Czechoslovak Mathematical Journal

Daiki Hashimoto; Takao Ohno; Tetsu Shimomura
Boundedness of generalized fractional integral operators on Orlicz spaces near L^{1} over metric measure spaces

Czechoslovak Mathematical Journal, Vol. 69 (2019), No. 1, 207-223
Persistent URL: http://dml.cz/dmlcz/147628

Terms of use:

© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

BOUNDEDNESS OF GENERALIZED FRACTIONAL INTEGRAL OPERATORS ON ORLICZ SPACES NEAR L^{1} OVER METRIC MEASURE SPACES

Daiki Hashimoto, Nagasaki, Takao Ohno, Oita, Tetsu Shimomura, Hiroshima

Received May 26, 2017. Published online August 6, 2018.

Abstract

We are concerned with the boundedness of generalized fractional integral operators $I_{\varrho, \tau}$ from Orlicz spaces $L^{\Phi}(X)$ near $L^{1}(X)$ to Orlicz spaces $L^{\Psi}(X)$ over metric measure spaces equipped with lower Ahlfors Q-regular measures, where Φ is a function of the form $\Phi(r)=r l(r)$ and l is of log-type. We give a generalization of paper by Mizuta et al. (2010), in the Euclidean setting. We deal with both generalized Riesz potentials and generalized logarithmic potentials.

Keywords: Orlicz space; Riesz potential; fractional integral; metric measure space; lower Ahlfors regular

MSC 2010: 31B15, 46E30, 46E35

1. Introduction

Let G be a bounded set in \mathbb{R}^{N}. O'Neil in [24] gave a sufficient condition for the boundedness of convolution operators in Orlicz spaces $L^{\Phi}(G)$ near $L^{1}(G)$. In this paper, we aim to give a general version of the boundedness of generalized fractional integral operators on $L^{\Phi}(X)$ near $L^{1}(X)$ over metric measure spaces equipped with lower Ahlfors Q-regular measures which are nondoubling measures, as an extension of [14] in the Euclidean setting.

We denote by (X, d, μ) a metric measure spaces, where X is a bounded set, d is a metric on X and μ is a nonnegative complete Borel regular outer measure on X which is finite in every bounded set. For simplicity, we often write X instead of (X, d, μ). For $x \in X$ and $r>0$, we denote by $B(x, r)$ the open ball in X centered
at x with radius r and $d_{X}=\sup \{d(x, y): x, y \in X\}$. We assume that

$$
\mu(\{x\})=0
$$

for $x \in X$ and $0<\mu(B(x, r))<\infty$ for $x \in X$ and $r>0$ for simplicity.
In the present paper, we do not postulate on μ the so-called doubling condition. Recall that a Radon measure μ is said to be doubling if there exists a constant $C_{\mu}>0$ such that $\mu(B(x, 2 r)) \leqslant C_{\mu} \mu(B(x, r))$ for all $x \in \operatorname{supp}(\mu)(=X)$ and $r>0$. Otherwise μ is said to be nondoubling. In connection with the $5 r$-covering lemma, the doubling condition had been a key condition in harmonic analysis. However, Nazarov, Treil and Volberg showed that the doubling condition is not necessary, by using the modified maximal operator, see [19], [20]. For non-homogeneous metric measure spaces, we refer to [12], [29]. We say that a measure μ is lower Ahlfors Q-regular if there exists a constant $K_{0}>0$ such that

$$
\begin{equation*}
\mu(B(x, r)) \geqslant K_{0} r^{Q} \tag{1.1}
\end{equation*}
$$

for all $x \in X$ and $0<r<d_{X}$ (see e.g. [1], [11]). Metric measure spaces equipped with lower Ahlfors Q-regular measures have been studied in many articles over the past decades; see [4], [7], [9] etc. See also [21], [23] for Sobolev's inequality of Riesz potentials and [22] for Trudinger's inequality and continuity of Riesz potentials in such a metric setting. In this paper we assume that μ is lower Ahlfors Q-regular. Here note that if μ is a doubling measure and $d_{X}<\infty$, then μ is lower Ahlfors $\log _{2} C_{\mu}$-regular since

$$
\frac{\mu(B(x, r))}{\mu\left(B\left(x, d_{X}\right)\right)} \geqslant C_{\mu}^{-2}\left(\frac{r}{d_{X}}\right)^{\log _{2} C_{\mu}}
$$

for all $x \in X$ and $0<r<d_{X}$ (see e.g. [1], Lemma 3.3, and [9]). However, there exist lower Ahlfors measures which are nondoubling. For example, let $X_{1}=\{x=$ $\left.\left(x_{1}, 0\right) \in \mathbb{R}^{2}: 0 \leqslant x_{1}<1\right\}$ and $X_{2}=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:|x|<1, x_{1}<0\right\}$ and define $(X, d, \mu)=\left(X_{1}, d_{2}, m_{1}\right) \cup\left(X_{2}, d_{2}, m_{2}\right)$, where d_{2} denotes the 2-dimension Euclidean distance and m_{i} denotes the i-dimension Lebesgue measure. It is easy to show that μ is nondoubling and lower Ahlfors 2-regular. For other examples of nondoubling metric measure spaces, see [26].

Let \mathcal{G} be the set of all continuous functions from $(0, \infty)$ to itself with the doubling condition; that is, there exists a constant $c_{\varphi} \geqslant 1$ such that

$$
\begin{equation*}
\frac{1}{c_{\varphi}} \leqslant \frac{\varphi(r)}{\varphi(s)} \leqslant c_{\varphi} \quad \text { for } \frac{1}{2} \leqslant \frac{r}{s} \leqslant 2 . \tag{1.2}
\end{equation*}
$$

We call c_{φ} the doubling constant of φ.

Let us consider the family \mathcal{Y} of all continuous, increasing, convex and bijective functions from $[0, \infty)$ to itself. For $\Phi \in \mathcal{Y}$, the Orlicz space $L^{\Phi}(X)$ is defined as

$$
L^{\Phi}(X)=\left\{f \in L_{\mathrm{loc}}^{1}(X):\|f\|_{L^{\Phi}(X)}<\infty\right\}
$$

where

$$
\|f\|_{L^{\Phi}(X)}=\inf \left\{\lambda>0: \int_{X} \Phi\left(\frac{|f(x)|}{\lambda}\right) \mathrm{d} \mu(x) \leqslant 1\right\} .
$$

If $\Phi_{1}, \Phi_{2} \in \mathcal{Y}$ and there exists a constant $C \geqslant 1$ such that $\Phi_{1}\left(C^{-1} r\right) \leqslant \Phi_{2}(r) \leqslant$ $\Phi_{1}(C r)$ for all $r>0$, then we see easily that

$$
L^{\Phi_{1}}(X)=L^{\Phi_{2}}(X)
$$

with equivalent norms. Recently, there have also been a surge of activities in understanding Orlicz spaces in a general metric setting; e.g. [3], [6], [13].

Let $\varrho \in \mathcal{G}$ be a function from $(0, \infty)$ to itself with $\int_{0}^{1} \varrho(t) \mathrm{d} t / t<\infty$. For $\tau>2$, we define

$$
I_{\varrho, \tau} f(x)=\int_{X} \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) \mathrm{d} \mu(y)
$$

where $f \in L^{1}(X)$. See, for example, [9] and [16]. If $X=\mathbb{R}^{N}$ and $\varrho(r)=r^{\alpha}$ for $0<\alpha<N$, then $I_{\varrho, \tau} f$ coincides with the usual Riesz potential $I_{\alpha} f$ of order α. Using the operator $I_{\varrho, \tau}$, we can give a systematic proof and several new results as corollaries. We also refer the reader to [5], [8], [17] and [18] for the boundedness of $I_{\varrho} f$ in the Euclidean setting, where

$$
I_{\varrho} f(x)=\int_{G} \frac{\varrho(|x-y|)}{|x-y|^{N}} f(y) \mathrm{d} y \quad\left(f \in L^{1}(G)\right)
$$

O'Neil in [24], Theorem 5.2, gave a sufficient condition for the boundedness of convolution operators in Orlicz spaces $L^{\Phi}(G)$ near $L^{1}(G)$. See also Cianchi [2], page 193. He used other function spaces M^{Φ} in which L^{Φ} is a subspace (see [24], Chapter 3). In [14], we studied the boundedness of I_{ϱ} from $L^{\Phi}(G)$ near $L^{1}(G)$ to $L^{\Psi}(G)$ and gave another sufficient condition in the Euclidean setting.

Our aim in this paper is to give a general version of the boundedness of generalized Riesz potentials $I_{\varrho, \tau} f$ from $L^{\Phi}(X)$ near $L^{1}(X)$ to $L^{\Psi}(X)$ over lower Ahlfors Q-regular metric measure spaces (Theorem 2.1 below), as an extension of [14], Theorem 7.1, in the Euclidean setting. For L^{Φ} case, the maximal function is a crucial tool by Hedberg's trick (see Hedberg [10]). In L^{Φ} near L^{1} case, our strategy is to give an estimate of $I_{\varrho, \tau} f$ by use of a logarithmic type potential

$$
\int_{\left\{y \in X: d(x, y)^{-\gamma}<|f(y)|\right\}} \frac{l_{2}\left(d(x, y)^{-1}\right)}{\mu(B(x, \tau d(x, y)))}|f(y)| \mathrm{d} \mu(y)
$$

which plays a role of maximal functions. Therefore, our proof is quite different from that of O'Neil [24].

In the last section, we show the boundedness of generalized logarithmic potentials $I_{\varrho, \tau} f$ (Theorem 3.1 below), as an extension of [14], Theorem 7.4.

For related results, see [25], [27] and [28].
Throughout this paper, let C denote various positive constants independent of the variables in question. The symbol $g \sim h$ means that $C^{-1} h \leqslant g \leqslant C h$ for some constant $C>0$.

2. Generalized Riesz potentials

Let \mathcal{L} be the set of all positive continuous functions l on $[0, \infty)$ for which there exists a constant $c \geqslant 1$ such that

$$
c^{-1} l(r) \leqslant l\left(r^{2}\right) \leqslant c l(r) \quad \text { whenever } r>0
$$

and $l(r)$ is almost monotone, that is, it is either almost increasing:

$$
l(r) \leqslant c l(s) \quad \text { for } 0<r<s<\infty
$$

or almost decreasing:

$$
l(s) \leqslant c l(r) \text { for } 0<r<s<\infty
$$

Here we collect the fundamental properties on functions $l \in \mathcal{L}$ (see e.g. [14] and [15]).
$(\mathcal{L} 1) l \in \mathcal{G}$ and $1 / l \in \mathcal{L}$.
$(\mathcal{L} 2)$ For all $\alpha>0$, there exists a constant $c_{\alpha} \geqslant 1$ such that

$$
\begin{equation*}
c_{\alpha}^{-1} l(r) \leqslant l\left(r^{\alpha}\right) \leqslant c_{\alpha} l(r) \quad \text { for } 0<r<\infty . \tag{2.1}
\end{equation*}
$$

($\mathcal{L} 3$) For each $\varepsilon>0, r^{\varepsilon} l(r)$ is almost increasing, that is, there exists a constant $c_{\varepsilon} \geqslant 1$ such that

$$
\begin{equation*}
r^{\varepsilon} l(r) \leqslant c_{\varepsilon} s^{\varepsilon} l(s) \quad \text { for } 0<r<s<\infty \tag{2.2}
\end{equation*}
$$

($\mathcal{L} 4)$ If $l, l_{1} \in \mathcal{L}$ and $\alpha>0$, then there exists a constant $c_{\alpha} \geqslant 1$ such that

$$
\begin{equation*}
c_{\alpha}^{-1} l(r) \leqslant l\left(r^{\alpha} l_{1}(r)\right) \leqslant c_{\alpha} l(r) \quad \text { for } 0<r<\infty \tag{2.3}
\end{equation*}
$$

$(\mathcal{L} 5)$ If $p \geqslant 1, l, l_{1}, l_{2} \in \mathcal{L}, \Phi \in \mathcal{Y}$ and $\Phi(r) \leqslant r^{p} l(r) l_{1}(r) l_{2}(r)$, then there exists a constant $c>0$ such that

$$
\begin{equation*}
r^{1 / p} l(r)^{-1 / p} l_{1}(r)^{-1 / p} l_{2}(r)^{-1 / p} \leqslant c \Phi^{-1}(r) \quad \text { for } 0<r<\infty \tag{2.4}
\end{equation*}
$$

where $\Phi^{-1}(r)$ is the inverse function of $\Phi(r)$.
For $\tau>2$, consider the generalized Riesz potential

$$
I_{\varrho, \tau} f(x)=\int_{X} \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) \mathrm{d} \mu(y)
$$

where $\varrho \in \mathcal{G}$ is of the form $\varrho(r)=r^{\alpha} l\left(r^{-1}\right)^{-1}$ with $0<\alpha<Q$ and $l \in \mathcal{L}$.
Theorem 2.1. Let $0<\alpha<Q$ and $p=Q /(Q-\alpha)$. Let $\varrho \in \mathcal{G}$ and $\Phi \in \mathcal{Y}$ be of the form

$$
\varrho(r)=r^{\alpha} l\left(r^{-1}\right)^{-1}
$$

and

$$
\Phi(r)=r l_{1}(r)
$$

where $l, l_{1} \in \mathcal{L}$. Take functions $l_{2} \in \mathcal{L}$ and $\Psi \in \mathcal{Y}$ satisfying

$$
\begin{gather*}
\int_{d_{X}^{-1}}^{r} l_{2}(t) \frac{\mathrm{d} t}{t} \leqslant l_{1}(r) \quad \text { for } d_{X}^{-1} \leqslant r<\infty \tag{2.5}\\
\Psi(r) \leqslant r^{p} l(r)^{p} l_{1}(r)^{p-1} l_{2}(r) \quad \text { for } 0 \leqslant r<\infty \tag{2.6}
\end{gather*}
$$

Then there exists a constant $A>0$ such that

$$
\left\|I_{\varrho, \tau} f\right\|_{L^{\Psi}(X)} \leqslant A\|f\|_{L^{\Phi}(X)}
$$

where the constant A depends on $\tau, \alpha, Q, K_{0}, d_{X}$ and the constants appearing in $(\mathcal{L} 1)-(\mathcal{L} 5)$.

As in Corollary 7.2 in [14], we have the following corollary in our setting as a special case of Theorem 2.1.

Corollary 2.2. Let $0<\alpha<Q, p=Q /(Q-\alpha)$. For $\alpha_{1} \in \mathbb{R}$ and $\beta_{1}>0$, let

$$
\begin{aligned}
\varrho(r) & =r^{\alpha}\left(\log \left(c+r^{-1}\right)\right)^{-\alpha_{1}} \\
\Phi(r) & =r(\log (c+r))^{\beta_{1}} \\
\Psi(r) & =r^{p}(\log (c+r))^{p\left(\alpha_{1}+\beta_{1}\right)-1}
\end{aligned}
$$

where $c>\mathrm{e}$ is chosen so that $\Phi, \Psi \in \mathcal{Y}$. Then there exists a constant $A>0$ such that

$$
\left\|I_{\varrho, \tau} f\right\|_{L^{\Psi}(X)} \leqslant A\|f\|_{L^{\Phi}(X)} .
$$

Remark 2.3. Let $\mathbf{B}=B(0,1) \subset \mathbb{R}^{N}$. In Corollary 2.2 we cannot take $\beta_{1}=0$. For details, see [14], Remark 7.1.

Remark 2.4 ([14], Remark 7.2). Let $\mathbf{B}=B(0,1) \subset \mathbb{R}^{N}$. Let $\alpha, \alpha_{1}, \beta_{1}, p$ and Φ be as in Corollary 2.2. If $\gamma>p\left(\alpha_{1}+\beta_{1}\right)-1$, then one can find $f \in L^{\Phi}(\mathbf{B})$ but

$$
\int_{\mathbf{B}}\left|I_{\varrho} f(x)\right|^{p}\left(\log \left(1+\left|I_{\varrho} f(x)\right|\right)\right)^{\gamma} \mathrm{d} x=\infty .
$$

As in Corollary 7.3 in [14], we have the following corollary in our setting as a special case of Theorem 2.1.

Corollary 2.5. Let $0<\alpha<Q, p=Q /(Q-\alpha)$. For $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ and $\beta_{2}>0$, let

$$
\begin{aligned}
\varrho(r) & =r^{\alpha}\left(\log \left(c+r^{-1}\right)\right)^{-\alpha_{1}}\left(\log \log \left(c+r^{-1}\right)\right)^{-\alpha_{2}} \\
\Phi(r) & =r(\log \log (c+r))^{\beta_{2}} \\
\Psi(r) & =r^{p}(\log (c+r))^{p \alpha_{1}-1}(\log \log (c+r))^{p\left(\alpha_{2}+\beta_{2}\right)-1}
\end{aligned}
$$

where $c>\mathrm{e}^{2}$ is chosen so that $\Phi, \Psi \in \mathcal{Y}$. Then there exists a constant $A>0$ such that

$$
\left\|I_{\varrho, \tau} f\right\|_{L^{\Psi}(X)} \leqslant A\|f\|_{L^{\Phi}(X)} .
$$

Pro of of Theorem 2.1. We may assume that $\|f\|_{L^{\Phi}(X)}=1$. Then

$$
\int_{X} \Phi(|f(y)|) \mathrm{d} \mu(y) \leqslant 1
$$

Note that l_{1} is nondecreasing since Φ is convex by our assumption.
For $0<\gamma<\alpha$, let

$$
J(x)=\int_{\left\{y \in X: d(x, y)^{-\gamma}<|f(y)|\right\}} \frac{l_{2}\left(d(x, y)^{-1}\right)}{\mu(B(x, \tau d(x, y)))}|f(y)| \mathrm{d} \mu(y) .
$$

Then for $0<\delta \leqslant d_{X}$, which will be determined later, we have by (2.2)

$$
\begin{aligned}
\int_{B(x, \delta)} & \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))}|f(y)| \mathrm{d} \mu(y) \\
\leqslant & \int_{\{y \in B(x, \delta): d(x, y)-\gamma<|f(y)|\}} \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))}|f(y)| \mathrm{d} \mu(y) \\
& +\int_{B(x, \delta)} \frac{d(x, y)^{\alpha-\gamma} l\left(d(x, y)^{-1}\right)^{-1}}{\mu(B(x, \tau d(x, y)))} \mathrm{d} \mu(y) \\
\leqslant & C\left(\delta^{\alpha} l\left(\delta^{-1}\right)^{-1} l_{2}\left(\delta^{-1}\right)^{-1} J(x)+\delta^{\alpha-\gamma} l\left(\delta^{-1}\right)^{-1}\right)
\end{aligned}
$$

since

$$
\begin{aligned}
\int_{B(x, \delta)} & \frac{d(x, y)^{\alpha-\gamma} l\left(d(x, y)^{-1}\right)^{-1}}{\mu(B(x, \tau d(x, y)))} \mathrm{d} \mu(y) \\
= & \sum_{j=1}^{\infty} \int_{B\left(x, \tau^{-j+1} \delta\right) \backslash B\left(x, \tau^{-j} \delta\right)} \frac{d(x, y)^{\alpha-\gamma} l\left(d(x, y)^{-1}\right)^{-1}}{\mu(B(x, \tau d(x, y)))} \mathrm{d} \mu(y) \\
\leqslant & C \sum_{j=1}^{\infty} \int_{B\left(x, \tau^{-j+1} \delta\right) \backslash B\left(x, \tau^{-j} \delta\right)} \frac{\left(\tau^{-j+1} \delta\right)^{\alpha-\gamma} l\left(\left(\tau^{-j+1} \delta\right)^{-1}\right)^{-1}}{\mu\left(B\left(x, \tau^{-j+1} \delta\right)\right)} \mathrm{d} \mu(y) \\
\leqslant & C \sum_{j=1}^{\infty}\left(\tau^{-j+1} \delta\right)^{\alpha-\gamma} l\left(\left(\tau^{-j+1} \delta\right)^{-1}\right)^{-1} \leqslant \frac{C}{\log \tau} \int_{0}^{\delta} t^{\alpha-\gamma} l\left(t^{-1}\right)^{-1} \frac{\mathrm{~d} t}{t} \\
& \leqslant C \delta^{\alpha-\gamma} l\left(\delta^{-1}\right)^{-1} .
\end{aligned}
$$

Similarly, for $\alpha<\gamma^{\prime}<Q$ we obtain by (1.1), (2.1) and (2.2)

$$
\begin{aligned}
\int_{X \backslash B(x, \delta)} & \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))}|f(y)| \mathrm{d} \mu(y) \\
& \leqslant C \int_{X \backslash B(x, \delta)} \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))}\left(|f(y)| \frac{l_{1}(|f(y)|)}{l_{1}\left(d(x, y)^{-1}\right)}+d(x, y)^{-\gamma^{\prime}}\right) \mathrm{d} \mu(y) \\
& \leqslant C\left(K_{0}^{-1} \tau^{-Q} \int_{X \backslash B(x, \delta)} d(x, y)^{\alpha-Q} l\left(d(x, y)^{-1}\right)^{-1} l_{1}\left(d(x, y)^{-1}\right)^{-1} \Phi(|f(y)|) \mathrm{d} \mu(y)\right. \\
& \left.+\int_{X \backslash B(x, \delta)} \frac{d(x, y)^{\alpha-\gamma^{\prime}} l\left(d(x, y)^{-1}\right)^{-1}}{\mu(B(x, \tau d(x, y)))} \mathrm{d} \mu(y)\right) \\
& \leqslant C\left(\delta^{\alpha-Q} l\left(\delta^{-1}\right)^{-1} l_{1}\left(\delta^{-1}\right)^{-1} \int_{X} \Phi(|f(y)|) \mathrm{d} \mu(y)+\delta^{\alpha-\gamma^{\prime}} l\left(\delta^{-1}\right)^{-1}\right) \\
& \leqslant C\left(\delta^{\alpha-Q} l\left(\delta^{-1}\right)^{-1} l_{1}\left(\delta^{-1}\right)^{-1}+\delta^{\alpha-\gamma^{\prime}} l\left(\delta^{-1}\right)^{-1}\right)
\end{aligned}
$$

since

$$
\begin{aligned}
& \int_{X \backslash B(x, \delta)} \frac{d(x, y)^{\alpha-\gamma^{\prime}} l\left(d(x, y)^{-1}\right)^{-1}}{\mu(B(x, \tau d(x, y)))} \mathrm{d} \mu(y) \\
& =\sum_{j=1}^{\infty} \int_{B\left(x, \tau^{j} \delta\right) \backslash B\left(x, \tau^{j-1} \delta\right)} \frac{d(x, y)^{\alpha-\gamma^{\prime}} l\left(d(x, y)^{-1}\right)^{-1}}{\mu(B(x, \tau d(x, y)))} \mathrm{d} \mu(y) \\
& \leqslant C \sum_{j=1}^{\infty} \int_{B\left(x, \tau^{j} \delta\right) \backslash B\left(x, \tau^{j-1} \delta\right)} \frac{\left(\tau^{j-1} \delta\right)^{\alpha-\gamma^{\prime}} l\left(\left(\tau^{j-1} \delta\right)^{-1}\right)^{-1}}{\mu\left(B\left(x, \tau^{j} \delta\right)\right)} \mathrm{d} \mu(y) \\
& \leqslant C \sum_{j=1}^{\infty}\left(\tau^{j-1} \delta\right)^{\alpha-\gamma^{\prime}} l\left(\left(\tau^{j-1} \delta\right)^{-1}\right)^{-1} \leqslant \frac{C}{\log \tau} \int_{\delta}^{\infty} t^{\alpha-\gamma^{\prime}} l\left(t^{-1}\right)^{-1} \frac{\mathrm{~d} t}{t} \\
& \leqslant C \delta^{\alpha-\gamma^{\prime}} l\left(\delta^{-1}\right)^{-1} .
\end{aligned}
$$

Hence, it follows from (2.2) that

$$
\begin{aligned}
\left|I_{\varrho, \tau} f(x)\right| \leqslant & \int_{B(x, \delta)} \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))}|f(y)| \mathrm{d} \mu(y) \\
& +\int_{X \backslash B(x, \delta)} \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))}|f(y)| \mathrm{d} \mu(y) \\
\leqslant & C\left(\delta^{\alpha} l\left(\delta^{-1}\right)^{-1} l_{2}\left(\delta^{-1}\right)^{-1} J(x)+\delta^{\alpha-\gamma} l\left(\delta^{-1}\right)^{-1}\right. \\
& \left.+\delta^{\alpha-Q} l\left(\delta^{-1}\right)^{-1} l_{1}\left(\delta^{-1}\right)^{-1}+\delta^{\alpha-\gamma^{\prime}} l\left(\delta^{-1}\right)^{-1}\right) \\
= & C\left(\delta^{\alpha} l\left(\delta^{-1}\right)^{-1} l_{2}\left(\delta^{-1}\right)^{-1} J(x)\right. \\
& \left.+\delta^{\alpha-Q} l\left(\delta^{-1}\right)^{-1} l_{1}\left(\delta^{-1}\right)^{-1}\left(\delta^{Q-\gamma} l_{1}\left(\delta^{-1}\right)+1+\delta^{Q-\gamma^{\prime}} l_{1}\left(\delta^{-1}\right)\right)\right) \\
\leqslant & C\left(\delta^{\alpha} l\left(\delta^{-1}\right)^{-1} l_{2}\left(\delta^{-1}\right)^{-1} J(x)+\delta^{\alpha-Q} l\left(\delta^{-1}\right)^{-1} l_{1}\left(\delta^{-1}\right)^{-1}\right)
\end{aligned}
$$

Now, let

$$
\delta=\min \left\{J(x)^{-1 / Q} l_{1}(J(x))^{-1 / Q} l_{2}(J(x))^{1 / Q}, d_{X}\right\}
$$

If $\delta=J(x)^{-1 / Q} l_{1}(J(x))^{-1 / Q} l_{2}(J(x))^{1 / Q}$, then it follows from (2.3) that

$$
l\left(\delta^{-1}\right) \sim l(J(x)), \quad l_{1}\left(\delta^{-1}\right) \sim l_{1}(J(x)), \quad l_{2}\left(\delta^{-1}\right) \sim l_{2}(J(x))
$$

so we have by (2.6) and (2.4)

$$
\begin{aligned}
\left|I_{\varrho, \tau} f(x)\right| & \leqslant C J(x)^{(Q-\alpha) / Q} l(J(x))^{-1} l_{1}(J(x))^{-\alpha / Q} l_{2}(J(x))^{-(Q-\alpha) / Q} \\
& =C J(x)^{1 / p} l(J(x))^{-1} l_{1}(J(x))^{-(p-1) / p} l_{2}(J(x))^{-1 / p} \\
& \leqslant C \Psi^{-1}(J(x)),
\end{aligned}
$$

where $\Psi^{-1}(r)$ is the inverse function of $\Psi(r)$. If $\delta=d_{X}$, then

$$
\left|I_{\varrho, \tau} f(x)\right| \leqslant C
$$

Therefore

$$
\Psi\left(\frac{\left|I_{\varrho, \tau} f(x)\right|}{C}\right) \leqslant J(x)+1 .
$$

Let $j_{0}(y)$ be the largest nonnegative integer such that $|f(y)|^{-1 / \gamma} \widetilde{\tau}^{j_{0}(y)-1} \leqslant d_{X}$ for $y \in X$, where $\widetilde{\tau}=\tau / 2$. By Fubini's theorem, we obtain

$$
\begin{aligned}
& \int_{X} J(x) \mathrm{d} \mu(x) \\
& =\int_{X}\left(\int_{\left\{x \in X: d(x, y)^{-\gamma}<|f(y)|\right\}} \frac{l_{2}\left(d(x, y)^{-1}\right)}{\mu(B(x, \tau d(x, y)))} \mathrm{d} \mu(x)\right)|f(y)| \mathrm{d} \mu(y) \\
& \leqslant \int_{X}\left(\sum_{j=1}^{j_{0}(y)} \int_{K_{j}} \frac{l_{2}\left(d(x, y)^{-1}\right)}{\mu(B(x, \tau d(x, y)))} \mathrm{d} \mu(x)\right)|f(y)| \mathrm{d} \mu(y) \\
& \leqslant C \int_{X}\left(\sum_{j=1}^{j_{0}(y)} \int_{K_{j}} \frac{l_{2}\left(\left(|f(y)|^{-1 / \gamma} \widetilde{\tau}^{j}\right)^{-1}\right)}{\mu\left(B\left(x, \tau|f(y)|^{-1 / \gamma} \widetilde{\tau}^{j-1}\right)\right)} \mathrm{d} \mu(x)\right)|f(y)| \mathrm{d} \mu(y) \\
& \leqslant C \int_{X}\left(\sum_{j=1}^{j_{0}(y)} \int_{B\left(y,|f(y)|^{-1 / \gamma} \widetilde{\tau}^{j}\right)} \frac{l_{2}\left(\left(|f(y)|^{-1 / \gamma} \widetilde{\tau}^{j}\right)^{-1}\right)}{\mu\left(B \left(y,|f(y)|^{\left.\left.-1 / \gamma \widetilde{\tau}^{j}\right)\right)}\right.\right.} \mathrm{d} \mu(x)\right)|f(y)| \mathrm{d} \mu(y) \\
& \leqslant C \int_{X}\left(\sum _ { j = 1 } ^ { j _ { 0 } (y) } l _ { 2 } \left(\left(|f(y)|^{\left.\left.\left.-1 / \gamma \widetilde{\tau}^{j}\right)^{-1}\right)\right)|f(y)| \mathrm{d} \mu(y)}\right.\right.\right.
\end{aligned}
$$

where

$$
K_{j}=B\left(y,|f(y)|^{-1 / \gamma} \widetilde{\tau}^{j}\right) \backslash B\left(y,|f(y)|^{-1 / \gamma} \widetilde{\tau}^{j-1}\right)
$$

By (2.5) and (2.1), we have

$$
\begin{aligned}
\int_{X} J(x) \mathrm{d} \mu(x) & \leqslant C \int_{X}\left(\int_{d_{X}^{-1}}^{\widetilde{\tau}|f(y)|^{1 / \gamma}} l_{2}(t) \frac{\mathrm{d} t}{t}\right)|f(y)| \mathrm{d} \mu(y) \\
& \leqslant C \int_{X} l_{1}\left(|f(y)|^{1 / \gamma}\right)|f(y)| \mathrm{d} \mu(y) \\
& \leqslant C \int_{X} \Phi(|f(y)|) \mathrm{d} \mu(y) \leqslant C
\end{aligned}
$$

Thus, this theorem is proved.

3. Generalized logarithmic potentials

For $\tau>2$, consider the generalized logarithmic potential

$$
I_{\varrho, \tau} f(x)=\int_{X} \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))} f(y) \mathrm{d} \mu(y)
$$

where $\varrho \in \mathcal{G}$ is of the form $\varrho(r)=l\left(r^{-1}\right)^{-1}$ with $l \in \mathcal{L}$ satisfying

$$
\begin{equation*}
\int_{0}^{1} \varrho(t) \frac{\mathrm{d} t}{t}<\infty \tag{3.1}
\end{equation*}
$$

For generalized logarithmic potentials, we have the following.
Theorem 3.1. Let $\varrho \in \mathcal{G}$ be of the form $\varrho(r)=l\left(r^{-1}\right)^{-1}$ with $l \in \mathcal{L}$ satisfying (3.1). Let $\Phi \in \mathcal{Y}$ be of the form

$$
\Phi(r)=r l_{1}(r),
$$

where $l_{1} \in \mathcal{L}$. Let $l_{2}, m_{1}, m_{2}, m_{3}, m_{4}$ be functions in \mathcal{L} such that
(i) $l m_{1}, l_{1} / m_{2}, l / m_{3}$ and $l_{1} m_{4}$ are almost increasing;
(ii) $\int_{d_{X}^{-1}}^{r} m_{1}(t) \mathrm{d} t / t \leqslant c_{1} m_{2}(r)$ for $d_{X}^{-1} \leqslant r<\infty$;
(iii) $\int_{r}^{\infty}\left(m_{3}(t)\right)^{-1} \mathrm{~d} t / t \leqslant c_{2} / m_{4}(r)$ for $d_{X}^{-1} \leqslant r<\infty$;
(iv) $m_{2}(r) / m_{1}(r)+m_{3}(r) / m_{4}(r) \leqslant l_{2}(r)$ for $d_{X}^{-1} \leqslant r<\infty$,
where c_{1}, c_{2} are positive constants. Take a function $\Psi \in \mathcal{Y}$ satisfying

$$
\Psi(r) \leqslant r l(r) l_{1}(r) l_{2}(r)^{-1} \quad \text { for } 0 \leqslant r<\infty .
$$

Then there exists a constant $A>0$ such that

$$
\left\|I_{\varrho, \tau} f\right\|_{L^{\Psi}(X)} \leqslant A\|f\|_{L^{\Phi}(X)},
$$

where the constant A depends on τ, Q, K_{0}, d_{X} and the constants appearing in $(\mathcal{L} 1)-(\mathcal{L} 5)$ and (i)-(iv).

As in [14], we have the following corollaries in our setting as special cases of Theorem 3.1. For other examples, see [14].

Corollary 3.2. For $\alpha_{1}>0$ and $\beta_{1}>0$, let

$$
\begin{aligned}
\varrho(r) & =\left(\log \left(c+r^{-1}\right)\right)^{-\alpha_{1}-1}, \\
\Phi(r) & =r(\log (c+r))^{\beta_{1}}, \\
\Psi(r) & =r(\log (c+r))^{\alpha_{1}+\beta_{1}},
\end{aligned}
$$

where $c>\mathrm{e}$ is chosen so that $\Phi, \Psi \in \mathcal{Y}$. Then there exists a constant $A>0$ such that

$$
\left\|I_{\varrho, \tau} f\right\|_{L^{\Psi}(X)} \leqslant A\|f\|_{L^{\Phi}(X)} .
$$

Corollary 3.3. For $\alpha_{1}>0$ and $\beta_{2}>0$, let

$$
\begin{aligned}
\varrho(r) & =\left(\log \left(c+r^{-1}\right)\right)^{-\alpha_{1}-1} \\
\Phi(r) & =r(\log \log (c+r))^{\beta_{2}} \\
\Psi(r) & =r(\log (c+r))^{\alpha_{1}}(\log \log (c+r))^{\beta_{2}-1}
\end{aligned}
$$

where $c>\mathrm{e}^{2}$ is chosen so that $\Phi, \Psi \in \mathcal{Y}$. Then there exists a constant $A>0$ such that

$$
\left\|I_{\varrho, \tau} f\right\|_{L^{\Psi}(X)} \leqslant A\|f\|_{L^{\Phi}(X)} .
$$

Corollary 3.4. For $\alpha_{2}>0, \beta_{1}>0$ and $\beta_{2} \in \mathbb{R}$, let

$$
\begin{aligned}
\varrho(r) & =\left(\log \left(c+r^{-1}\right)\right)^{-1}\left(\log \log \left(c+r^{-1}\right)\right)^{-\alpha_{2}-1} \\
\Phi(r) & =r(\log (c+r))^{\beta_{1}}(\log \log (c+r))^{\beta_{2}} \\
\Psi(r) & =r(\log (c+r))^{\beta_{1}}(\log \log (c+r))^{\alpha_{2}+\beta_{2}},
\end{aligned}
$$

where $c>\mathrm{e}^{2}$ is chosen so that $\Phi, \Psi \in \mathcal{Y}$. Then there exists a constant $A>0$ such that

$$
\left\|I_{\varrho, \tau} f\right\|_{L^{\Psi}(X)} \leqslant A\|f\|_{L^{\Phi}(X)} .
$$

Pro of of Theorem 3.1. We may assume that $\|f\|_{L^{\Phi}(X)}=1$. Then

$$
\int_{X} \Phi(|f(y)|) \mathrm{d} \mu(y) \leqslant 1
$$

Let $0<\delta<Q$. For $x \in X$ and $0<r<d_{X}$, write

$$
X=E_{0} \cup E_{1} \cup E_{2} \cup E_{3} \cup E_{4}
$$

where

$$
\begin{aligned}
& E_{0}=\left\{y \in B(x, r):|f(y)| \leqslant r^{-\delta}\right\}, \\
& E_{1}=\left\{y \in B(x, r):|f(y)|>r^{-\delta},|f(y)|>d(x, y)^{-\delta}\right\}, \\
& E_{2}=\left\{y \in B(x, r):|f(y)|>r^{-\delta},|f(y)| \leqslant d(x, y)^{-\delta}\right\}, \\
& E_{3}=\left\{y \in X \backslash B(x, r):|f(y)|>d(x, y)^{-\delta}\right\}, \\
& E_{4}=\left\{y \in X \backslash B(x, r):|f(y)| \leqslant d(x, y)^{-\delta}\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\int_{E_{0}} & \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))}|f(y)| \mathrm{d} \mu(y) \\
& \leqslant r^{-\delta} \sum_{j=1}^{\infty} \int_{B\left(x, \tau^{-j+1} r\right) \backslash B\left(x, \tau^{-j} r\right)} \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))} \mathrm{d} \mu(y) \\
& \leqslant C r^{-\delta} \sum_{j=1}^{\infty} \int_{B\left(x, \tau^{-j+1} r\right) \backslash B\left(x, \tau^{-j} r\right)} \frac{\varrho\left(\tau^{-j+1} r\right)}{\mu\left(B\left(x, \tau^{-j+1} r\right)\right)} \mathrm{d} \mu(y) \\
& \leqslant C r^{-\delta} \sum_{j=1}^{\infty} \varrho\left(\tau^{-j+1} r\right) \leqslant C r^{-\delta} \int_{0}^{r} \varrho(t) \frac{\mathrm{d} t}{t} \leqslant C r^{-\delta} .
\end{aligned}
$$

Let $j_{1}(r)$ be the largest integer such that $\tau^{j_{1}(r)-1} r \leqslant d_{X}$. We have

$$
\begin{aligned}
\int_{E_{4}} & \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))}|f(y)| \mathrm{d} \mu(y) \\
& \leqslant \int_{X \backslash B(x, r)} \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))} d(x, y)^{-\delta} \mathrm{d} \mu(y) \\
& \leqslant r^{-\delta} \sum_{j=1}^{j_{1}(r)} \int_{B\left(x, \tau^{j} r\right) \backslash B\left(x, \tau^{j-1} r\right)} \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))} \mathrm{d} \mu(y) \\
& \leqslant C r^{-\delta} \sum_{j=1}^{j_{1}(r)} \int_{B\left(x, \tau^{j} r\right) \backslash B\left(x, \tau^{j-1} r\right)} \frac{\varrho\left(\tau^{j} r\right)}{\mu\left(B\left(x, \tau^{j} r\right)\right)} \mathrm{d} \mu(y) \\
& \leqslant C r^{-\delta} \sum_{j=1}^{j_{1}(r)} \varrho\left(\tau^{j} r\right) \leqslant C r^{-\delta} \int_{r}^{\tau d_{X}} \varrho(t) \frac{\mathrm{d} t}{t} \leqslant C r^{-\delta} .
\end{aligned}
$$

Noting that l_{1} is nondecreasing by our assumption that Φ is convex, we see by (2.1), (2.2) and (1.1) that

$$
\begin{aligned}
\int_{E_{3}} & \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))}|f(y)| \mathrm{d} \mu(y) \\
& \leqslant \int_{E_{3}} \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))}|f(y)| \frac{l_{1}(|f(y)|)}{l_{1}\left(d(x, y)^{-\delta}\right)} \mathrm{d} \mu(y) \\
& \leqslant C \int_{X \backslash B(x, r)} \frac{\varrho(d(x, y))}{K_{0} \tau^{Q} d(x, y)^{Q} l_{1}\left(d(x, y)^{-1}\right)} \Phi(|f(y)|) \mathrm{d} \mu(y) \\
& \leqslant \frac{C \varrho(r)}{r^{Q} l_{1}\left(r^{-1}\right)} \int_{X \backslash B(x, r)} \Phi(|f(y)|) \mathrm{d} \mu(y) \leqslant \frac{C}{r^{Q} l\left(r^{-1}\right) l_{1}\left(r^{-1}\right)} .
\end{aligned}
$$

Since $r^{-\delta} \leqslant C\left\{r^{Q} l\left(r^{-1}\right) l_{1}\left(r^{-1}\right)\right\}^{-1}$ by (2.2), we have

$$
\int_{E_{0} \cup E_{3} \cup E_{4}} \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))}|f(y)| \mathrm{d} \mu(y) \leqslant \frac{C}{r^{Q} l\left(r^{-1}\right) l_{1}\left(r^{-1}\right)} .
$$

Next, let us consider the integral over $E_{1} \cup E_{2}$. Set

$$
J(x)=J_{1}(x)+J_{2}(x)
$$

where

$$
\begin{aligned}
& J_{1}(x)=\int_{\widetilde{E}_{1}} \frac{m_{1}\left(d(x, y)^{-1}\right)}{\mu(B(x, \tau d(x, y)))} \frac{\Phi(|f(y)|)}{m_{2}(|f(y)|)} \mathrm{d} \mu(y) \\
& J_{2}(x)=\int_{\widetilde{E}_{2}} \frac{m_{4}(|f(y)|) \Phi(|f(y)|)}{\mu(B(x, \tau d(x, y))) m_{3}\left(d(x, y)^{-1}\right)} \mathrm{d} \mu(y)
\end{aligned}
$$

with

$$
\begin{aligned}
& \widetilde{E}_{1}=\left\{y \in X:|f(y)|>d(x, y)^{-\delta}\right\} \\
& \widetilde{E}_{2}=\left\{y \in X:|f(y)| \leqslant d(x, y)^{-\delta}\right\}
\end{aligned}
$$

We insist by assumption (iv) that

$$
\begin{aligned}
& \int_{E_{1}} \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))}|f(y)| \mathrm{d} \mu(y) \\
& \leqslant C \int_{E_{1}} \frac{1}{\mu(B(x, \tau d(x, y))) l\left(d(x, y)^{-1}\right)} \frac{m_{1}\left(d(x, y)^{-1}\right)}{m_{1}\left(d(x, y)^{-1}\right)}|f(y)| \frac{l_{1}(|f(y)|) / m_{2}(|f(y)|)}{l_{1}\left(r^{-\delta}\right) / m_{2}\left(r^{-\delta}\right)} \mathrm{d} \mu(y) \\
& \leqslant \frac{C}{l\left(r^{-1}\right) m_{1}\left(r^{-1}\right)} \frac{m_{2}\left(r^{-1}\right)}{l_{1}\left(r^{-1}\right)} J_{1}(x) \leqslant \frac{C l_{2}\left(r^{-1}\right)}{l\left(r^{-1}\right) l_{1}\left(r^{-1}\right)} J_{1}(x)
\end{aligned}
$$

since $l m_{1}$ and l_{1} / m_{2} are almost increasing by assumption (i), and

$$
\begin{aligned}
& \int_{E_{2}} \frac{\varrho(d(x, y))}{\mu(B(x, \tau d(x, y)))}|f(y)| \mathrm{d} \mu(y) \\
& \leqslant C \int_{E_{2}} \frac{1}{\mu(B(x, \tau d(x, y))) l\left(d(x, y)^{-1}\right)} \frac{m_{3}\left(d(x, y)^{-1}\right)}{m_{3}\left(d(x, y)^{-1}\right)}|f(y)| \frac{l_{1}(|f(y)|) m_{4}(|f(y)|)}{l_{1}\left(r^{-\delta}\right) m_{4}\left(r^{-\delta}\right)} \mathrm{d} \mu(y) \\
& \leqslant C \frac{m_{3}\left(r^{-1}\right)}{l\left(r^{-1}\right)} \frac{1}{l_{1}\left(r^{-1}\right) m_{4}\left(r^{-1}\right)} J_{2}(x) \leqslant \frac{C l_{2}\left(r^{-1}\right)}{l\left(r^{-1}\right) l_{1}\left(r^{-1}\right)} J_{2}(x)
\end{aligned}
$$

since l / m_{3} and $l_{1} m_{4}$ are almost increasing by assumption (i). Noting from assumptions (iv) and (iii) that

$$
l_{2}(t) \geqslant \frac{m_{3}(t)}{m_{4}(t)} \geqslant c_{2}^{-1} m_{3}(t) \int_{t}^{2 t} \frac{1}{m_{3}(s)} \frac{\mathrm{d} s}{s} \geqslant C
$$

for $d_{X}^{-1} \leqslant t<\infty$, we find

$$
\left|I_{\varrho, \tau} f(x)\right| \leqslant \frac{C}{l\left(r^{-1}\right) l_{1}\left(r^{-1}\right)}\left(\frac{1}{r^{Q}}+l_{2}\left(r^{-1}\right) J(x)\right) \leqslant \frac{C l_{2}\left(r^{-1}\right)}{l\left(r^{-1}\right) l_{1}\left(r^{-1}\right)}\left(\frac{1}{r^{Q}}+J(x)\right) .
$$

Let

$$
r=\min \left\{J(x)^{-1 / Q}, d_{X}\right\}
$$

If $r=J(x)^{-1 / Q}$, then we have by (2.1) and (2.4)

$$
\left|I_{\varrho, \tau} f(x)\right| \leqslant \frac{C l_{2}(J(x))}{l(J(x)) l_{1}(J(x))} J(x) \leqslant C \Psi^{-1}(J(x))
$$

If $r=d_{X}$, then $J(x) \leqslant d_{X}{ }^{-Q}$ and

$$
\left|I_{\varrho, \tau} f(x)\right| \leqslant C .
$$

Hence

$$
\Psi\left(\frac{\left|I_{\varrho, \tau} f(x)\right|}{C}\right) \leqslant J(x)+1
$$

Let $j_{0}(y)$ be the largest nonnegative integer such that $|f(y)|^{-1 / \delta} \widetilde{\tau}^{j_{0}(y)-1} \leqslant d_{X}$ for $y \in X$, where $\widetilde{\tau}=\tau / 2$. By Fubini's theorem, we see that

$$
\begin{aligned}
\int_{X} & J_{1}(x) \mathrm{d} \mu(x) \\
& =\int_{X}\left(\int_{\left\{x \in X: d(x, y)^{-\delta}<|f(y)|\right\}} \frac{m_{1}\left(d(x, y)^{-1}\right)}{\mu(B(x, \tau d(x, y)))} \mathrm{d} \mu(x)\right) \frac{\Phi(|f(y)|)}{m_{2}(|f(y)|)} \mathrm{d} \mu(y) \\
& =\int_{X}\left(\sum_{j=1}^{j_{0}(y)} \int_{K_{j}} \frac{m_{1}\left(d(x, y)^{-1}\right)}{\mu(B(x, \tau d(x, y)))} \mathrm{d} \mu(x)\right) \frac{\Phi(|f(y)|)}{m_{2}(|f(y)|)} \mathrm{d} \mu(y) \\
& \leqslant C \int_{X}\left(\sum_{j=1}^{j_{0}(y)} \int_{K_{j}} \frac{m_{1}\left(\left(|f(y)|^{-1 / \delta} \widetilde{\tau}^{j}\right)^{-1}\right)}{\mu\left(B \left(x, \tau|f(y)|^{\left.\left.-1 / \delta \widetilde{\tau}^{j-1}\right)\right)}\right.\right.} \mathrm{d} \mu(x)\right) \frac{\Phi(|f(y)|)}{m_{2}(|f(y)|)} \mathrm{d} \mu(y) \\
& \leqslant C \int_{X}\left(\sum_{j=1}^{j_{0}(y)} \int_{B\left(y,|f(y)|^{-1 / \delta} \widetilde{\tau}^{j}\right)} \frac{m_{1}\left(\left(|f(y)|^{-1 / \delta} \widetilde{\tau}^{j}\right)^{-1}\right)}{\mu\left(B \left(y,|f(y)|^{\left.\left.-1 / \delta \widetilde{\tau}^{j}\right)\right)}\right.\right.} \mathrm{d} \mu(x)\right) \frac{\Phi(|f(y)|)}{m_{2}(|f(y)|)} \mathrm{d} \mu(y) \\
& \leqslant C \int_{X}\left(\sum_{j=1}^{j_{0}(y)} m_{1}\left(\left(|f(y)|^{-1 / \delta} \widetilde{\tau}^{j}\right)^{-1}\right)\right) \frac{\Phi(|f(y)|)}{m_{2}(|f(y)|)} \mathrm{d} \mu(y),
\end{aligned}
$$

where

$$
K_{j}=B\left(y,|f(y)|^{-1 / \delta} \widetilde{\tau}^{j}\right) \backslash B\left(y,|f(y)|^{-1 / \delta} \widetilde{\tau}^{j-1}\right)
$$

By assumption (ii), we have

$$
\begin{aligned}
\int_{X} J_{1}(x) \mathrm{d} \mu(x) & \leqslant C \int_{X}\left(\int_{d_{X}^{-1}}^{\widetilde{\tau}|f(y)|^{1 / \delta}} m_{1}(t) \frac{\mathrm{d} t}{t}\right) \frac{\Phi(|f(y)|)}{m_{2}(|f(y)|)} \mathrm{d} \mu(y) \\
& \leqslant C \int_{X} m_{2}\left(|f(y)|^{1 / \delta}\right) \frac{\Phi(|f(y)|)}{m_{2}(|f(y)|)} \mathrm{d} \mu(y) \\
& \leqslant C \int_{X} \Phi(|f(y)|) \mathrm{d} \mu(y) \leqslant C .
\end{aligned}
$$

Finally we obtain

$$
\left.\begin{array}{l}
\int_{X} J_{2}(x) \mathrm{d} \mu(x) \\
=\int_{X}\left(\int_{\left\{x \in X: d(x, y)^{-\delta} \geqslant|f(y)|\right\}} \frac{1}{m_{3}\left(d(x, y)^{-1}\right) \mu(B(x, \tau d(x, y)))} \mathrm{d} \mu(x)\right) \\
\times \Phi(|f(y)|) m_{4}(|f(y)|) \mathrm{d} \mu(y) \\
=\int_{X}\left(\sum_{j=1}^{\infty} \int_{K_{j}^{\prime}} \frac{1}{m_{3}\left(d(x, y)^{-1}\right) \mu(B(x, \tau d(x, y)))} \mathrm{d} \mu(x)\right) \\
\times \Phi(|f(y)|) m_{4}(|f(y)|) \mathrm{d} \mu(y)
\end{array} \quad \begin{array}{r}
1 \\
\leqslant C \int_{X}\left(\sum_{j=1}^{\infty} \int_{K_{j}^{\prime}} \frac{1}{m_{3}\left(\left(|f(y)|^{-1 / \delta} \widetilde{\tau}^{-j+1}\right)^{-1}\right) \mu\left(B\left(x, \tau|f(y)|^{-1 / \delta} \widetilde{\tau}^{-j}\right)\right)} \mathrm{d} \mu(x)\right) \\
\times \Phi(|f(y)|) m_{4}(|f(y)|) \mathrm{d} \mu(y)
\end{array}\right] \begin{array}{r}
\mathrm{d} \mu(x)
\end{array}
$$

where

$$
K_{j}^{\prime}=B\left(y,|f(y)|^{-1 / \delta} \widetilde{\tau}^{-j+1}\right) \backslash B\left(y,|f(y)|^{-1 / \delta} \widetilde{\tau}^{-j}\right)
$$

Therefore by assumption (iii)

$$
\begin{aligned}
\int_{X} J_{2}(x) \mathrm{d} \mu(x) & \leqslant C \int_{X}\left(\int_{|f(y)|^{1 / \delta}}^{\infty} \frac{1}{m_{3}(t)} \frac{\mathrm{d} t}{t}\right) \Phi(|f(y)|) m_{4}(|f(y)|) \mathrm{d} \mu(y) \\
& \leqslant C \int_{X} \frac{1}{m_{4}\left(|f(y)|^{1 / \delta}\right)} \Phi(|f(y)|) m_{4}(|f(y)|) \mathrm{d} \mu(y) \\
& \leqslant C \int_{X} \Phi(|f(y)|) \mathrm{d} \mu(y) \leqslant C .
\end{aligned}
$$

Thus, the conclusion follows.

Acknowledgment. We would like to express our thanks to the referee for his or her kind comments.

References

[1] A. Björn, J. Björn: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics 17, European Mathematical Society, Zürich, 2011.
zbl MR doi
[2] A. Cianchi: Strong and weak type inequalities for some classical operators in Orlicz spaces. J. Lond. Math. Soc., II. Ser. 60 (1999), 187-202.
zbl MR doi
[3] N. DeJarnette: Is an Orlicz-Poincaré inequality an open ended condition, and what does that mean? J. Math. Anal. Appl. 423 (2015), 358-376.
zbl MR doi
[4] B. Dyda: Embedding theorems for Lipschitz and Lorentz spaces on lower Ahlfors regular sets. Stud. Math. 197 (2010), 247-256.
zbl MR doi
[5] Eridani, H. Gunawan, E. Nakai: On generalized fractional integral operators. Sci. Math. Jpn. 60 (2004), 539-550.
zbl MR
[6] T. Futamura, T. Shimomura: Boundary behavior of monotone Sobolev functions in Orlicz spaces on John domains in a metric space. J. Geom. Anal. 28 (2018), 1233-1244.
zbl MR doi
[7] J. García-Cuerva, A.E. Gatto: Boundedness properties of fractional integral operators associated to non-doubling measures. Stud. Math. 162 (2004), 245-261.
zbl MR doi
[8] H. Gunawan: A note on the generalized fractional integral operators. J. Indones. Math. Soc. 9 (2003), 39-43.
zbl MR
[9] P. Hajtasz, P. Koskela: Sobolev met Poincaré. Mem. Am. Math. Soc. 145 (2000), No. 688, 101 pages.
zbl MR doi
[10] L. I. Hedberg: On certain convolution inequalities. Proc. Am. Math. Soc. 36 (1972), 505-510.
[11] J. Heinonen: Lectures on Analysis on Metric Spaces. Universitext, Springer, New York, 2001.
zbl MR doi

12] T. Hytönen: A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa. Publ. Mat., Barc. 54 (2010), 485-504.
zbl MR doi
[13] S. Lisini: Absolutely continuous curves in extended Wasserstein-Orlicz spaces. ESAIM, Control Optim. Calc. Var. 22 (2016), 670-687.
zbl MR doi
zbl MR doi
[14] Y. Mizuta, E. Nakai, T. Ohno, T. Shimomura: Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials. J. Math. Soc. Japan 62 (2010), 707-744.
zbl MR doi
[15] Y. Mizuta, T. Shimomura: Differentiability and Hölder continuity of Riesz potentials of Orlicz functions. Analysis, München 20 (2000), 201-223.

Zbl MR doi
[16] Y. Mizuta, T. Shimomura, T. Sobukawa: Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces. Osaka J. Math. 46 (2009), 255-271.
zbl MR
[17] E. Nakai: On generalized fractional integrals. Taiwanese J. Math. 5 (2001), 587-602.
zbl MR doi
[18] E. Nakai: On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type. Sci. Math. Jpn. 54 (2001), 473-487.
zbl MR
[19] F. Nazarov, S. Treil, A. Volberg: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. No. 15 (1997), 703-726.
zbl MR doi
[20] F. Nazarov, S. Treil, A. Volberg: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. No. 9 (1998), 463-487.
zbl MR doi
[21] T. Ohno, T. Shimomura: Sobolev embeddings for Riesz potentials of functions in grand Morrey spaces of variable exponents over non-doubling measure spaces. Czech. Math. J. 64 (2014), 209-228.
[22] T. Ohno, T. Shimomura: Trudinger's inequality and continuity for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces on metric measure spaces. Nonlinear Anal., Theory Methods Appl., Ser. A 106 (2014), 1-17.
zbl MR doi
[23] T. Ohno, T.Shimomura: Musielak-Orlicz-Sobolev spaces on metric measure spaces. Czech. Math. J. 65 (2015), 435-474.
[24] R. O'Neil: Fractional integration in Orlicz spaces. I. Trans. Am. Math. Soc. 115 (1965), 300-328.
[25] Y.Sawano, T. Shimomura: Sobolev embeddings for generalized Riesz potentials of functions in Morrey spaces $L^{(1, \varphi)}(G)$ over nondoubling measure spaces. J. Funct. Spaces Appl. 2013 (2013), Article ID 984259, 12 pages.
zbl MR doi
zbl MR doi
zbl MR doi
[26] Y.Sawano, T.Shimomura: Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents. Collect. Math. 64 (2013), 313-350.
zbl MR doi
[27] Y.Sawano, T. Shimomura: Boundedness of the generalized fractional integral operators on generalized Morrey spaces over metric measure spaces. Z. Anal. Anwend. 36 (2017), 159-190.
zbl MR doi
[28] Y.Sawano, T. Shimomura: Generalized fractional integral operators over non-doubling metric measure spaces. Integral Transforms Spec. Funct. 28 (2017), 534-546.
zbl MR doi
[29] X. Tolsa: BMO, H^{1}, and Calderón-Zygmund operators for nondoubling measures. Math. Ann. 319 (2001), 89-149.
zbl MR doi

Authors' addresses: Daiki Hashimoto, Nagasakihokuyodai High School, Nagasaki 851-2127, Japan; Takao Ohno, Faculty of Education, Oita University, Dannoharu Oita-city 870-1192, Japan, e-mail: t-ohno@oita-u.ac.jp; Tetsu Shimomura, Department of Mathematics, Graduate School of Education, Hiroshima University, 1-1-1, Kagamiyama, Higashi-Hiroshima 739-8524, Japan, e-mail: tshimo@hiroshima-u.ac.jp.

