schmidt norm. Analogously to the extremal quasiconformal

mapping, the extremal finite distortion function is the function f0 ∈ FD(H) whose

dilatation satisfies K[f0] = KH, here

KH = inf
f∈FD(H)

K[f ], K[f ] = ess sup
z∈∆

K(z, f) = ess sup
z∈∆

|fz|
2 + |fz̄|

2

|fz|2 − |fz̄|2
.

Since

K(z, f) =
1

2

(

K(z, f) +
1

K(z, f)

)

, z ∈ ∆

is a convex function and therefore

K[f ] =
1

2

(

K[f ] +
1

K[f ]

)

, when f ∈ FD(H).

The extensive study on the finite distortion function was initiated in [2], [1], [7].

Given a smooth metric ̺(z)|dz|2 on Ω′ with ‖̺‖1 =
∫∫

Ω′
|̺| dxdy < ∞, suppose

that ω = f ∈ C2 : Ω → Ω′. Then the Douglas-Dirichlet functional is defined as

(1.1) D̺[f ] =

∫∫

Ω

̺(f(z))(|fz|
2 + |fz̄|

2) dxdy,

for z = x + iy ∈ Ω. It is well known that the critical point f of (1.1) satisfies the

following Euler-Lagrange equation

(1.2) fzz̄(z) + (log ̺(ω))ωfz(z)fz̄(z) = 0, ω = f(z).
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Then f is said to be a harmonic mapping with respect to ̺ (or briefly ̺-harmonic

mapping), if ω = f(z) ∈ C2 satisfies the Euler-Lagrange equation on Ω. Especially,

when ̺ ≡ 1, f becomes a Euclidean harmonic mapping; when ̺ = 1/|ω|2, f just

corresponds to a nonvanishing logharmonic mapping; when ̺ = |ϕ| for a nonvanish-

ing analytic function ϕ on Ω′, then f is said to be a flat harmonic mapping whose

Gaussian curvature is zero. For further research on Euclidean harmonic mapping

and ̺-harmonic mapping readers can refer to [3], [4], [8], [12], [15] for more details.

In 1985, Reich [13] first estimated the upper bound of D̺[f ] for f ∈ Q(H) as

sup
̺∈P

inf
f∈Q(H)

D̺[f ]

‖̺‖1
=

1

2

(

KH +
1

KH

)

,

where P is the set of all measure functions ̺ which satisfy the conditions that ̺(z) > 0

and ‖̺‖1 <∞. Consider the class of holomorphic functions

Hol2(∆) = {ϕ : ∆ → C is a holomorphic function and ‖ϕ′2‖1 <∞},

and let P (H) be the Poisson integral of boundary function H on ∂∆. Denote the

Douglas-Dirichlet functional D[f ] for short when ̺ ≡ 1. Reich also proved the

following statement:

Theorem A ([14]). For any ϕ ∈ Hol2(∆), it holds that

(1.3)
D[P (ϕ ◦H)]

D[ϕ]
6

1

2

(

KH +
1

KH

)

.

In addition, when KH > 1, the equality in (1.3) holds if and only if there exists

ψ0 ∈ Hol2(∆) and an extremal quasiconformal mapping f0 ∈ Q(H) such that f0
satisfies

(1.4)
f0z̄
f0z

= kH
ψ′
0

ψ′
0

, kH =
KH − 1

KH + 1
.

Define the family of (Euclidean) harmonic mappings

D(∆) = {ϕ : ∆ → C is a harmonic mapping and D[ϕ] <∞}.

In 1999, a more extensive conclusion of Theorem A is obtained in [16] as follows.
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Theorem B ([16]). For any ϕ ∈ D(∆), we have

(1.5)
1

KH
6
D[P (ϕ ◦H)]

D[ϕ]
6 KH.

In addition, (1.5) is accurate and the extremal function is the same as in (1.4).

In 2016, Feng in [5] used the quantity of KH instead ofKH to estimate the Douglas-

Dirichlet functional as follows.

Theorem C ([5]). For any ϕ ∈ Hol2(∆), it holds that

(1.6)
1

KH
6
D[P (ϕ ◦H)]

D[ϕ]
6 KH

and the equality in (1.6) can be attained the same way as in (1.4).

Theorem D ([5]). For any ϕ ∈ D(∆), it holds that

(1.7)
D[P (ϕ ◦H)]

D[ϕ]
6 KH +

√

K2
H − 1.

Meanwhile, (1.7) is also accurate the same way as (1.4).

The following Dirichlet’s principle (see [10], [11]) is crucial in the estimate of

Douglas-Dirichlet functional.

Theorem E (Dirichlet’s principle). Suppose that g is continuous on ∆̄ and has the

first partial derivatives which are continuous on ∆. Let f be a Euclidean harmonic

mapping on ∆ which is continuous on ∂∆. If f |∂∆ = g|∂∆ and D[g] < ∞, then

D[f ] 6 D[g], where the inequality equals if and only if f ≡ g on ∆.

In addition, if f ∈ Q(H), then D̺[f ] 6 D̺[g] < ∞ holds for all g ∈ Q(H) if

and only if f is a ̺-harmonic mapping. There exists a similar result on ∂̄-Dirichlet

functional, see [17], [18], [19] and [20] for more details. Analogously to Douglas-

Dirichlet functional in (1.1), ∂̄-Dirichlet functional is given in [9] which is defined

as

(1.8) D′
̺[f ] =

∫∫

Ω

̺(f(z))|fz̄(z)|
2 dxdy.

The critical point f of (1.8) also satisfies the Euler-Lagrange equation (1.2), but

its Hopf differential ̺(f)fzfz̄ dz
2 is not necessarily holomorphic. Using the method
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shown in [10], we find that Dirichlet’s principle also holds for ∂̄-Dirichlet functional

of a Euclidean harmonic mapping, which refers to Theorem 3.1.

The paper is organized as follows. Firstly, the concrete lower bound of (1.7) is

given in Theorem 2.1. Then Douglas-Dirichlet functionals D̺[f ] for some special

̺-harmonic mappings f are estimated by using extremal dilatation KH of finite dis-

tortion functions FD(H), refer to Theorems 2.2 and 2.3. In Section 3, ∂̄-Dirichlet

functionals D′
̺[f ] of Euclidean harmonic mapping, flat harmonic mapping (and

1/|ω|4-harmonic mapping) are also investigated. It is not difficult to verify that

D̺[f ] and D
′
̺[f ] satisfy the equation

D′
̺[f ] =

1

2
D̺[f ]−

1

2

∫∫

∆

̺(f(z))(|fz|
2 − |fz̄|

2) dxdy.

Thus some results on the estimation of D′
̺[f ] can be deduced from the corresponding

theorems in Section 2, Theorem B and Theorem C directly.

Notes. It is obvious that quasiconformal mappings belong to the family of finite

distortion functions and the existence of extremal quasiconformal mappings has been

intensively studied by many scholars over the past decades. But there are few studies

on the existence of extremal finite distortion functions among the functions which are

not quasiconformal mappings. The purpose of this paper is to estimate the Douglas-

Dirichlet functions of ϕ-harmonic mappings, thus we do not focus on the difference

between the quantities KH and KH.

2. Estimations of Douglas-Dirichlet functions

In this section, we firstly give the accuracy of lower bound estimation ofD[P (ϕ◦H)]

for any ϕ ∈ D(∆) in Theorem D as follows.

Theorem 2.1. For any ϕ(z) ∈ D(∆), the inequalities

(2.1)
1

KH +
√

K2
H − 1

6
D[P (ϕ ◦H)]

D[ϕ]
6 KH +

√

K2
H − 1,

hold true. Especially, when KH > 1, the equalities in (2.1) hold if and only if there

exist ϕ0 ∈ Hol2(∆) and an extremal function f0 ∈ Q(H) such that the Beltrami

coefficient of f0 satisfies

f0z̄(z)

f0z(z)
= kH

ϕ′
0(z)

ϕ′
0(z)

, kH =
KH − 1

KH + 1
.
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P r o o f. Suppose that ω = f(z) ∈ FD(H) is an extremal function. For any

ϕ ∈ D(∆), consider the composite function F (z) = ϕ ◦ f(z). Then we have

(2.2) Fz(z) = ϕω(ω)fz(z) + ϕω(ω)fz̄(z), Fz̄(z) = ϕω(ω)fz̄(z) + ϕω(ω)fz(z).

Therefore,

(2.3) |Fz(z)|
2 + |Fz̄(z)|

2 = |ϕωfz + ϕωfz̄|
2 + |ϕωfz̄ + ϕωfz|

2

= (|ϕω |
2 + |ϕω |

2)(|fz |
2 + |fz̄|

2) + 4ℜϕωϕωfzfz̄

6 (|ϕω |
2 + |ϕω |

2)[|fz |
2 + |fz̄|

2

+
√

(|fz |2 + |fz̄|2)2 − (|fz|2 − |fz̄|2)2]

= J(z, f)(|ϕω|
2 + |ϕω|

2)
(

K(z, f) +
√

K2(z, f)− 1
)

.

Hence the upper and lower bounds of the Douglas-Dirichlet functional of F (z) can

be deduced from relation (2.3) as follows.

(2.4) D[F ] =

∫∫

∆

(|Fz(z)|
2 + |Fz̄(z)|

2) dxdy

6

∫∫

∆

(|ϕω|
2 + |ϕω|

2)J(z, f)
(

K(z, f) +
√

K2(z, f)− 1
)

dxdy

6

(

KH +
√

K2
H − 1

)

∫∫

∆

(|ϕω |
2 + |ϕω|

2) du dv

=
(

KH +
√

K2
H − 1

)

D[ϕ]

with z = x+ iy ∈ ∆ and ω = u+ iv ∈ ∆. Especially, when ϕ = P (ϕ ◦H), we have

(2.5) D[F ] 6
(

KH +
√

K2 − 1
)

D[P (ϕ ◦H)].

Applying Theorem E for F and ϕ ∈ D(∆), we get that

D[P (ϕ ◦H)] 6 D[F ] 6
(

KH +
√

K2
H − 1

)

D[ϕ]

and

D[ϕ] 6 D[F ] 6
(

KH +
√

K2
H − 1

)

D[P (ϕ ◦H)],

from (2.4) and (2.5), respectively.

Since the equality in (2.3) holds if and only if |ϕω| = |ϕω | and K(z, f) = KH, by

the proof of Theorem 1 in [16], the accuracy of the lower bound estimation in (2.1)

can be obtained. The proof of the accuracy is omitted here. �
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Remark. We should illustrate that Theorem 2.1 is coincident with Theorem B

by the equality KH = 1
2 (KH + 1/KH) when f ∈ Q(H).

Notice that the critical point f of the minimal Douglas-Dirichlet functional, i.e.,

D[f ] 6 D[F ] for all F ∈ Q(H), can be generated by the Poisson extension of a given

boundary value H, that is, f = P (H). But that is not suitable for ̺-harmonic map-

pings. Furthermore, Dirichlet’s principle is not necessarily established for ̺-harmonic

mappings. Thus it is meaningful to estimate the Douglas-Dirichlet functional D̺[f ]

of ̺-harmonic mappings f . Based on the connections between Euclidean harmonic

mapping and ϕ-harmonic mapping f , Douglas-Dirichlet functions D̺[f ] have a sim-

ilar estimation with D[f ] as follows.

Theorem 2.2. For a univalent function ϕ(z) ∈ Hol2(∆), the inequalities

(2.6)
1

KH +
√

K2
H − 1

6
D̺[ϕ ◦ P (H)]

D̺[ϕ]
6 KH

hold for ̺(z) = 1/|ϕ′(z)|2 and D̺[ϕ] <∞.

P r o o f. Suppose that ω = f(z) ∈ FD(H) is an extremal function, that is,

f : ∆ → ∆ is a finite distortion function which satisfies f |∂∆ = H and K[f ] = KH.

For any given ϕ ∈ Hol2(∆), consider the composite function F (z) = ϕ ◦ f(z). Then

we have

Fz(z) = ϕ′(ω) · fz(z), Fz̄(z) = ϕ′(ω) · fz̄(z).

Therefore,

|Fz(z)|
2 + |Fz̄(z)|

2 = |ϕ′(ω)|2(|fz(z)|
2 + |fz̄(z)|

2).

Integrate on both sides of the above equality to obtain that

D̺[F ] =

∫∫

∆

̺(ϕ(ω))(|Fz(z)|
2 + |Fz̄(z)|

2) dxdy

=

∫∫

∆

̺(ϕ(ω))|ϕ′(ω)|2
|fz(z)|

2 + |fz̄(z)|
2

|fz(z)|2 − |fz̄(z)|2
J(z, f) dxdy

6 KH

∫∫

∆

̺(ϕ(ω))|ϕ′(ω)|2 du dv = KHD̺[ϕ],

with z = x + iy and ω = u + iv. Especially, when ϕ is a conformal function and

f = P [H], then F = ϕ ◦ f is a ϕ-harmonic mapping (that is, flat harmonic mapping)

due to Lemma 3.6 in [8].

On the other hand, since

D[f ] =

∫∫

∆

|(ϕ−1)′|2(|Fz |
2 + |Fz̄ |

2) dxdy

=

∫∫

∆

̺(F )(|Fz |
2 + |Fz̄ |

2) dxdy = D̺[F ],
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applying Dirichlet principle (Theorem E), we obtain that

(2.7) D̺[ϕ ◦ P (H)] 6 D̺[F ] 6 KHD̺[ϕ].

Then we will estimate the lower bound of D̺[ϕ◦P (H)]. For any given f ∈ FD(H)

and ϕ ∈ Hol2(∆), let F = ϕ ◦ f , which implies that ϕ = F ◦ f−1. If ω = f(z), thus

we have

(F (f−1))ω = Fz(f
−1)ω + Fz̄(f−1)ω , (F (f−1))ω = Fz(f

−1)ω + Fz̄(f−1)ω.

Thus, by the fact that KH−1 = KH, we have

D̺[F (f
−1)] =

∫∫

∆

̺(F (f−1))[|(F (f−1))ω|
2 + |(F (f−1))ω |

2] du dv

6

∫∫

∆

̺(F (f−1))(|Fz |
2 + |Fz̄ |

2)[|(f−1)ω |
2 + |(f−1)ω|

2

+
√

(|(f−1)ω|2 + |(f−1)ω|2)2 − (|(f−1)ω|2 − |(f−1)ω|2)2] du dv

6

(

KH +
√

K2
H − 1

)

∫∫

∆

̺(F (z))(|Fz |
2 + |Fz̄|

2) dxdy

=
(

KH +
√

K2
H − 1

)

D̺[F ]

for z = x+ iy ∈ ∆ and ω = u+ iv. Since D̺[F (f
−1)] = D̺[ϕ], thus we get that

D̺[F ] >
1

KH +
√

K2
H − 1

D̺[ϕ]

for all f ∈ FD(H). Especially, when f = P (H), the first inequality of (2.6) is

obtained. Therefore, the proof of this theorem is complete. �

Next, we shall verify the above estimates by analyzing the corresponding problem

of a particular class of functions of ϕ-harmonic mappings. Let A(1, r) = {z ∈ C : 1 6

|z| 6 r} be an annulus. It was proved that R/f : A(1, r) → A(1, R) is a Euclidean

harmonic mapping if ω = f(z) is a 1/|ω|4-harmonic mapping from annulus A(1, r)

onto A(1, R) in [6]. Let

Hol2(∆,∆) = {ϕ : ∆ → ∆ is an analytic function and ‖ϕ′2‖1 <∞}.

Analogously to the estimation of Douglas-Dirichlet functionals in Theorem C and

Theorem 2.2, we conclude the following result, which is a special case of Theorem 2.2.

Theorem 2.3. For any ϕ ∈ Hol2(∆,∆), it holds that

(2.8)
1

KH +
√

K2
H − 1

6
D̺[1/(2 + P (ϕ ◦H))]

D[ϕ]
6 KH

for ̺(ω) = 1/|ω|4, where ω = 1/(2 + P (ϕ ◦H)).
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P r o o f. Suppose that ω = f(z) ∈ FD(H) is an extremal function, and for any

ϕ ∈ Hol2(∆, ∆), consider the composite function F (z) = 1/(2 + ϕ ◦ f(z)). Then we

have

Fz = −
ϕ′(f)fz

(2 + ϕ ◦ f)2
, Fz̄ = −

ϕ′(f)fz̄
(2 + ϕ ◦ f)2

,

and

|Fz |
2 + |Fz̄ |

2 =
|ϕ′(f)|2

|2 + ϕ ◦ f |4
(|fz|

2 + |fz̄|
2).

Integrate on ∆ to obtain that

(2.9) D̺[F ] =

∫∫

∆

̺(F )(|Fz |
2 + |Fz̄ |

2) dxdy

=

∫∫

∆

̺(F )
|ϕ′(f)|2

|2 + ϕ ◦ f |4
(|fz|

2 + |fz̄|
2) dxdy

=

∫∫

∆

̺(F )
|ϕ′(f)|2

|2 + ϕ ◦ f |4
|fz|

2 + |fz̄|
2

|fz|2 − |fz̄|2
J(z, f) dxdy

6 KH

∫∫

∆

|ϕ′(ω)|2 du dv = KHD[ϕ]

for ̺(ω) = 1/|ω|4, z = x+ iy and ω = f(z) = u+ iv. According to the fact that

D[ϕ ◦ f ] =

∫∫

∆

1

|F |4
(|Fz |

2 + |Fz̄ |
2) dxdy = D̺[F ],

Dirichlet’s principle directly deduce to

D̺

[ 1

2 + P (ϕ ◦H)

]

= D[P (ϕ ◦H)] 6 D[ϕ ◦ f ] = D̺[F ],

that is,

D̺

[ 1

2 + P (ϕ ◦H)

]

6 D̺[F ] 6 KHD[ϕ].

Consider the extremal mapping in FD(H−1), analogously to the proof of the first

inequality in Theorem 2.2, we obtain the lower bound estimation in (2.8). The proof

of Theorem 2.3 is complete. �
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3. Estimations on ∂̄-Dirichlet functionals

Recall that Li Zhong in [9] introduced ∂̄-Dirichlet functional, which is similar to

Douglas-Dirichlet functional, as

(3.1) D′
̺[f ] =

∫∫

Ω

̺(f(z))|fz̄(z)|
2 dxdy

for any C1-diffeomorphism f : Ω → Ω′ and conformal metric density ̺ on Ω′. The

critical point f of (3.1) also satisfies the Euler-Lagrange equation, that is to say,

f is a solution of equation (1.2), but its Hopf differential ̺(f)fzfz̄ dz
2 is not always

holomorphic on Ω. In addition, the existence of ̺-harmonic mapping defined by (1.3)

is studied in [19] and [20].

Analogously to Douglas-Dirichlet functional, the upper bound of this new kind of

Dirichlet functional is also estimated in this section. First, Dirichlet’s principle for

∂̄-Dirichlet functional of a Euclidean harmonic mapping is proved as follows.

Lemma 3.1 ([10]). Suppose that f and h are continuous on ∆̄ with h ≡ 0 for

z ∈ ∂∆. If f is a Euclidean harmonic mapping on ∆ and h has continuous partial

derivatives of the first order on ∆, D[f ] <∞ and D[h] <∞. Then

D[f, h] :=

∫∫

∆

(fxhx + fyhy) dxdy = 0, z = x+ iy.

Theorem 3.1. Suppose that g is a continuous function on ∆̄ which has the first

partial derivatives which are continuous on ∆. Let f be a Euclidean harmonic

mapping which is continuous on ∂∆ and satisfies f |∂∆ = g|∂∆ and D
′[f ] < ∞,

D′[g] < ∞. Then D′[f ] 6 D′[g], where the inequality equals if and only if f = g

on ∆.

P r o o f. Let h = g − f . Thus h ≡ 0 on ∂∆. Then

D′[g] =

∫∫

∆

|fz̄ + hz̄|
2 dxdy = D′[f ] +D′[h] +

1

2
D[f, h] = D′[f ] +D′[h] > D′[f ].

The equality holds if and only if h ≡ 0 on ∆, that is f ≡ g. �

The proof of Theorem 3.1 is due to Mateljević. Applying Theorem 3.1, we want

to estimate the upper bounds of ∂̄-Dirichlet functionals of some special ϕ-harmonic

mappings.
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Theorem 3.2. For any ϕ ∈ Hol2(∆), we have

(3.2)
D′[P (ϕ ◦H)]

D[ϕ]
6

1

2
(KH − 1).

Especially, when KH > 1, the equality in (3.2) holds true if and only if there exist

ϕ0 ∈ Hol2(∆) and an extremal function f0 ∈ Q(H) such that the Beltrami coefficient

of f0 satisfies

(3.3)
f0z̄(z)

f0z(z)
= kH

ϕ′
0(z)

ϕ′
0(z)

, kH =
KH − 1

KH + 1
.

P r o o f. Suppose that ω = f(z) ∈ FD(H) is an extremal function, that is,

f : ∆ → ∆ is a finite distortion function which satisfies f |∂∆ = H and K[f ] = KH.

For any given ϕ ∈ Hol2(∆), consider the composite function F (z) = ϕ ◦ f(z). Then

we have

Fz̄(z) = ϕ′(ω)fz̄(z), z ∈ ∆.

Therefore, the upper bound estimation of D′
̺[F ] is

(3.4) D′[F ] =

∫∫

∆

|Fz̄(z)|
2 dxdy =

∫∫

∆

|ϕ′(ω)|2|fz̄(z)|
2 dxdy

=

∫∫

∆

|ϕ′(ω)|2
|fz̄(z)|

2

|fz(z)|2 − |fz̄(z)|2
J(z, f) dxdy

6
KH − 1

2

∫∫

∆

|ϕ′(ω)|2 du dv =
KH − 1

2
D[ϕ]

for z = x+ iy and ω = u+ iv. By Theorem 3.1, we get

D′[P (ϕ ◦H)] 6 D′[F ] 6
KH − 1

2
D[ϕ].

Since

(3.5) D′[F ] =
1

2
D[F ]−

1

2

∫∫

∆

(|Fz |
2 − |Fz̄ |

2) dxdy =
1

2
(D[F ]−D[ϕ]),

the accuracy of (3.2) can be obtained from Theorem C. �

Theorem 3.3. For any ϕ ∈ D(∆), we have

(3.6)
1

2

(

KH − 1−
√

K2
H − 1

)

6
D′[P (ϕ ◦H)]

D[ϕ]
−
D′[ϕ]

D[ϕ]
6

1

2

(

KH − 1 +
√

K2
H − 1

)

.
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P r o o f. Suppose that ω = f(z) ∈ FD(H) is an extremal function. For any given

ϕ ∈ D(∆), consider the composite function F (z) = ϕ ◦ f(z). Then we have

Fz(z) = ϕω(ω)fz(z) + ϕω(ω)fz̄(z), Fz̄(z) = ϕω(ω)fz̄(z) + ϕω(ω)fz(z).

Then
∫∫

∆

(|Fz |
2 − |Fz̄ |

2) dxdy =

∫∫

∆

(|ϕω|
2 − |ϕω|

2)(|fz|
2 − |fz̄|

2) dxdy

=

∫∫

∆

(|ϕω|
2 − |ϕω|

2) du dv = D[ϕ]− 2D′[ϕ],

for z = x+ iy and ω = u+ iv, which implies that

(3.7) D′[F ] =
1

2
D[F ]−

1

2

∫∫

∆

(|Fz |
2 − |Fz̄ |

2) dxdy =
1

2
D[F ]−

1

2
D[ϕ] +D′[ϕ].

Substituting (2.5) into (3.7) we get that

D′[F ] 6
1

2

(

KH − 1 +
√

K2
H − 1

)

D[ϕ] +D′[ϕ].

Applying Theorem 3.1, we obtain the second inequality of (3.6) when F = P [ϕ ◦H].

Substituting the first inequality of (2.1) into (3.7), the other side of (3.6) also can be

obtained. �

Notice that KH− 1−
√

K2
H − 1 6 0 for KH ∈ [1,∞), from relation (3.7), the lower

bound in relation (3.6) is reasonable for any ϕ ∈ D(∆) by the fact that

1

2

(

KH − 1−
√

K2
H − 1

)

D[ϕ] +D′[ϕ] >
1

2

(

KH + 1−
√

K2
H − 1

)

D′[ϕ] > 0

and this estimation is sharp when KH > 1.

From the identical equation

D′
̺[F ] =

1

2
D̺[F ]−

1

2

∫∫

∆

̺(F )(|Fz |
2 − |Fz̄|

2) dxdy,

we find that D′
̺[ϕ ◦P (H)] and D′

̺[1/(2 +P (ϕ ◦H))] can be investigated similarly as

in Theorems 2.2 and 2.3, respectively.

Theorem 3.4. For a univalent function ϕ ∈ Hol2(∆) and ̺(z) = 1/|ϕ′(z)|2, we

have

(3.8)
D′

̺[ϕ ◦ P (H)]

D̺[ϕ]
6

1

2
(KH − 1).
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