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Abstract. An element in a ring is clean (or, unit-regular) if it is the sum (or, the product)
of an idempotent and a unit, and is nil-clean if it is the sum of an idempotent and a nilpotent.
Firstly, we show that Jacobson’s lemma does not hold for nil-clean elements in a ring,
answering a question posed by Koşan, Wang and Zhou (2016). Secondly, we present new
counter-examples to Diesl’s question whether a nil-clean element is clean in a ring. Lastly,
we give new examples of unit-regular elements that are not clean in a ring. The rings under
consideration in our examples are particular subrings of M2(Z).

Keywords: clean element; nil-clean element; unit-regular element; Jacobson’s lemma for
nil-clean elements
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1. Introduction

In 2013, Diesl in [5] introduced the notion of a nil-clean element (ring), as a variant

of the much-studied notion of a clean element (ring) due to Nicholson. An element

in a ring is called nil-clean (clean) if it is a sum of an idempotent and a nilpotent

(unit), and the ring is nil-clean (clean) if its every element is nil-clean (clean). Nil-

clean rings have attracted much attention recently and have been shown to have
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close connections with clean rings, strongly π-regular rings, Boolean rings, and Köthe

conjecture.

For any two elements a, b ∈ R, 1− ab is a unit if and only if 1− ba is a unit. This

result is known as Jacobson’s lemma for units. There are several analogous results

in the literature. It is known that Jacobson’s lemma holds for Drazin invertible

elements (see [4]) and for generalized Drazin invertible elements (see [10]). In [8],

the authors proved that Jacobson’s lemma holds for π-regular elements and unit

π-regular elements, but fails for clean elements. In [7], it is proved that Jacobson’s

lemma holds for strongly nil-clean elements and a question left open in [7] asks

whether Jacobson’s lemma holds for nil-clean elements. Here we give a negative

answer to this question.

In [5], Diesl proved, among others, that a nil-clean ring is clean, and asked whether

a nil-clean element is clean. In [1], Andrica and Călugăreanu found a nil-clean but not

clean element in the matrix ring M2(Z) by a long, fairly difficult process, involving

solving Pell equations. Here we reconsider Diesl’s question by working on the subring
(

Z Z

s2Z Z

)

of M2(Z) instead of M2(Z). Because the subring
(

Z Z

s2Z Z

)

contains much

less clean elements than M2(Z), there is a huge advantage to working in
(

Z Z

s2Z Z

)

for constructing counter-examples to Diesl’s question. Here we present a simple and

direct way to construct a nil-clean but not clean element in the ring
(

Z Z

s2Z Z

)

for

every positive integer s > 3. We also find a nil-clean but not clean element in the

ring
(

Z Z

2
2
Z Z

)

, but our handling of this case needs the help of a result of Andrica and

Călugăreanu in [1]. Thus, not every nil-clean element is clean in the ring
(

Z Z

s2Z Z

)

for every 0 6= s ∈ Z.

An element in a ring is unit-regular if it is a product of an idempotent and a unit,

and a ring is unit-regular if its every element is unit-regular. By Camillo and Khurana

in [2], every unit-regular ring is clean. This motivated Khurana and Lam in [6] to

consider whether a single unit-regular element in a ring is clean. In [6], a criterion is

given for a matrix
(

a b

0 0

)

to be clean in the ring M2(K) over a commutative ring K.

When it is applied to K = Z, the authors of [6] are able to give many examples of

unit-regular matrices that are not clean in M2(Z). Here as a supplement to Khurana

and Lam’s work, we give more examples of unit-regular elements that are not clean

in the ring
(

Z Z

s2Z Z

)

and our argument is fairly simple.

Throughout the paper, Z is the ring of integers, M2(Z) is the 2 × 2 matrix ring

over Z whose identity is denoted by I2.
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2. Jacobson’s lemma for nil-clean elements

Our first needed lemma is [3], Lemma 1.5 (or see [1], Lemma 1).

Lemma 2.1. Let s ∈ Z. A matrix A in the ring
(

Z Z

sZ Z

)

is a nontrivial idempotent

if and only if A =
(

a+1 u

vs −a

)

with a2 + a+ suv = 0.

As our first result, the following theorem shows that Jacobson’s lemma does not

hold for nil-clean elements.

Theorem 2.2. Let R =
(

Z Z

4Z Z

)

, A =
(

−2 0

0 −1

)

and B =
(

1 6

−28 −3

)

∈ R. Then

I2 −AB is nil-clean but I2 −BA is not nil-clean in R.

P r o o f. We see that I2 −AB =
(

3 12

−28 −2

)

=
(

9 3

−24 −8

)

+
(

−6 9

−4 6

)

is a sum of an

idempotent and a nilpotent in R. Assume on the contrary that I2−BA =
(

3 6

−56 −2

)

is nil-clean in R. Then there exists an idempotent C in R such that I2 − BA − C

is a nilpotent in R. It can be seen that C 6= 0 and C 6= I2. So, by Lemma 2.1,

C =
(

a+1 u

4v −a

)

where a2 + a+ 4uv = 0. Moreover, by [1], Lemma 2, I2 −BA−C =
(

b x

4y −b

)

where b2 +4xy = 0. Thus,
(

3 6

−56 −2

)

=
(

a+b+1 u+x

4v+4y −a−b

)

. Therefore, we have

a+ b = 2, u+ x = 6, v + y = −14, a2 + a+ 4uv = 0 = b2 + 4xy,

and we deduce 5a = 56u− 24v− 332. Then u = 5a+24v+332

56
. From a2 + a+4uv = 0,

it follows that

a(a+ 1) +
5a+ 24v + 332

14
v = 0.

That is,

(2.1) 14a2 + (14 + 5v)a+ (24v + 332)v = 0.

The discriminant of (2.1), considered as a quadratic equation in a, is∆ = (14+5v)2−

56v(24v + 332) = −1319v2 − 18452v + 196. In order to have integer solutions for

equation (2.1), it is necessary that ∆ > 0 and ∆ is a perfect square. The quadratic

function f(v) = −1319v2 − 18452v + 196 concaves down and has two zeros at −14

and 14

1319
. So f(v) > 0 if and only if −14 6 v 6 14

1319
. Hence, if equation (2.1) has an

integer solution, then v must be an integer between −14 and 0. Now we can proceed

with the following cases.

Case 1. If v is any of the values −11,−10,−9,−8,−7,−6,−5,−2 and −1, then

f(v) is not a perfect square.
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Case 2. For v = 0, we have y = −14 and a2 + a = 0. So (2 − a)2 − 56x = 0. As

a = 0 or −1, such an integer x does not exist.

Case 3. If v = −14, then y = 0, b = 0 and a = 2. So 6 − 56u = 0. But such an

integer u does not exist.

Case 4. If v = −13, then y = −1. Thus, a2 + a+ 4uv = 0 gives a2 + a− 52u = 0

and b2 + 4xy = 0 gives a2 − 4a− 20 + 4u = 0. We deduce 14a2 − 51a− 260 = 0, so

a = 91

14
or − 20

7
, a contradiction.

Case 5. If v = −3, then y = −11. As argued in case 4, we obtain 14a2−a−780 = 0,

which gives a = 15

2
or − 52

7
, a contradiction.

Case 6. If v = −12, then y = −2. As argued in case 4, we get 7a2 − 23a− 264 = 0,

which gives a = 8 or − 33

7
. But if a = 8, then a2 + a + 4uv = 0 gives 72 − 48u = 0

and so u = 3

2
, a contradiction.

Case 7. If v = −4, then y = −10. As argued in case 4, we obtain 7a2−3a−472 = 0,

which gives a = −8 or 59

7
. But if a = −8, then a2 + a+ 4uv = 0 gives 56− 16u = 0

and so u = 7

2
, a contradiction.

Therefore, we have proved that I2 −BA is not nil-clean in R. �

3. Nil-clean elements need not be clean: more counter-examples

By [1], not every nil-clean matrix is clean in M2(Z). We next prove that, for

any positive integer s > 2, not every nil-clean element is clean in the ring
(

Z Z

s2Z Z

)

.

In contrast to the difficult search of the counter-example in [1], our construction in

Theorem 3.1 below is direct and fairly simple.

Theorem 3.1. If s > 3, then
(

1+s 1

s2 −s

)

is nil-clean, but not clean in
(

Z Z

s2Z Z

)

.

P r o o f. Let R =
(

Z Z

s2Z Z

)

. We see that

A :=

(

1 + s 1

s2 −s

)

=

(

1 0

2s2 0

)

+

(

s 1

−s2 −s

)

is a sum of an idempotent and a nilpotent in R. Assume on the contrary that

A = E+(A−E) where E2 = E ∈ R and A−E is invertible in R. Then one can easily

see that E 6= 0 and E 6= I2. So we can write E =
(

r+1 p

s2q −r

)

with r2 + r + s2pq = 0

by Lemma 2.1. We have ±1 = det(A − E) = r − 2s2 + 2rs + s2(p + q). It follows

that gcd(r, s) = 1. As r(1 + r) + s2pq = 0, we deduce that s2 | 1 + r.

If det(A−E) = 1, then 1 = r−2s2+2rs+s2(p+ q), so 1+ r = −2s2+2r(1+s)+

s2(p+q). It follows that s2 divides 2(1+s)r. But gcd(r, s) = 1 and gcd(s, s+1) = 1,

we infer s2 | 2, a contradiction.
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If det(A − E) = −1, then −(1 + r) = −2s2 + 2rs + s2(p + q). It follows that

s2 | 2rs, so s | 2, a contradiction. �

Remark 3.2. By Theorem 3.1, for s > 3 the matrix
(

1+s 1

s2 −s

)

is nil-clean but

not clean in
(

Z Z

s2Z Z

)

. However,
(

1+s 1

s2 −s

)

is clean in M2(Z), because
(

1+s 1

s2 −s

)

=
(

s 1

s−s2 1−s

)

+
(

1 0

−s+2s2 −1

)

is a sum of an idempotent and a unit in M2(Z). This

computation shows that there is a huge advantage to working in
(

Z Z

s2Z Z

)

instead

of M2(Z) for constructing counter-examples to Diesl’s question.

Theorem 3.3. Not every nil-clean matrix is clean in
(

Z Z

4Z Z

)

.

P r o o f. Let R =
(

Z Z

4Z Z

)

. As seen in Theorem 2.2, C =
(

3 12

−28 −2

)

is nil-

clean in R. Next we show that C is not clean in R. Assume on the contrary that

C = E + (C − E) where E2 = E ∈ R and C − E is invertible in R. One easily

sees that E must be a nontrivial idempotent. So, we can write E =
(

γ+1 p

4q −γ

)

with

γ2 + γ + 4pq = 0 by Lemma 2.1. To get a contradiction, we use a result of Andrica

and Călugăreanu in [1].

We write C =
(

α+β+1 u+x

4v+4y −α−β

)

in R, where α = 8, β = −6, u = 3, v = −6,

x = 9 and y = −1, and where C =
(

3 12

−28 −2

)

=
(

α+1 u

4v −α

)

+
(

β x

4y −β

)

is a sum of

an idempotent and a nilpotent in R and hence in M2(Z). Moreover, it is clear that

neither C nor I2 − C is a nilpotent. Let r := α+ β = 2 and δ := − det(C) = −330.

Case 1 : det(C − E) = 1. By Andrica and Călugăreanu [1], Theorem 4, we have

the (elliptic) Pell equation

X2 − (1 + 4δ)Y 2 = 4(4v + 4y)2(2r + 1)2(δ2 + 2δ + 2)

with
X = (2r + 1)[−(1 + 4δ)4q + (2δ + 3)(4v + 4y)],

Y = 2(4v + 4y)2p+ (2r2 + 2r + 1 + 2δ)4q − (2δ + 3)(4v + 4y).

That is,

X2 + 1 319Y 2 = 8 486 172 800

with
X = 26 380q+ 91 980,

Y = 1 568p− 2 588q − 18 396.

As 20 divides X , 20 divides Y . As Y 6= 0, 202 6 Y 2. Thus, X2 = 8 486 172 800−

1 319Y 2 6 8 486 172 800− 1 319 · 202 = 8 485 645 200, so −92 117.5 < X < 92 117.5,
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i.e., −92 117.5 < 26 380q + 91 980 < 92 117.5. It follows that −7 < q < 1. A case-

by-case checking shows that only when q = 0 the Pell equation has integer solutions,

which are X = 91 980 and Y = ±140. But this would yield that p = 2 317

196
or

p = 1 141

98
, a contradiction.

Case 2: det(C −E) = −1. By Andrica and Călugăreanu [1], Theorem 4, we have

the (elliptic) Pell equation

X2 − (1 + 4δ)Y 2 = 4(4v + 4y)2(2r + 1)2δ(δ − 2)

with
X = (2r + 1)[−(1 + 4δ)4q + (2δ − 1)(4v + 4y)],

Y = 2(4v + 4y)2p+ (2r2 + 2r + 1 + 2δ)4q − (2δ − 1)(4v + 4y).

That is,

X2 + 1 319Y 2 = 8 589 504 000

with
X = 26 380q+ 92 540,

Y = 1 568p− 2 588q − 18 508.

As 20 divides X , 20 divides Y . As Y 6= 0, 202 6 Y 2. Thus, X2 = 8 589 504 000−

1 319Y 2 6 8 589 504 000 − 1 319 · 202 = 8 588 976 400, so −92 677 < X < 92 677,

i.e., −92 677 < 26 380q + 92 540 < 92 677. It follows that −7 6 q 6 0. A case-by-

case checking shows that the Pell equation has integer solutions only when q = 0 or

q = −7. When q = 0, the solutions are X = 92 540 and Y = ±140, which implies

p = 333

28
or p = 82

7
, a contradiction. When q = −7, the solutions are X = −92 120

and Y = ±280, which implies p = 3

7
or p = 1

14
, a contradiction.

Hence, we have proved that C is not clean in R. �

To sum up we can conclude the following:

Theorem 3.4. If s > 1, then not every nil-clean element is clean in
(

Z Z

s2Z Z

)

.

Remark 3.5. We point out that, for two distinct positive integers s and t,

the two rings
(

Z Z

s2Z Z

)

and
(

Z Z

t2Z Z

)

are not isomorphic. To see this, we note that
(

Z Z

s2Z Z

)

∼=
(

Z sZ

sZ Z

)

via
(

a x

s2y b

)

↔
(

a sx

sy b

)

, and that
(

Z sZ

sZ Z

)

∼= M2(Z; s), the formal

matrix ring defined in [9] (see [9], Proposition 4 (3)). Hence, by [9], Example 23,
(

Z Z

s2Z Z

)

∼=
(

Z Z

t2Z Z

)

if and only if s = t.
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4. Unit-regular elements need not be clean:

more counter-examples

Every unit-regular ring is clean by Camillo and Khurana in [2]. By Khurana

and Lam in [6], a single unit-regular element in a ring need not be clean. Indeed,

a criterion is given in [6] for a matrix
(

a b

0 0

)

in M2(K) over a commutative ring K to

be clean, and this enables the authors of [6] to give many examples of unit-regular

matrices in M2(Z) that are not clean.

Next we give more examples of unit-regular elements that are not clean in some

subrings of M2(Z) and our argument is fairly simple.

Theorem 4.1. If s > 3, then
(

s+1 s

0 0

)

is unit-regular, but not clean in
(

Z Z

s2Z Z

)

.

P r o o f. Let R =
(

Z Z

s2Z Z

)

. We see that

A :=

(

s+ 1 s

0 0

)

=

(

1 0

0 0

)(

s+ 1 1

−s2 −s+ 1

)

is a product of an idempotent and a unit in R. Assume on the contrary that A =

E + (A− E) where E2 = E ∈ R and A− E is invertible in R. Then one can easily

see that E 6= 0 and E 6= I2. So we can write E =
(

r+1 p

s2q −r

)

with r2 + r + s2pq = 0

by Lemma 2.1. In view of r2+r+s2pq = 0, we have ±1 = det(A−E) = rs+r+s2q,

and hence gcd(r, s) = 1. Thus, it follows from r2 + r + s2pq = 0 that s | 1 + r.

If det(A−E) = 1, then rs+ r+ s2q = 1 and so r(s+2) = (1+ r)− s2q. It follows

that s2 | r(s + 2). Hence s2 | s+ 2, and so s | 2, a contradiction.

If det(A−E) = −1, then rs+ r+ s2q = −1 and so rs = −(1+ r)− s2q. It follows

that s2 | rs, so s | r, a contradiction. �

Remark 4.2. The matrix
(

s+1 s

0 0

)

in Theorem 4.1 is clean in M2(Z), because
(

s+1 s

0 0

)

=
(

0 0

1 1

)

+
(

s+1 s

−1 −1

)

is a sum of an idempotent and a unit in M2(Z).

Example 4.3. The matrix
(

11 1

0 0

)

is unit-regular, but not clean in
(

Z Z

4Z Z

)

.

P r o o f. As A :=
(

11 1

0 0

)

=
(

1 0

0 0

)(

11 1

32 3

)

, A is unit-regular in R :=
(

Z Z

4Z Z

)

.

Assume on the contrary that A = E + (A − E) where E2 = E ∈ R and A− E is

invertible in R. Then one easily sees that E 6= 0 and E 6= I2, so E =
(

r+1 p

4q −r

)

with

r2 + r + 4pq = 0 by Lemma 2.1. It follows that ±1 = det(A− E) = 11r + 4q.

If 11r+4q = 1, then we have an equation q(121p+4q−13) = −3, which has no inte-

ger solutions for p, q. If 11r+4q = −1, then we have an equation q(242p+8q−18) = 5,

which has no integer solutions for p, q. Hence, A is not clean in R. �
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Thus, we can conclude the following:

Theorem 4.4. If s > 1, then not every unit-regular element is clean in
(

Z Z

s2Z Z

)

.

By Khurana and Lam in [6], the matrix
(

12 5

0 0

)

is unit-regular but not clean

in M2(Z), and this is the “smallest” such example one can find in M2(Z). But

“smaller” such examples can be found in some subrings of M2(Z).

Example 4.5. The matrix
(

3 1

0 0

)

is unit-regular, but not clean in
(

Z Z

2
3
Z Z

)

.

P r o o f. Let R =
(

Z Z

2
3
Z Z

)

. We see that

A :=

(

3 1

0 0

)

=

(

1 0

0 0

)(

3 1

8 3

)

is unit-regular in R. Assume on the contrary that A = E+(A−E) where E2 = E ∈ R

and A − E is invertible in R. Then one easily sees that E 6= 0 and E 6= I2, so

E =
(

r+1 p

8q −r

)

with r2 + r + 8pq = 0 by Lemma 2.1. As r2 + r + 8pq = 0, we

have ±1 = det(A − E) = 3r + 8q, and hence gcd(2, r) = 1. Thus, it follows from

r2 + r + 8pq = 0 that 8 | 1 + r.

If det(A−E) = 1, then 3r+8q = 1 and so 4r = (1+ r)− 8q. It follows that 8 | 4r,

so 2 | r, a contradiction.

If det(A−E) = −1, then 3r+8q = −1 and so 2r = −(1 + r)− 8q. It follows that

8 | 2r, so 4 | r, a contradiction. �

Example 4.6. If n > 3, then the matrix
(

2
n−1

−1 1

0 0

)

is unit-regular, but not

clean in
(

Z Z

2
n

Z Z

)

.

P r o o f. The matrix A :=
(

2
n−1

−1 1

0 0

)

=
(

1 0

0 0

)(

2
n−1

−1 1

2
2n−2

−2
n

2
n−1

−1

)

is unit-

regular in R :=
(

Z Z

2
n

Z Z

)

. Assume on the contrary that A = E + (A − E) where

E2 = E ∈ R and A−E is invertible in R. Then one sees that E 6= 0 and E 6= I2, so

E =
(

r+1 p

2
nq −r

)

with r2 + r+2npq = 0 by Lemma 2.1. As r2 + r+2npq = 0, we have

±1 = det(A− E) = (2n−1 − 1)r + 2nq. It follows that gcd(2, r) = 1 and 2n | 1 + r.

If (2n−1 − 1)r + 2nq = 1, then (2n−1)r = (1 + r) − 2nq. So 2n | 2n−1r and thus

2 | r, a contradiction.

If (2n−1− 1)r+2nq = −1, then (2n−1− 2)r = −(1+ r)− 2nq. So 2n | (2n−1− 2)r,

and hence 2 | 1, a contradiction.

So, A is not clean in R. �
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