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Abstract. Sufficient conditions are obtained for the third order nonlinear delay difference
equation of the form

∆(an(∆(bn(∆yn)
α))) + qnf(yσ(n)) = 0

to have property (A) or to be oscillatory. These conditions improve and complement many
known results reported in the literature. Examples are provided to illustrate the importance
of the main results.

Keywords: third order delay difference equation; property (A); comparison theorem

MSC 2010 : 39A10

1. Introduction

This paper deals with the nonlinear third order delay difference equation of the

form

(1.1) ∆(an(∆(bn(∆yn)
α))) + qnf(yσ(n)) = 0, n > n0

subject to the following conditions:

(H1) n0 ∈ N = {0, 1, 2, . . .}, and α is a quotient of odd integers;

(H2) {an}, {bn} and {qn} are positive real sequences for all n > n0;

(H3) {σ(n)} is an increasing sequence of integers with σ(n) 6 n, and lim
n→∞

σ(n) = ∞;

(H4) f is a real-valued nondecreasing function with uf(u) > 0 for u 6= 0, and f(uv) >

f(u)f(v) for uv > 0;

(H5)
∞
∑

n=n0

an
−1 = ∞,

∞
∑

n=n0

b
−1/α
n = ∞.
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By a solution of equation (1.1), we mean a nontrivial real sequence {yn} that is

defined for all n > n0 − σ(n0) and satisfies equation (1.1) for all n > n0. A solution

{yn} of equation (1.1) is said to be nonoscillatory if it is either eventually positive

or eventually negative, and oscillatory otherwise. An equation is called oscillatory if

all its solutions are oscillatory. By property (A) of equation (1.1) it is meant that

every positive solution {yn} of equation (1.1) is decreasing, that is,

∆yn < 0, ∆(bn(∆yn)
α) > 0, ∆(an∆(bn(∆yn)

α)) < 0.

The investigation of oscillatory properties of third and higher order difference

equations received considerable attention in the recent years. This is because such

equations often arise in the study of problems in economics, mathematical biology

and many other areas of mathematics where discrete models are used, see for exam-

ple [1], [2], [6].

In the recent papers [3]–[5], [7]–[18], the authors presented criteria for the oscilla-

tory and asymptotic behavior of solutions of third and higher order delay difference

equations. Following this trend, in this paper we derive new monotone properties

of nonoscillatory solutions of equation (1.1) that permit us to obtain new sufficient

conditions for equation (1.1) to have property (A) or to be oscillatory. Our results

essentially improve many known results established for delay and ordinary difference

equations.

The paper is organized as follows: Section 2 provides some preliminary results

that will be used in the main results. In Section 3, we obtain sufficient conditions

for equation (1.1) to have property (A), and in Section 4 we present criteria for

oscillation of equation (1.1). Finally in Section 5, we provide some examples to

illustrate the importance of the main results.

2. Preliminary results

We introduce the following classes of nonoscillatory (let us say positive) solutions

of equation (1.1):

yn ∈ S0 ⇔ ∆yn < 0, ∆(bn(∆yn)
α) > 0, ∆(an∆(bn(∆yn)

α)) < 0

or

yn ∈ S2 ⇔ ∆yn > 0, ∆(bn(∆yn)
α) > 0, ∆(an∆(bn(∆yn)

α)) < 0,

eventually for all n > N > n0.

We begin with the following lemma.
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Lemma 2.1. Assume that {yn} is an eventually positive solution of equa-

tion (1.1). Then {yn} satisfies either yn ∈ S0 or yn ∈ S2 eventually for all

n > N > n0.

P r o o f. The proof can be found in [12], and so it can be omitted. �

Next, we derive some important properties of nonoscillatory solutions of equa-

tion (1.1) that will be applied in our main results.

Define

An =

n−1
∑

s=N

1

as
, Bn =

n−1
∑

s=N

1

b
1/α
s

, Cn =

n−1
∑

s=N

1

b
1/α
s

(s−1
∑

t=N

1

at

)1/α

,

where N > n0 is large enough.

Lemma 2.2. Let {yn} be a positive solution of equation (1.1) which belongs

to S2, and

(2.1)

∞
∑

n=N

1

an

∞
∑

s=n

qsf(Bσ(s)) = ∞.

Then

(i) {ynB
−1
n } is increasing for all n > N,

(ii) {ynC
−1
n } is decreasing for all n > N,

(iii) {b
1/α
n ∆ynA

−1/α
n } is decreasing for all n > N.

P r o o f. Assume that {yn} is a positive solution of equation (1.1) satisfying

{yn} ∈ S2 for all n > N. Since an∆(bn(∆yn)
α) is decreasing, we have

(2.2) bn(∆yn)
α >

n−1
∑

s=N

as∆(bs(∆ys)
α)

1

as
> an∆(bn(∆yn)

α)An.

This implies

∆
(bn(∆yn)

α

An

)

=
An∆(bn(∆yn)

α)− bn(∆yn)
αa−1

n

AnAn+1
6 0.

Thus {b
1/α
n (∆yn)A

−1/α
n } is decreasing and further, this fact yields

(2.3) yn >

n−1
∑

s=N

A
1/α
s b

1/α
s ∆ys

A
1/α
s b

1/α
s

>
b
1/α
n ∆yn

A
1/α
n

n−1
∑

s=N

1

b
1/α
s

(s−1
∑

t=N

1

at

)1/α

.
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Hence

∆
( yn
Cn

)

=
Cn∆yn − ynA

1/α
n b

−1/α
n

CnCn+1
6 0,

which implies that {ynC
−1
n } is decreasing.

Next, since {b
1/α
n ∆yn} is increasing for all n > N, it is easy to see that for all

n > N1 > N

(2.4) yn = yN1
+

n−1
∑

s=N1

b
1/α
s ∆ys

b
1/α
s

6 yN1
+ b1/αn ∆yn

n−1
∑

s=N1

1

b
1/α
s

= yN1
− b1/αn ∆yn

N−1
∑

s=N1

1

b
1/α
s

+ b1/αn ∆yn

n−1
∑

s=N

1

b
1/α
s

.

It follows from condition (2.1) that b
1/α
n ∆yn → ∞ as n → ∞. If not, then b

1/α
n ∆yn →

2d < ∞ as n → ∞. Summing equation (1.1) from n to ∞, we get

∆(bn(∆yn)
α) >

1

an

∞
∑

s=n

qsf(yσ(s)).

On the other hand, b
1/α
n ∆yn → 2d as n → ∞, we have b

1/α
n ∆yn > d for n large

enough. This implies yn > dBn. Combining the last two inequalities and summing

once more, we obtain

2d > f(d)

n−1
∑

s=N2

1

as

∞
∑

t=s

qsf(Bσ(s)).

A contradiction with (2.1) and we conclude that b
1/α
n ∆yn → ∞ as n → ∞. Therefore,

for any n > N2 > N1, we have from (2.4) that

yn 6 b1/αn ∆ynBn.

Now, one can see that

∆
( yn
Bn

)

=
Bn∆yn − ynb

−1/α
n

BnBn+1
> 0

eventually, and we conclude that {ynB
−1
n } is increasing. The proof is now complete.

�
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3. Criteria for property (A)

In this section, we present several criteria for the class S2 of equation (1.1) to be

empty. In the literature such case is referred to as property (A) of equation (1.1).

Theorem 3.1. Let condition (2.1) hold, and

(3.1) lim
u→±∞

uα

f(u)
= K1 < ∞.

If

(3.2) lim sup
n→∞

{

Cα
σ(n)

Aσ(n)
f
( 1

Cσ(n)

)

σ(n)−1
∑

s=N

qsf(Cσ(s))As+1

+ Cα
σ(n)f

( 1

Cσ(n)

)

n−1
∑

s=σ(n)

qsf(Cσ(s))

+ Cα
σ(n)f

( 1

Bσ(n)

)

∞
∑

s=n

qsf(Bσ(s))

}

> K1,

then class S2 is empty for equation (1.1).

P r o o f. Assume that equation (1.1) possesses an eventually positive solution

{yn} belonging to S2 for all n > N. Summation of equation (1.1) from n to ∞ yields

∆(bn(∆yn)
α) >

1

an

∞
∑

s=n

qsf(yσ(s)).

Summing the last inequality from N to n− 1, we obtain

(3.3) bn(∆yn)
α >

n−1
∑

s=N

1

as

∞
∑

t=s

qtf(yσ(t))

=

n−1
∑

s=N

1

as

n−1
∑

t=s

qtf(yσ(t)) +

n−1
∑

s=N

1

as

∞
∑

t=n

qtf(yσ(t))

=

n−1
∑

s=N

As+1qsf(yσ(t)) +An

∞
∑

s=n

qsf(yσ(s)).

Using (2.3), we have

Any
α
n

Cα
n

>

n−1
∑

s=N

As+1qsf(yσ(s)) +An

∞
∑

s=n

qsf(yσ(s)),
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or

Aσ(n)y
α
σ(n)

Cα
n

>

σ(n)−1
∑

s=N

As+1qsf(yσ(s)) +Aσ(n)

n−1
∑

s=σ(n)

qsf(yσ(s))

+Aσ(n)

∞
∑

s=n

qsf(yσ(s)).

From the monotonicity properties (i)–(iii) of Lemma 2.2 and taking (H4) into ac-

count, we see that

(3.4)
Aσ(n)y

α
σ(n)

Cα
n

> f
( yσ(n)

Cσ(n)

)

σ(n)−1
∑

s=N

As+1qsf(Cσ(s))

+Aσ(n)f
( yσ(n)

Cσ(n)

)

n−1
∑

s=σ(n)

qsf(Cσ(s))

+Aσ(n)f
( yσ(n)

Bσ(n)

)

∞
∑

s=N

qsf(Bσ(s)),

or

yασ(n)

f(yσ(n))
>

Cα
σ(n)

Aσ(n)
f
( 1

Cσ(n)

)

σ(n)−1
∑

s=N

As+1qsf(Cσ(s))

+ Cα
σ(n)f

( 1

Cσ(n)

)

n−1
∑

s=σ(n)

qsf(Cσ(s))

+ Cα
σ(n)f

( 1

Bσ(n)

)

∞
∑

s=N

qsf(Bσ(s)).

Taking lim sup as n → ∞ on both sides of the last inequality, we are led to contra-

diction with (3.2). This completes the proof. �

The above theorem is suitable to apply for the half-superlinear and half-linear case

of equation (1.1). Indeed, we may formulate the following results:

Corollary 3.2. Let condition (2.1) hold, and

lim sup
n→∞

{

1

Aσ(n)C
β−α
σ(n)

σ(n)−1
∑

s=N

qsC
β
σ(s)As+1 +

1

Cβ−α
σ(n)

n−1
∑

s=σ(n)

qsC
β
σ(s)

+
Cα

σ(n)

Bβ
σ(n)

∞
∑

s=n

qsB
β
σ(s)

}

> 0.

30



Then the class S2 is empty for the equation

(3.5) ∆(an(∆(bn(∆yn)
α))) + qny

β
σ(n) = 0, β > α.

Corollary 3.3. Let condition (2.1) hold, and

(3.6) lim sup
n→∞

{

1

Aσ(n)

σ(n)−1
∑

s=N

qsC
α
σ(s)As+1 +

n−1
∑

s=σ(n)

qsC
α
σ(s)

+
Cα

σ(n)

Bβ
σ(n)

∞
∑

s=n

qsB
α
σ(s)

}

> 1.

Then the class S2 is empty for the equation

(3.7) ∆(an(∆(bn(∆yn)
α))) + qny

α
σ(n) = 0.

In the following, we present another criterion for property (A) of equation (1.1)

that will be used for half-sublinear case of equation (1.1).

Theorem 3.4. Let condition (2.1) hold, and

(3.8)

∞
∑

n=N1

qnf(Cσ(n)) = ∞.

Assume that

(3.9) lim
u→0

uα

f(u)
= K2 < ∞.

If

lim sup
n→∞

{

1

Aσ(n)

σ(n)−1
∑

s=N

qsf(Cσ(s))As+1 +
n−1
∑

s=σ(n)

qsf(Cσ(s))

+ f
(Cσ(n)

Bσ(n)

)

∞
∑

s=n

qsf(Bσ(s))

}

> K2,

then the class S2 is empty for equation (1.1).
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P r o o f. Assume that equation (1.1) possesses an eventually positive solution

{yn} ∈ S2 for n > N. First, we shall show that (3.8) implies

lim
n→∞

yn
Cn

= 0.

Assume the contrary, that is, lim
n→∞

yn/Cn = d > 0. Then the discrete L’Hospital rule

implies that

d = lim
n→∞

yn
Cn

=
(

lim
n→∞

an∆(bn(∆yn)
α)
)1/α

.

On the other hand, summation of equation (1.1) from N to ∞ yields

(3.10) K = as∆(bs(∆ys)
α)|s=N >

∞
∑

n=N

qnf(yσ(n)).

Combining (2.2) and (2.3), we obtain

yn > Cn(an∆(bn(∆yn)
α))1/α > dCn.

Which, in view of (3.10), gives

K > f(d)

∞
∑

n=N

qnf(Cσ(n)).

This contradicts (3.8), and we conclude that yn/Cn → 0 as n → ∞. Set

zn =
yσ(n)

Cσ(n)
.

Then condition (3.4) together with (H4) implies

zαn
f(zn)

>
1

Aσ(n)

σ(n)−1
∑

s=N

qsf(Cσ(s))As+1+
n−1
∑

s=σ(n)

qsf(Cσ(s))+f
(Cσ(n)

Bσ(n)

)

∞
∑

s=n

qsf(Bσ(s)).

Taking lim sup as n → ∞ on both sides of the last inequality, we are led to contra-

diction with the assumption of the theorem. This completes the proof. �

For f(u) = uα, Theorem 3.4 reduces to Corollary 3.3, while for the half-sublinear

case we obtain the following corollary.

Corollary 3.5. Let conditions (2.1) and (3.8) hold. If

lim sup
n→∞

{

1

Aσ(n)

σ(n)−1
∑

s=N

qsC
β
σ(s)As+1 +

n−1
∑

s=σ(n)

qsC
β
σ(s) +

Cα
σ(n)

Bσ(n)

∞
∑

s=n

qsB
β
σ(s)

}

> 0,

then the class S2 is empty for the equation

(3.11) ∆(an(∆(bn(∆yn)
α))) + qny

β
σ(n) = 0, α > β.
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For the difference equations with σ(n) = n + 1, Corollaries 3.2, 3.3 and 3.5 yield

the following results.

Corollary 3.6. Let σ(n) ≡ n+ 1. Assume that condition (2.1) holds, and

lim sup
n→∞

{

1

An+1C
β−α
n+1

n
∑

s=N

qsC
β
s+1As+1 +

Cα
n+1

Bβ
n+1

∞
∑

s=n

qsB
β
s+1

}

> 0.

Then equation (3.5) has property (A).

Corollary 3.7. Let σ(n) ≡ n+ 1. Assume that condition (2.1) holds, and

lim sup
n→∞

{

1

An+1

n
∑

s=N

qsC
β
s+1As+1 +

Cα
n+1

Bα
n+1

∞
∑

s=n

qsB
β
s+1

}

> 1.

Then equation (3.7) has property (A).

Corollary 3.8. Let σ(n) ≡ n + 1. Assume that conditions (2.1) and (3.8) hold.

If

lim sup
n→∞

{

1

An+1

n
∑

s=N

qsC
β
s+1As+1 +

Cβ
n+1

Bβ
n+1

∞
∑

s=n

qsB
β
s+1

}

> 0,

then equation (3.11) has property (A).

R em a r k 3.9. Corollaries 3.6–3.8 essentially improve and extend the results

in [15], [16], [18] for the equation ∆3yn + qnyn+1 = 0.

4. Oscillation results

In this section, we present oscillation criteria for equation (1.1). To achieve this,

we need to eliminate the class S0 also.

Theorem 4.1. Assume that

(4.1) lim
u→0

u

f1/α(u)
= K3 < ∞.

If

(4.2) lim sup
n→∞

n−1
∑

s=σ(n)

1

b
1/α
s

(n−1
∑

t=s

1

at

n−1
∑

j=t

qj

)1/α

> K3,

then the class S0 is empty for equation (1.1).
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P r o o f. Assume that equation (1.1) possesses an eventually positive solution

{yn} ∈ S0 for n > N1 > N. First, note that condition (4.2) implies

∞
∑

n=N1

1

b
1/α
s

( ∞
∑

s=n

1

as

∞
∑

t=s

qt

)1/α

= ∞,

which guarantees that yn → 0 as n → ∞.

On the other hand, summation of equation (1.1) from s to n− 1 gives

∆(bs(∆ys)
α) >

1

as

n−1
∑

t=s

qtf(yσ(t)) >
1

as
f(yσ(n))

n−1
∑

t=s

qs.

Summing in s, we obtain

−∆ys >
f1/α(yσ(n))

b
1/α
s

(n−1
∑

t=s

1

at

n−1
∑

j=t

qj

)1/α

.

Summing once more, we obtain

ys > f1/α(yσ(n))
n−1
∑

t=s

1

b
1/α
t

( n−1
∑

j=t

1

aj

n−1
∑

i=j

qi

)1/α

.

Setting s = σ(n), we have

yσ(n)

f1/α(yσ(n))
>

n−1
∑

s=σ(n)

1

b
1/α
s

( n−1
∑

t=s

1

at

n−1
∑

j=t

qj

)1/α

.

Taking lim sup as n → ∞ on both sides of the last inequality, we are led to contra-

diction with (4.2). This completes the proof. �

For special cases of equation (1.1), Theorem 4.1 reduces to the following criteria.

Corollary 4.2. If

(4.3) lim sup
n→∞

{ n−1
∑

s=σ(n)

1

b
1/α
s

(n−1
∑

t=s

1

at

n−1
∑

j=t

qj

)1/α}

> 1,

then the class S0 is empty for equation (3.7).
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Corollary 4.3. If

(4.4) lim sup
n→∞

{ n−1
∑

s=σ(n)

1

b
1/α
s

(n−1
∑

t=s

1

at

n−1
∑

j=t

qj

)1/α}

> 0,

then the class S0 is empty for equation (3.11).

Combining the criteria obtained for both classes S0 and S2 to be empty, we obtain

results for the oscillation of all solutions of equation (1.1).

Theorem 4.4. Let all conditions of Theorem 3.1 (Theorem 3.4) and Theorem 4.1

hold. Then every solution of equation (1.1) is oscillatory.

Corollary 4.5. Let all conditions of Corollary 3.3 and Corollary 4.2 hold. Then

every solution of equation (3.7) is oscillatory.

Corollary 4.6. Let all conditions of Corollary 3.5 and Corollary 4.3 hold. Then

every solution of equation (3.11) is oscillatory.

5. Examples

In this section, we present two examples to illustrate the importance of the main

results.

E x am p l e 5.1. Consider the third order delay difference equation

(5.1) ∆(n1/3∆(n1/4(∆yn)
1/3)) +

8

n7/4
y
1/3
n−3 = 0, n > 1.

Here an = n1/3, bn = n1/4, qn = 8n−7/4, σ(n) = n − 3 and α = β = 1
3 . Simple

computation shows that

An ∼ 3
2n

2/3, Bn ∼ 4n1/4 and Cn ∼ 3
2n

9/4.

Then it is easy to see that conditions (3.6) and (4.3) are satisfied. Therefore by

Corollary 4.5 every solution of equation (5.1) is oscillatory.

E x am p l e 5.2. Consider the third order delay difference equation

(5.2) ∆
( 1

n
∆
( 1

n3
(∆yn)

3
))

+ 2nyn−3 = 0, n > 1.
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Here an = n−1, bn = n−3, qn = 2n, σ(n) = n − 3 and α = 3, β = 1. Simple

computation shows that

An ∼ 1
2n

2, Bn ∼ 1
2n

2 and Cn ∼ 3
8n

8/3.

It is easy to see that all conditions of Corollary 3.5 and Corollary 4.3 are satisfied.

Therefore by Corollary 4.6 every solution of equation (5.2) is oscillatory.

6. Conclusion

In this paper, we derived new monotonic properties of the nonoscillatory solutions

and using these results some new sufficient conditions were presented for the studied

equation to have the so called property (A) or to be oscillatory. Our results essentially

improve and complement many known results not only for delay difference equations

but for ordinary difference equations as well, see [2]–[4], [9]–[18]. Finally, we provided

two examples that illustrate the significance of the main results.
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