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Abstract. The generalized notion of weak amenability, namely (ϕ, ψ)-weak amenability,
where ϕ,ψ are continuous homomorphisms on a Banach algebra A, was introduced by
Bodaghi, Eshaghi Gordji and Medghalchi (2009). In this paper, the (ϕ,ψ)-weak amenability
on the measure algebra M(G), the group algebra L1(G) and the Segal algebra S1(G),
where G is a locally compact group, are studied. As a typical example, the (ϕ,ψ)-weak
amenability of a special semigroup algebra is shown as well.
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1. Introduction

Let A be a Banach algebra and X be a Banach A-bimodule. Let the products of

a ∈ A and x ∈ X be denoted by a · x and x · a. A derivation D : A → X is a linear

map which satisfies D(ab) = a · D(b) + D(a) · b for all a, b ∈ A. The derivation δ

is said to be inner if there exists x ∈ X such that δ(a) = δx(a) = a · x − x · a

for all a ∈ A. The linear space of bounded derivations from A into X is denoted

by Z1(A, X) and the linear subspace of inner derivations is denoted by N1(A, X).

We consider the quotient space H1(A, X) = Z1(A, X)/N1(A, X), called the first

Hochschild cohomology group of A with coefficients in X . A Banach algebra A is

amenable if every continuous derivation from A into every dual Banach A-module

is inner, equivalently if H1(A, X∗) = {0} for every Banach A-module X . This

definition was introduced by Johnson in [12]. One of the important resuls that

Johnson obtained was that the group algebra L1(G) is amenable if and only if the
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locally compact group G is amenable. Also, a Banach algebra A is called weakly

amenable if H1(A,A∗) = {0}. Weak amenability of the group algebra L1(G) was

proved by Johnson in [13] for the first time. After that, Despić and Ghahramani

in [8] gave a different and shorter proof for it; see also [1] and [10]. Dales and Pandey

studied the weak amenability of special case of Segal algebras in [7], and then the

weak amenability of Segal algebras and the Lebesgue-Fourier algebra of a locally

compact group were proved by Ghaharamani and Lau in [9]. For more details about

Segal algebras refer to [16].

Let X be an A-bimodule and let ϕ, ψ be continuous homomorphisms of A into

itself. A bounded linear mapping d : A → X is called a (ϕ, ψ)-derivation if

d(ab) = d(a) · ϕ(b) + ψ(a) · d(b), a, b ∈ A.

A bounded linear mapping d : A → X is called a (ϕ, ψ)-inner derivation if there

exists x ∈ X such that

d(a) = x · ϕ(a)− ψ(a) · x, a ∈ A.

Let A be Banach algebra and let ϕ and ψ be as in the above. We consider the

following module actions on A:

a · x := ϕ(a)x, x · a := xψ(a), a, x ∈ A.

We denote the aboveA-bimodule byA(ϕ,ψ). ThenA is called (ϕ, ψ)-weakly amenable

if H1(A, (A(ϕ,ψ))
∗) = {0}. These concepts are introduced and investigated in [4]

and [15] (for the generalization of n-weak amenability refer to [5]). It is also proved

in [4], Example 4.2 that for any locally compact group algebra G, L1(G) is (ϕ, 0) and

(0, ψ)-weakly amenable. For the module versions of these notions refer to [3] and [2].

Let A and B be Banach algebras. Similarly to [4], we denote by Hom(A,B)

the space of all bounded homomorphisms from A into B and denote Hom(A,A)

by Hom(A). Suppose that A is a Banach algebra, X is a Banach A-module and

ϕ, ψ ∈ Hom(A). A derivation D : A → X is called approximately (ϕ, ψ)-inner if

there exists a net (xα) in X such that for all a ∈ A, D(a) = lim
α
(xα ·ϕ(a)−ψ(a) ·xα)

in norm. A Banach algebra A is approximately (ϕ, ψ)-weakly amenable if every

derivation D : A → (A(ϕ,ψ))
∗ is approximately (ϕ, ψ)-inner.

In this work, we prove that if the group algebra L1(G) is a two-sided G-module,

then it is (ϕ, ψ)-amenable. We also show that (ϕ, ψ)-weak amenability of the measure

algebra M(G) necessitates G being discrete and amenable locally compact group.

Finally, we investigate (approximate) (ϕ, ψ)-weak amenability of Segal algebras.
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2. Results for group algebras

In this section, by providing some new results on (ϕ, ψ)-weak amenability of Ba-

nach algebras, we study the (ϕ, ψ)-weak amenability of group algebra L1(G), where

ϕ, ψ ∈ Hom(L1(G)) and G is a locally compact group. From now on, the notation

〈f, x〉 means the value of the mapping f at x.

Proposition 2.1. Let A and B be Banach algebras such that B is a Banach A-

bimodule and ϕ, ψ ∈ Hom(A). Suppose that Φ: A → B is an A-bimodule morphism

with dense range, and d : A → (B(ϕ,ψ))
∗ is a nonzero (ϕ, ψ)-derivation. Then D :=

Φ∗ ◦ d is a nonzero (ϕ, ψ)-derivation.

P r o o f. For every x, y, z ∈ A we have

〈D(xy), z〉 = 〈Φ∗ ◦ d(xy), z〉 = 〈Φ∗(d(x) · ϕ(y) + ψ(x) · d(y)), z〉

= 〈d(x) · ϕ(y) + ψ(x) · d(y),Φ(z)〉

= 〈d(x), ϕ(y) · Φ(z)〉+ 〈d(y),Φ(z) · ψ(x)〉

= 〈d(x),Φ(ϕ(y)z)〉 + 〈d(y),Φ(zψ(x))〉

= 〈Φ∗(d(x)), ϕ(y)z〉 + 〈Φ∗(d(y)), zψ(x)〉

= 〈D(x) · ϕ(y) + ψ(x) ·D(y), z〉.

Therefore D is a (ϕ, ψ)-derivation. If D = 0, then for every x, y ∈ A we have

〈D(x), y〉 = 0. Thus, 〈Φ∗ ◦ d(x), y〉 = 〈d(x),Φ(y)〉 = 0. This means that d(A) = 0,

and so d = 0. �

Theorem 2.2. Let A be a Banach algebra, B be a closed subalgebra of A, and I

be a closed ideal of A such that A = B ⊕ I. If A is (ϕ, ψ)-weakly amenable, where

ϕ, ψ ∈ Hom(A) and ϕ(B), ψ(B) ⊆ B, then B is (ϕ, ψ)-weakly amenable.

P r o o f. Let π : A → B be the natural projection from A onto B. For every

a, b ∈ A there are x, y ∈ B such that a = x + I and b = y + I. Then π(ab) = xy =

xπ(b) = π(a)y. Suppose that d : B → (B(ϕ,ψ))
∗ is an arbitrary (ϕ, ψ)-derivation.

From Proposition 2.1, D = π∗ ◦ d : A → (A(ϕ,ψ))
∗ is a (ϕ, ψ)-derivation. Since A is

(ϕ, ψ)-weakly amenable, then there exists an element ξ ∈ (A(ϕ,ψ))
∗ such that

D(x) = ξ · ϕ(x) − ψ(x) · ξ, x ∈ A.

Set η = ξ|B. Then

〈d(x), y〉 = 〈d(x), π(y)〉 = 〈π∗ ◦ d(x), y〉 = 〈D(x), y〉

= 〈ξ · ϕ(x)− ψ(x) · ξ, y〉 = 〈ξ, ϕ(x)y〉 − 〈ξ, yψ(x)〉

= 〈η, ϕ(x)y〉 − 〈η, yψ(x)〉 = 〈η · ϕ(x) − ψ(x) · η, y〉
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for all x, y ∈ B (note that B is a closed subalgebra of A). Hence, d is a (ϕ, ψ)-inner

derivation. �

Let G be a non-discrete locally compact group. Then M(G) = Md(G) ⊕Mc(G),

where Md(G) and Mc(G) are discrete measures and continuous measures on G,

respectively (see Theorem 19.20 of [11]).

Corollary 2.3. LetM(G) be (ϕ, ψ)-weakly amenable, where ϕ, ψ ∈ Hom(M(G)).

If ϕ(Md(G)) ⊆ Md(G) and ψ(Md(G)) ⊆ Md(G), then Md(G) is (ϕ, ψ)-weakly

amenable.

R em a r k 2.4. In [6], Theorem 1.2, Dales, Ghahramani and Helemskii showed

that M(G) is weakly amenable if and only if G is discrete if and only if there is

no nonzero continuous point derivation at a character of M(G). Similarly, suppose

that ϕ ∈ Hom(M(G)) which is onto. If M(G) is (ϕ, ϕ)-weakly amenable and ψ is a

nonzero character onM(G), then by Theorem 2.10 of [4], there are no nonzero point

derivations at ψ ◦ ϕ. This means that G is discrete and M(G) is weakly amenable.

Converse of this assertion is true when ϕ and ψ are identity homomorphisms. This

shows that the class of (ϕ, ψ)-weakly amenable Banach algebras is wider than that

of weakly amenable Banach algebras.

Let X be a Banach space, a net (mα) ⊂ X∗ is said to converge weak∼ to m ∈ X∗

if mα
w∗

→ m and ‖mα‖ → ‖m‖. This notion was introduced by Lau and Loy in [14].

For a particular case, if µ ∈ M(G), suppose that ν ∈ L∞(G)∗ is a norm preserving

extension of µ. Then there exists a net (fγ) ⊂ L1(G) with ‖fγ‖ 6 ‖µ‖, and fγ
w∗

→ ν.

Passing to a suitable subnet, we can write ‖fγ‖ → ‖µ‖, so we have fγ→µ in weak∼.

Let A be a Banach algebra. We say that an operator ϕ satisfies the weak∼ condition

if for every net (mα) ⊂ A∗ which converges weak∼ to m ∈ A∗, mα
w∗

→ ϕ(m) holds.

Theorem 2.5. Let G be a locally compact group and X be a M(G)-bimodule

with the module actions µ·x = ϕ̃(µ)·x and x·µ = x·ψ̃(µ), where ϕ, ψ ∈ Hom(L1(G))

and ϕ̃, ψ̃ are extensions of ϕ and ψ, respectively. Then every (ϕ, ψ)-derivation D :

L1(G) → X∗ extends to a unique (ϕ̃, ψ̃)-derivation from M(G) into X∗.

P r o o f. Let µ ∈ M(G). Take a net (fγ) ⊂ L1(G) such that fγ → µ weak∼.

Then the net (Dfγ) converges in w
∗-topology. Define Dµ = w∗- lim

γ
Dfγ . Thus, D

is a bounded linear operator which extends D. For every x ∈ X , g1, g2 ∈ L1(G) and

µ ∈M(G) we have

〈D(µ), g1 · x · g2〉 = w∗- lim
γ
〈D(fγ), g1 · x · g2〉 = w∗- lim

γ
〈D(fγ) · g1, x · g2〉(2.1)

= w∗- lim
γ
〈D(fγ) · ϕ(g1), x · g2〉
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= w∗- lim
γ
〈D(fγ · g1)− ψ(fγ) ·D(g1), x · g2〉

= w∗- lim
γ
〈D(fγ · g1), x · g2〉 − w∗- lim

γ
〈ψ(fγ) ·D(g1), x · g2〉

= 〈D(µ · g1), x · g2〉 − 〈ψ̃(µ) ·D(g1), x · g2〉

= 〈D(µ · g1), x · g2〉 − 〈D(g1), x · g2 · ψ̃(µ)〉.

Now, we show that D is a (ϕ̃, ψ̃)-derivation. As above, assume that fγ → µ weak∼.

By (2.1) we get

〈D(ηµ), g · x〉 = lim
γ
〈D(η · fγ), g · x〉

= lim
γ
〈D(η), fγg · x〉+ lim

γ
〈D(fγ), g · x · ψ̃(η)〉

= lim
γ
〈D(η) · ϕ(fγ), g · x〉+ lim

γ
〈D(fγ), g · x · ψ̃(η)〉

= lim
γ
〈D(η) · ϕ(fγ), g · x〉+ lim

γ
〈ψ̃(η) ·D(fγ), g · x〉

= 〈D(η) · ϕ̃(µ) + ψ̃(η) ·D(µ), g · x〉

for every η ∈ M(G), g ∈ L1(G) and x ∈ X (note that ‖fγ ∗ g − µ ∗ g‖ → 0 and

L1(G) ·X = X). For the uniqueness of D, let D′ be another (ϕ̃, ψ̃)-derivation which

extends D to M(G). Let fγ and µ be as above, then D
′(µ) = lim

γ
D(fγ) = D(µ). �

Let G be a locally compact group. A Banach space X is called a left Banach

G-module if the following statements hold:

(1) There is k > 0 such that ‖g · x‖ 6 k‖x‖ for every g ∈ G, x ∈ X ;

(2) For x ∈ X , the map G→ X : g 7→ g · x is continuous.

Similarly for the right BanachG-modules and two-sided BanachG-modules, where in

the latter case we require the map G×G→ X : (g1, g2) 7→ g1 ·x ·g2 to be continuous.

If X∗ is the dual of X , then X∗ is a two-sided G-module with the actions defined as

follows:

〈f · θ, x〉 = 〈f, θ · x〉 and 〈θ · f, x〉 = 〈f, x · θ〉

for every θ ∈ G, x ∈ X and f ∈ X∗. Here we use the technique of the proof in [8]

to show that L1(G) is (ϕ, ψ)-weakly amenable. In fact, we generalize the result

of [4], Example 4.2 which asserts that for any locally compact group G, L1(G) is

(ϕ, ψ)-weakly amenable in which either ϕ or ψ is zero homomorphism.

Theorem 2.6. Let L1(G) be a two-sided Banach G-module and let ϕ, ψ ∈

Hom(L1(G)). Then L1(G) is (ϕ, ψ)-weak amenable.
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P r o o f. Let D : L1(G) → L∞(G) be a (ϕ, ψ)-derivation. By Theorem 2.5, it

suffices to show that the extension of D to M(G) is inner. For t ∈ G, by δt we mean

the point mass at t. Then

(2.2) ψ(δt−1) ·D(δt) = ψ(δt−1) ·D(δtx−1 ∗ δx)

= ψ(δt−1)ψ(δtx−1) ·D(δx) + ψ(δt−1) ·D(δtx) · ϕ(δx)

= ψ(δx−1) ·D(δx) + ψ(δx−1) · ψ(δ(tx−1)−1) ·D(δtx) · ϕ(δx).

For every λ ∈ L∞(G) let Re(λ) denote the real part of λ and let

S = {Re(ψ(δt−1) ·D(δt)) : t ∈ G}.

Take ξ = sup(S). Since L1(G) is two-sided G-module, then we obtain

sup(ψ(δx−1) · S · ϕ(δx)) = ψ(δx−1) · sup(S) · ϕ(δx) and(2.3)

sup(λ + S) = λ+ sup(S), x ∈ G, λ ∈ L∞(G).

Now, by (2.2) and (2.3) we have

ξ = ψ(δx−1) · Re(D(δx)) + ψ(δx−1) · ξ · ϕ(δx),

then

Re(D(δx)) = ψ(δx) · ξ − ξ · ϕ(δx)

for every x ∈ G. Similarly, for imaginary part there exists an element ζ ∈ L∞(G)

such that

Im(D(δx)) = ψ(δx) · ζ − ζ · ϕ(δx)

for every x ∈ G. Therefore by taking ς = ξ + iζ, we find

D(δx) = ψ(δx) · ς − ς · ϕ(δx)

for every x ∈ G. Let µ ∈ M(G), then there exists a net (µα) with each µα a linear

combination of point masses such that µα → µ in strong topology. Note that point

masses are extreme points of M(G). On the other hand, we can take this net to be

the one from the proof of Theorem 2.5. Then

D(µ) = ψ̃(µ) · ς − ς · ϕ̃(µ)

for every µ ∈M(G). This means that L1(G) is (ϕ, ψ)-weak amenable. �
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E x am p l e 2.7. Suppose that S is a discrete infinite semigroup and s0 is a fixed

element in S. Define an algebra product in l1(S) via st := s(s0)t, s, t ∈ l1(S).

This Banach algebra has been introduced by Yong Zang in [17]. For every ϕ, ψ ∈

Hom(l1(S)) we show that l1(S) is (ϕ, ψ)-weakly amenable. This Banach algebra has

a left identity e0 defined by

e0(s) =

{
1 if s = s0,

0 if s 6= s0.

The l1(S)-bimodule actions on the dual module l1(S)∗ =l∞(S) are in fact defined as

follows:

f · s = s(s0)f, s · f = f(s)e∗0, s ∈ l1(S), f ∈ l∞(S),

where e∗0 is the element of l
∞(S) satisfying e∗0(s0) = 1 and s∗0(s) = 0 for s 6= s0. Let

ϕ : l∞(S) → l∞(S) be a nonzero homomorphism. Then

s(s0)ϕ(t) = ϕ(s(s0)t) = ϕ(st) = ϕ(s)ϕ(t) = ϕ(s)(s0)ϕ(t).

Hence, ϕ(t)(ϕ(s)(s0)− s(s0)) for all s, t ∈ l1(S). Since ϕ is nonzero,

ϕ(s)(s0) = s(s0), s ∈ l1(S).(2.4)

Now, suppose that ϕ, ψ ∈ Hom(l1(S)) and D : l1(S) → l∞(S) is a bounded (ϕ, ψ)-

derivation. For each s, t ∈ l1(S) we have

s(s0)D(t) = D(s(s0)t) = D(st)

= D(s) · ϕ(t) + ψ(s) ·D(t) = ϕ(t)(s0)D(s) + ψ(s) ·D(t).

Replacing t by s in the last equalities and using (2.4), we get ψ(s) ·D(s) = 0 for all

s ∈ l1(S). The last equality implies that ψ(s) ·D(t) = −ψ(t) ·D(s) for all s, t ∈ l1(S).

Thus
D(s) = D(s0s) = D(s0) · ϕ(s) + ψ(s0) ·D(s)

= D(s0) · ϕ(s)− ψ(s) ·D(s0)

for all s ∈ l1(S). Therefore l1(S) is (ϕ, ψ)-weakly amenable. Note that l1(S) cannot

be amenable because this Banach algebra does not have a bounded right approximate

identity (see [17]).
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3. Results for Segal algebras

Let (A, ‖·‖) be a Banach algebra. Then (B, ‖·‖′) is an abstract Segal algebra with

respect to (A, ‖·‖) if

(1) B is a dense left ideal in A and B is a Banach algebra with respect to ‖·‖′;

(2) There exists M > 0 such that ‖b‖ 6M‖b‖′ for each b ∈ B;

(3) There exists C > 0 such that ‖ab‖′ 6 C‖a‖′‖b‖′ for each a, b ∈ B.

Let G be a locally compact group. A linear subspace S1(G) of L1(G) is said to be

a Segal algebra if it satisfies the following conditions:

(i) S1(G) is dense in L1(G);

(ii) If f ∈ S1(G), then Lxf ∈ S1(G), where Lxf(a) = f(xa), i.e. S1(G) is left

translation invariant;

(iii) S1(G) is a Banach space under some norm ‖·‖S and ‖Lxf‖S = ‖f‖S for all

f ∈ S1(G) and x ∈ G;

(iv) Map x 7→ Lxf from G into S1(G) is continuous.

In the upcoming result we study approximate (ϕ, ψ)-weak amenability of Segal

algebras.

Theorem 3.1. Let G be an amenable group and let S1(G) be a symmetric Segal

algebra with approximate identity (eα)α contained in the center of L
1(G). Given

ϕ, ψ ∈ Hom(S1(G)) such that extensions of ϕ, ψ to L1(G) are continuous, and ψ

is onto, every bounded (ϕ, ψ)-derivation from S1(G) into S1(G)∗ is approximately

(ϕ, ψ)-inner.

P r o o f. Let (eα)α be an approximate identity of S
1(G) contained in the center

of L1(G), and let ϕ̃ and ψ̃ be the extensions of ϕ and ψ to L1(G), respectively.

For each α define Dα : L
1(G) → S1(G)∗ by Dα(f) = D(eα ∗ f) − D(eα) · ϕ̃(f) for

every f ∈ L1(G). At first, we prove that Dα is a bounded (ϕ, ψ)-derivation. The

boundedness of Dα comes from that L
1(G) acts continuously on S1(G) on the right,

and so f 7→ D(eα ∗ f) is continuous from L1(G) into S1(G)∗. Similarly L1(G) acts

continuously on S1(G) on the left, and so f 7→ D(eα) · ϕ̃(f) is continuous, which

implies that Dα is continuous. Let f1, f2 ∈ L1(G). Then

Dα(f1 ∗ f2) = D(eα ∗ f1 ∗ f2)−D(eα) · ϕ̃(f1 ∗ f2)

= norm- lim
β
(D(eα ∗ f1 ∗ eβ ∗ f2)−D(eα) · ϕ̃(f1 ∗ f2))

= norm- lim
β
(D(eα ∗ f1) · ϕ(eβ ∗ f2) + ψ(eα ∗ f1) ·D(eβ ∗ f2)

−D(eα) · ϕ̃(f1 ∗ f2))
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= D(eα ∗ f1) · ϕ̃(f2)−D(eα) · ϕ̃(f1 ∗ f2)

+ w∗- lim
β
ψ(f1 ∗ eα) ·D(eβ ∗ f2)

= (D(eα ∗ f1)−D(eα) · ϕ̃(f1)) · ϕ̃(f2)

+ w∗- lim
β
(ψ̃(f1)ψ(eα) ·D(eβ ∗ f2))

= (D(eα ∗ f1)−D(eα) · ϕ̃(f1)) · ϕ̃(f2)

+ w∗- lim
β
(ψ̃(f1) ·D(eα ∗ eβ ∗ f2)− ψ̃(f1) ·D(eα) · ϕ(eβ ∗ f2))

= (D(eα ∗ f1)−D(eα) · ϕ̃(f1)) · ϕ̃(f2) + ψ̃(f1) ·D(eα ∗ f2)

− ψ̃(f1) ·D(eα) · ϕ̃(f2)

= Dα(f1) · ϕ̃(f2) + ψ̃(f1) ·D(f2).

Therefore Dα is a (ϕ, ψ)-derivation. By Johnson’s theorem there exists ξα in S
1(G)∗

such that

Dα(f) = ξα · ϕ̃(f)− ψ̃(f) · ξα = D(eα ∗ f)−D(eα) · ϕ̃(f)

for all f ∈ L1(G). So we get

D(eα) · ϕ̃(f) = D(eα ∗ f)− ψ(eα) ·D(f)
w∗

→ 0

for every f ∈ S1(G). Then

D(f) = w∗- lim
α
ξα · ϕ̃(f)− ψ̃(f) · ξα, f ∈ S1(G).

Take f = eα. Since (eα) is in the center of L
1(G), then D(eα) = 0. Therefore for

every f ∈ S1(G) we have

D(f) = norm- lim
α
ξα · ϕ̃(f)− ψ̃(f) · ξα,

and so the proof is complete. �

In the upcoming result, we show that the concept of generalized weak amenability

on Banach algebras can be induced on Segal algebras.

Theorem 3.2. Let A be a commutative Banach algebra and let B be an abstract

Segal algebra of A with approximate identity (eα). Suppose that ϕ ∈ Hom(B) has a

continuous extension ϕ̃ to A. If A is (ϕ̃, ϕ̃)-weakly amenable, thenB is (ϕ, ϕ)-weakly

amenable.
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P r o o f. Let D : B → B
∗ be a continuous (ϕ, ϕ)-derivation. Similarly as in the

proof of Theorem 3.1, define Dα : A → B
∗ by Dα(f) = D(eα ∗ f) − D(eα) · ϕ̃(f)

for every f ∈ A. According to the proof of Theorem 3.1, Dα is a continuous (ϕ, ϕ)-

derivation. Since A is (ϕ̃, ϕ̃)-weakly amenable and commutative, B∗ is a symmetric

A-bimodule. This means that Dα = 0, and so D = 0. �
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