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Abstract. Let (R,m) be a local ring, a an ideal of R and M a nonzero Artinian R-module
of Noetherian dimension n with hd(a,M) = n. We determine the annihilator of the top
local homology module Ha

n(M). In fact, we prove that

AnnR(H
a
n(M)) = AnnR(N(a,M)),

where N(a,M) denotes the smallest submodule of M such that hd(a,M/N(a,M)) < n.
As a consequence, it follows that for a complete local ring (R,m) all associated primes of
Ha
n(M) are minimal.
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1. Introduction

Throughout this paper we assume that (R,m) is a commutative Noetherian local

ring, a is an ideal of R and M is an R-module. Cuong and Nam in [5] defined the

local homology modules Ha
i (M) with respect to a by

Ha
i (M) = lim←−

n

TorRi (R/an,M).

This definition is dual to Grothendieck’s definition of local cohomology modules and

coincides with the definition of Greenless and May in [9] for an ArtinianR-moduleM .

For basic results about local homology we refer the reader to [5], [6] and [16]; for

local cohomology we refer to [4].

In this paper we study the top local homology module Ha
n(M), where M is

a nonzero Artinian R-module of Noetherian dimension n and a is an arbitrary

ideal of R. The module Ha
n(M) is called a top local homology module because
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max{i : Ha
i (M) 6= 0} 6 n by [5], Proposition 4.8. The problem of finding annihila-

tors of local cohomology modules has been studied by several authors; see for exam-

ple [1], [2] and [3]. In [3], the authors proved that if (R,m) is a complete Noetherian

local ring andM is a finitely generated R-module then AnnR(H
dimM
m (M)) = TR(M),

where TR(M) is the largest submodule of M such that dimTR(M) < dim(M). This

result was later extended to noncomplete Noetherian local rings by Bahmanpour

in [2]. Also, for an ideal a (not necessarily a = m) in an arbitrary Noetherian ring R

(not necessarily local), in [1] Atazadeh et al. proved that AnnR(H
dimM
a (M)) =

TR(a,M) where TR(a,M) is the largest submodule ofM such that cd(a, TR(a,M)) <

cd(a,M).

Here we determine the annihilator of the top local homology modules. In fact, the

following is the main result of this paper.

Theorem 1.1. Let (R,m) be a local ring, a an ideal of R and M a nonzero

Artinian R-module of Noetherian dimension n with hd(a,M) = n. Then

AnnR(H
a
n(M)) = AnnR(N(a,M)).

where N(a,M) denotes the smallest submodule of M such that

hd(a,M/N(a,M)) < n.

By using the above result we describe the annihilator of the top local homology

modules in terms of a secondary representation of M , as follows:

Theorem 1.2. Let (R,m) be a local ring, a an ideal of R and M a nonzero

Artinian module of Noetherian dimension n with hd(a,M) = n. Let M = N1 +

N2 + . . . + Nt be a secondary representation of M as an R̂-module where Nj is

a Pj-secondary submodule of M . Then

AnnR(H
a
n(M)) = AnnR

( ∑

cd(aR̂,R̂/Pj)=n

Nj

)
.

As an application of the above results, we will show that for a complete local

ring (R,m) we have AssR(H
a
n(M)) = min AssR(H

a
n(M)).

A nonzero R-module M is called secondary if the multiplication map by any

element a of R is either surjective or nilpotent. A secondary representation of the

R-module M is an expression for M as a finite sum of secondary modules. If such

a representation exists, we will say that M is representable. A prime ideal p of R is
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said to be an attached prime of M if p = (N :R M) for some submodule N of M .

If M admits a reduced secondary representation M = S1 + S2 + . . . + Sn, then the

set of attached primes AttR(M) of M is equal to {
√
0 :R Si for i = 1, . . . , n}. Note

that every Artinian R-module M is representable and the minimal elements of the

set V(Ann(M)), the set of prime ideals of R containing the ideal Ann(M), belong

to Att(M). It is well known that if N is a submodule of an Artinian R-module M ,

then Att(M/N) ⊆ Att(M) ⊆ Att(N) ∪ Att(M/N).

We now recall the concept of Noetherian dimension NdimR(M) of anR-moduleM .

For M = 0 we define NdimR(M) = −1. Then by induction, for any integer t > 0,

we define NdimR(M) = t when

(i) NdimR(M) < t is false, and

(ii) for every ascending chain M1 ⊆ M2 ⊆ . . . of submodules of M there exists an

integer m0 such that NdimR(Mm+1/Mm) < t for all m > m0.

Thus M is nonzero and finitely generated if and only if NdimR(M) = 0. If M is

an Artinian module, then NdimR(M) <∞. (For more details see [10] and [14].)
Recall that, for any R-moduleM , the cohomological dimension ofM with respect

to a is defined as

cd(a,M) = sup{i ∈ Z : Hi
a(M) 6= 0}.

Also, in [12] we defined the homological dimension of M with respect to a by

hd(a,M) = sup{i ∈ Z : Ha
i (M) 6= 0}.

It is easy to see that, if M is an Artinian R-module, then hd(a,M) 6 NdimR(M)

and hd(m,M) = NdimR(M) by [5], Proposition 4.8, and [5], Proposition 4.10.

Throughout the paper, for an R-module M , E(R/m) denotes the injective enve-

lope of R/m and D(·) denotes the Matlis duality functor HomR(·,E(R/m)). It is

well known that AnnRD(M) = AnnRM and dimD(M) = dimM . Also, if M is

an Artinian R-module then M ≃ DD(M), and D(M) is a Noetherian R̂-module.

(See [11], Theorem 1.6, and [4], Theorem 10.2.19.) Note that if M is an Artinian

R-module, then Ha
i (M) ≃ D(Hi

a(D(M))) for all i (see [5], Proposition 3.3), and

therefore hd(a,M) = cd(a,D(M)). Thus hd(a,M) 6 dimD(M) = dimM .

2. The results

There are many results about annihilators of local cohomology modules. For

example, the following theorem is a main result of [1] on the annihilators of top local

cohomology modules.
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Theorem 2.1 ([1], Theorem 2.3). Let R be a Noetherian ring and a an ideal of R.

LetM be a nonzero finitely generated R-module such that cd(a,M) = dimM . Then

AnnRH
dimM
a (M) = AnnR(M/TR(a,M)), where

TR(a,M) :=
⋃
{N : N 6 M and cd(a, N) < cd(a,M)}.

Here, as the dual case of the above result, we obtain some results about the

annihilator of top local homology modules. At first, we define the following nota-

tion NR(a,M).

Definition 2.2. Let (R,m) be a local ring, a an ideal of R and M a nonzero

Artinian R-module with hd(a,M) = n. We denote by NR(a,M) the smallest element

of the set

Σ := {N : N is a submodule of M and hd(a,M/N) < n}.

To prove our main result, we need the following lemmas.

Lemma 2.3. Let (R,m) be a local ring, a an ideal of R, and 0 → L → M →
N → 0 an exact sequence of Artinian R-modules. Then hd(a,M) = max{hd(a, L),
hd(a, N)}.
P r o o f. See [12], Lemma 2.1. �

Lemma 2.4. Let (R,m) be a complete local ring, a an ideal of R andM a nonzero

Artinian module. Then cd(a, R/p) 6 hd(a,M) for all p ∈ Att(M).

P r o o f. See [12], Lemma 2.2. �

Lemma 2.5. Let (R,m) be a local ring, a an ideal of R and M an Artinian

R-module. Then hd(a,M) 6 cd(a, R/AnnM).

P r o o f. See [12], Lemma 2.3. �

Lemma 2.6. Let (R,m) be a local ring, a an ideal of R andM a nonzero Artinian

R-module with hd(a,M) = n. Let N := NR(a,M). Then the module N has the

following properties:

(i) If dimM = n then hd(a, N) = dimN = n.

(ii) If NdimR M = n then hd(a, N) = NdimR N = n.

(iii) N has no proper submodule L such that hd(a, N/L) < n.

(iv) Ha
n(N) ≃ Ha

n(M).

(v) If dimM = n and R is complete then

AttR(N) = {p ∈ AttR(M) : cd(a, R/p) = n} = AssR(H
a
n(M)).
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P r o o f. See [12], Lemma 2.4 and Theorem 2.5. �

Theorem 2.7. Let (R,m) be a complete local ring, a an ideal of R and M

a nonzero Artinian module of Noetherian dimension n with hd(a,M) = n. Then

AnnR(H
a
n(M)) = AnnR(N(a,M)).

P r o o f. LetN := N(a,M). By Lemma 2.6 (iv) AnnR(H
a
n(M)) = AnnR(H

a
n(N)).

By [5], Proposition 3.3, Ha
n(N) ≃ D(Hn

a (D(N)). Thus we get

AnnR(H
a
n(N)) = AnnR(D(Hn

a (D(N)))) = AnnR(H
n
a (D(N))).

Since (R,m) is a complete local ring, dimR N = NdimR N by [7], Corollary 2.5.

But, by Lemma 2.6 (ii), NdimR(N) = n and so dimD(N) = dim(N) = n. Now,

by Theorem 2.1 we conlude that AnnR(H
n
a (D(N))) = AnnR(D(N)/TR(a,D(N))).

If we show that TR(a,D(N)) = 0 then we have AnnR(H
a
n(M)) = AnnR(D(N)) =

AnnR(N) and the proof is complete.

By definition TR(a,D(N)) =
⋃{U : U 6 D(N) and cd(a, U) < cd(a,D(N))}. Let

0 6= U be a submodule of D(N) such that cd(a, U) < n. Then the exact sequence

0→ U → D(N)→ D(N)/U → 0 implies the following exact sequence:

0→ D(D(N)/U)→ DD(N)→ D(U)→ 0.

But DD(N) ≃ N and so we conclude that there is a proper submodule L of N such

that N/L ≃ D(U). On the other hand, hd(a,D(U)) = cd(a,DD(U)) = cd(a, U) < n.

Hence hd(a, N/L) < n which is a contradiction by Lemma 2.6 (ii). Therefore

TR(a,D(N)) = 0, which completes the proof. �

In the following result, we will show that for a complete local ring (R,m) all

associated primes of Ha
n(M) are minimal.

Corollary 2.8. Let (R,m) be a complete local ring, a an ideal of R and M

a nonzero Artinian R-module of Noetherian dimension n with hd(a,M) = n. Then

AssR(H
a
n(M)) = minAttRN(a,M) = min AssR(H

a
n(M)).

P r o o f. Since Ha
n(M) ≃ D(Hn

a (D(M)), we have

AssR(H
a
n(M)) = AssR(D(Hn

a (D(M))).
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By [4], Theorem 7.1.6, Hn
a (D(M)) is an Artinian R-module and so

AssR(D(Hn
a (D(M)))) = AttR(H

n
a (D(M)))

by [15], Theorem 2.3. But by [13], Theorem 2.11,

AttR(H
n
a (D(M))) = minV(AnnRH

n
a (D(M))) = minV(AnnRD(Hn

a (D(M))))

= minV(AnnR(H
a
n(M))).

On the other hand, by Theorem 2.7 and [11], Proposition 2.10, we have

minV(AnnR(H
a
n(M))) = minV(AnnRN(a,M)) = minAttRN(a,M).

Since AttR(N(a,M)) = AssR(H
a
n(M)) by Lemma 2.6 (v), we getminAttRN(a,M) =

min AssR(H
a
n(M)). The proof is complete. �

Lemma 2.9. Let (R,m) be a local ring, a an ideal of R and M a nonzero Ar-

tinian R-module of Noetherian dimension n with hd(a,M) = n. Then N(a,M) =

N(aR̂,M).

P r o o f. By [16], Remark 2.6, for any submodule L of M and any integer i,

Ha
i (M/L) ≃ HaR̂

i (M/L) as R-modules. Thus hd(a,M/L) = hd(aR̂,M/L) and so

N(a,M) = N(aR̂,M). �

In the next result we provide a generalization of Theorem 2.7 by eliminating the

complete hypothesis.

Theorem 2.10. Let (R,m) be a local ring, a an ideal of R and M a nonzero

Artinian R-module of Noetherian dimension n with hd(a,M) = n. Then

AnnR(H
a
n(M)) = AnnR(N(a,M)).

P r o o f. Let N := N(a,M). Since AnnRN ⊆ AnnR(H
a
n(N)) and by Lem-

ma 2.6 (iv) AnnR(H
a
n(N)) = AnnR(H

a
n(M)) we have AnnRN ⊆ AnnR(H

a
n(M)).

Now we show that AnnR(H
a
n(M)) ⊆ AnnRN .

Let x ∈ AnnR(H
a
n(M)). By [16], Remark 2.6, Ha

n(M) ≃ HaR̂
n (M) as R-modules.

Thus x ∈ AnnR(H
aR̂
n (M)). Note that R̂-module HaR̂

n (M) is an R-module by

means of f , where f : R → R̂ is natural ring homomorphism. Thus f(x) ∈
AnnR̂(H

aR̂
n (M)). By [7], Remark 1 (ii), NdimR̂ M = NdimR M = n. Thus by

Theorem 2.7 AnnR̂(H
aR̂
n (M)) = AnnR̂(N(aR̂,M)). From this we get that f(x) ∈

AnnR̂(N(aR̂,M)). By Lemma 2.9 f(x) ∈ AnnR̂(N(a,M)). Since f(x) = (x+mn)n∈N

and N(a,M) is an Artinian R-module we have x ∈ AnnR(N(a,M)) (see [4], Re-

mark 10.2.9). This completes the proof. �
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In the next result, we determine the annihilator of top local homology module

Ha
n(M) in terms of a secondary representation of M .

Theorem 2.11. Let (R,m) be a complete local ring, a an ideal of R and M

a nonzero Artinian module of Noetherian dimension n with hd(a,M) = n. Let

M = N1+N2+. . .+Nt be a secondary representation ofM whereNi is a pi-secondary

submodule of M . Then

AnnR(H
a
n(M)) = AnnR

( ∑

cd(a,R/pj)=n

Nj

)
.

P r o o f. Let U :=
∑

cd(a,R/pj)=n

Nj. By Theorem 2.10, it is sufficient to show

that U is a smallest element of the set

Σ := {N ′ : N ′ is a submodule of M and hd(a,M/N ′) < n}.

At first we show that hd(a,M/U) < n. Let U ′ :=
∑

cd(a,R/pj)<n Nj . By Lemma 2.3,

hd(a, U ′) = max{hd(a, Nj) : cd(a, R/pj) < n}. But by Lemma 2.5 and [8], Theo-
rem 1.2,

hd(a, Nj) 6 cd(a, R/Ann(Nj)) = cd(a, R/
√
Ann(Nj)) = cd(a, R/pj) < n.

Thus hd(a, U ′) < n. We conclude that,

hd(a,M/U) = hd(a, (U + U ′)/U) = hd(a, U ′/U ∩ U ′) < hd(a, U ′) < n.

Thus U ∈ Σ.

Now let L be a proper submodule of U . Since U/L 6= 0, AttR(U/L) 6= ϕ. Take

p0 ∈ AttR(U/L). Thus p0 ∈ AttRU and so cd(a, R/p0) = n. Now Lemma 2.4 implies

that n 6 hd(a, U/L) and so by Lemma 2.3 n 6 hd(a, U/L) 6 hd(a,M/L). Therefore

U is a smallest element of the set Σ, as required. �

Corollary 2.12. Let (R,m) be a complete local ring, a an ideal of R and M

a nonzero Artinian R-module of Noetherian dimension n with hd(a,M) = n. Let

AttRM ⊆ {p ∈ SpecR : cd(a, R/p) = n}. Then AnnR(H
a
n(M)) = AnnRM .

P r o o f. Let M = N1 + N2 + . . . + Nt be a secondary representation of M

where Ni is a pi-secondary submodule of M . By assumption cd(a, R/pj) = n for

all 1 6 j 6 t and so we have M =
∑

cd(a,R/pj)=n Nj. Now the result follows from

Theorem 2.11. �
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Corollary 2.13. Let (R,m) be a complete local ring, a an ideal of R and M

a nonzero Artinian R-module of Noetherian dimension n with hd(a,M) = n. Then

√
AnnR(Ha

n(M)) =
⋂

p∈AttRM
cd(a,R/p)=n

p.

P r o o f. Let M = N1 + N2 + . . . + Nt be a secondary representation of M

where Ni is a pi-secondary submodule of M . By Theorem 2.11

√
AnnR(Ha

n(M)) =

Ã

AnnR

( ∑

cd(a,R/pj)=n

Nj

)

=
⋂

cd(a,R/pj)=n

√
AnnRNj =

⋂

cd(a,R/pj)=n

pj.

Since pj ∈ AttRM for all j = 1, . . . , t, the proof is complete. �

Corollary 2.14. Let (R,m) be a complete local ring, a an ideal of R and M

a nonzero Artinian R-module of Noetherian dimension n with hd(a,M) = n. Let

M = N1+N2+. . .+Nt be a secondary representation ofM whereNi is a pi-secondary

submodule of M . Then

SuppR(H
a
n(M)) =

⋃

cd(a,R/pj)=n

V(AnnRNj).

P r o o f. Set Λa(R) := lim←−t
R/at. By [6], Theorem 5.3, Ha

n(M) is a Noetherian

Λa(R)-module. Since R is m-adically complete and a ⊆ m, it follows that R is

a-adically complete and so Λa(R) ≃ R. Thus Ha
n(M) is a Noetherian R-module.

Hence SuppR(H
a
n(M)) = V(AnnR(H

a
n(M)). On the other hand, by Theorem 2.11

we have

V(AnnR(H
a
n(M)) = V

(
AnnR

∑

cd(a,R/pj)=n

Nj

)

= V

( ⋂

cd(a,R/pj)=n

AnnRNj

)
=

⋃

cd(a,R/pj)=n

V(AnnRNj),

as required. �
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In the next main result we extend Theorem 2.11 to noncomplete local rings.

Theorem 2.15. Let (R,m) be a local ring, a an ideal of R and M a nonzero

Artinian module of Noetherian dimension n with hd(a,M) = n. Let M = N1 +

N2 + . . . + Nt be a secondary representation of M as an R̂-module where Nj is

a Pj-secondary submodule of M . Then

AnnR(H
a
n(M)) = AnnR

( ∑

cd(aR̂,R̂/Pj)=n

Nj

)
.

P r o o f. Set U :=
∑

cd(aR̂,R̂/Pj)=n Nj , and let f : R → R̂ be the natural ring

homomorphism.

Now, let x ∈ AnnR(U). Since U is an R-module by means of f , f(x) ∈ AnnR̂U .

By Theorems 2.11 and 2.7 it follows that f(x) ∈ AnnR̂N(aR̂,M) and by Lemma 2.9

f(x) ∈ AnnR̂N(a,M). Since N(a,M) is an Artinian R-module we conclude that

x ∈ AnnRN(a,M). Now by Theorem 2.10 we conclude that x ∈ AnnR(H
a
n(M)).

Conversly, let x ∈ AnnR(H
a
n(M)). Since Ha

n(M) ≃ HaR̂
n (M)) as R-modules by [16],

Remark 2.6, we have x ∈ AnnR(H
aR̂
n (M)). Thus f(x) ∈ AnnR̂(H

aR̂
n (M)) and by

Theorem 2.11 f(x) ∈ AnnR̂(U). Therefore x ∈ AnnR(U). This completes the proof.

�
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