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Abstract. We study the minimal prime elements of multiplication lattice moduleM over a
C-lattice L. Moreover, we topologize the spectrum π(M) of minimal prime elements of M
and study several properties of it. The compactness of π(M) is characterized in several
ways. Also, we investigate the interplay between the topological properties of π(M) and
algebraic properties of M .
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1. Introduction

The notion of minimal prime elements of a lattice module is a generalization of

minimal prime elements of a multiplicative lattice. The prime and minimal prime

elements of multiplicative lattice were introduced and studied by Thakare, Man-

jarekar and Maeda [12], Thakare and Manjarekar [11], and the minimal prime ideals

of 0-distributive lattices by Pawar and Thakare [9]. Keimel [7] unified the study

of minimal prime ideals for various structures, e.g. commutative rings, distributive

lattices, lattice ordered groups, f -rings. In this paper, we have carried out investi-

gations leading to the study of generalizations of notions in commutative rings and

multiplicative lattices along the lines of Dilworth (see [6]).

A complete lattice L with the least element 0 and the greatest element 1 is said

to be a multiplicative lattice if a binary operation “·” called multiplication on L

satisfying the following conditions is defined:
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(1) a · b = b · a for all a, b ∈ L,

(2) a · (b · c) = (a · b) · c for all a, b, c ∈ L,

(3) a ·∨
α

bα =
∨

α

(a · bα) for all a, bα ∈ L,

(4) a · 1 = a for all a ∈ L.

Henceforth, a · b will be simply denoted by ab.
An element p 6= 1 of a multiplicative lattice L is said to be prime if ab 6 p

implies either a 6 p or b 6 p. A prime element p ∈ L is said to be a minimal

prime over an element a ∈ L if a 6 p and whenever there is a prime element q ∈ L

with a < q 6 p, then q = p. In L, a minimal prime element over 0 will be called a

minimal prime element of L. For a ∈ L, its radical is denoted by
√
a and defined as√

a =
∨{x ∈ L : xn 6 a for some n ∈ Z+}. An element a ∈ L is called semiprime

or radical if
√
a = a.

An element a ∈ L is said to be compact if a 6
∨

X , X ⊆ L implies that there

exists a finite number of elements x1, x2, . . . , xn ∈ X such that a 6
n
∨

i=1

xi. We denote

the set of all compact elements of a multiplicative lattice L by L∗. In a multiplicative

lattice L, an element a ∈ L is said to be nilpotent if an = 0 for some n ∈ Z+ and is

said to be reduced if the only nilpotent element of L is 0.

An element e ∈ L is said to be meet principal or join principal if it satisfies the

identity a ∧ be = ((a : e) ∧ b)e or (ae ∨ b) : e = (b : e) ∨ a, respectively, for a, b ∈ L.

Also, e is said to be principal if it is both join and meet principal. A multiplicative

lattice L is said to be principally generated (PG) if every element of L is a join of

principal elements of L. A multiplicative lattice L is said to be compactly generated

(CG) if every element of L is the join of compact elements of L. According to Alarcon

et al. [1], if L is a compactly generated multiplicative lattice with 1 compact, then

maximal elements exist in L and every maximal element is a prime element. Further,

in a compactly generated multiplicative lattice, if every finite product of compact

elements is a compact element, then prime elements and minimal primes over a ∈ L

exist (see [1]).

By a C-lattice we mean a multiplicative lattice L with the greatest element 1,

which is compact as well as multiplicative identity, that is, generated under joins by

a multiplicatively closed subset C of compact elements of L.

A complete lattice M with the smallest element 0M and the greatest element 1M

is said to be a lattice module over the multiplicative lattice L or L-module if there

is a multiplication between elements of M and L, denoted by aN for a ∈ L and

N ∈ M , which satisfies the following properties:

(1) (ab)N = a(bN);

(2)
∨

α

aα
∨

β

Nβ =
∨

α,β

(aαNβ);
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(3) 1LN = N ;

(4) 0LN = 0M for a, b, aα ∈ L and for N,Nβ ∈ M .

Let M be a lattice module over a multiplicative lattice L. For N ∈ M and

b ∈ L, denote (N : b) =
∨{X ∈ M : aX 6 N}. If a, b ∈ L, we write (a : b) =

∨{x ∈ L : bx 6 a}. If A,B ∈ M , then (A : B) =
∨{x ∈ L : xB 6 A}.

An element A ∈ M is called weak meet principal if (B : A)A = B ∧ A for all

B ∈ M ; A is called weak join principal if bA : A = b ∨ (0 : A) for all b ∈ L; and A

is weak principal if A is both weak meet principal and weak join principal. Lattice

module M over a multiplicative lattice L is called a multiplication lattice module if

for every element N ∈ M there exists an element a ∈ L such that N = a1M .

An element N 6= 1M in M is said to be prime if aX 6 N implies X 6 N or

a1M 6 N , i.e. a 6 (N : 1M ) for every a ∈ L and X ∈ M . An element N 6= 1M of M

is called a maximal element if for every element B of M such that N 6 B, either

N = B or B = 1M . Let M be an L-module. An element N in M is called compact

if N 6
∨

α∈I

Aα (I is an indexed set) implies N 6 Aα1
∨ Aα2

∨ . . . ∨ Aαn
for some

subset {α1, α2, . . . , αn} of I.
In this paper, a lattice module M will be a multiplication lattice module, which

is compactly generated with the largest element 1M being compact and L will be a

C-lattice.

For general background and terminology of multiplicative lattice and multiplica-

tion lattice module, the reader may consult [1], [2], [4]–[6], [12], [11].

2. The Zariski topology

In [3], the Zariski topology over the prime spectrum Spec(M) of a lattice mod-

ule M over a C-lattice L has been studied by Ballal and Kharat. In [10], Phadatare

et al. introduced and studied the concept of quasi-prime elements as a generalization

of prime elements and also the Zariski topology on the quasi-prime spectrum of a

lattice module M over a C-lattice L.

In this paper most of the results in [12] and [11] are generalized.

Definition 2.1. Let M be a lattice module over a multiplicative lattice L. An

element P ∈ M is called a minimal prime over an element N ∈ M if N 6 P and

there is no other prime element Q of M such that N 6 Q < P .

Lemma 2.2. Let M be a multiplication lattice module over a C-lattice L and

(0M : 1M ) be a radical element. Then for x ∈ L, (0M : x) = (0M : xn) for every

integer n > 1.
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P r o o f. Note that (0M : x) =
∨{N ∈ M : xN 6 0M} and as xn 6 x, we have

(0M : x) 6 (0M : xn) for every integer n > 1. Let N1 = (0M : xn). Since M

is a multiplication lattice module, N1 = a1M for some a ∈ L. So xnan1M 6

xna1M = 0M . Hence xa 6
√

(0M : 1M ) = (0M : 1M ). So xa1M 6 0M , i.e. N1 6

(0M : x) and consequently (0M : x) = (0M : xn) for each integer n > 1. �

Theorem 2.3 ([8]). Let M be a multiplication lattice module over a C-lattice L

and a ∈ L be proper. A prime element P ∈ M with a1M 6 P is minimal if and only

if for x ∈ L∗ with x1M 6 P there is an element y ∈ L∗ such that y1M � P and

xny1M 6 a1M = N for some positive integer n.

The following result characterizes a prime element to be a minimal prime.

Theorem 2.4. Let M be a multiplication lattice module over a C-lattice L and

(0M : 1M ) be a radical element. A prime element P ∈ M is a minimal prime if and

only if for x ∈ L∗, P contains precisely one of x1M and (0M : x).

P r o o f. Suppose that the condition is true for prime element P ∈ M . Let

x ∈ L∗ be such that x1M 6 P and (0M : x) � P . Then there exists y ∈ L∗ such

that y1M 6 (0M : x) but y1M � P . Thus, xy1M 6 0M and hence x
ny1M 6 0M for

every integer n > 1. This shows that for each x ∈ L∗ with x1M 6 P there exists an

element y ∈ L∗ such that y1M � P and xny1M 6 0M . By Theorem 2.3, it follows

that P is minimal.

Conversely, suppose that a prime element P ∈ M is minimal and also that

x1M 6 P for x ∈ L∗. Then by Theorem 2.3, there exists y ∈ L∗ such that y1M � P

and xny1M = 0M for some positive integer n. Consequently, y1M 6 (0M : xn). By

Lemma 2.2, we have (0M : xn) = (0M : x) and hence y1M 6 (0M : x). This implies

that (0M : x) � P .

Now, if x1M � P and (0M : x) � P , then there exists y ∈ L∗ such that y1M 6

(0M : x) but y1M � P . Hence, we have xy1M 6 0M and so xy1M 6 P . But

x1M � P and y1M � P together contradicts the fact that P is a prime. This shows

that P contains precisely one of x1M and (0M : x). �

Let σ(M) be the set of prime elements of a lattice module M . For an element

N ∈ M we set V (N) = {P ∈ σ(M) : N 6 P}. Taking the sets {V (N) : N ∈ M} as
a base for closed sets, σ(M) becomes a topological space and this topology is called

the Zariski topology (see [3]).

The restriction of the Zariski topology to the set of minimal prime elements π(M)

makes it a topological space and it is called the minimal prime spectrum of M .

The following results about a minimal prime spectrum are immediate.
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Corollary 2.5. Let M be a multiplication lattice module over a reduced

C-lattice L. For a ∈ L, V (0M : a) = π(M) − V (a1M ). In particular, V (a1M ) and

V (0M : a) are disjoint open and closed sets.

Corollary 2.6. Let M be a multiplication lattice module over a reduced

C-lattice L with 1M being compact. Then π(M) is a Hausdorff space with a base of

open and closed sets.

Definition 2.7 ([11]). A subset S of a multiplicative lattice L is said to be mul-

tiplicatively closed if x, y ∈ S implies xy ∈ S, and is said to be sub-multiplicatively

closed if x, y ∈ X implies a 6 xy for some a ∈ S.

In order to characterize prime elements of lattice modules in terms of multiplica-

tively closed subset of L, we need the following lemma.

Lemma 2.8 ([4]). LetM be a multiplication lattice module over a PG C-lattice L

and N ∈ M with N < 1M . Then the following conditions are equivalent.

(1) N is a prime element in M .

(2) (N : 1M ) is a prime element in L.

(3) There exists a prime element p in L with (0M : 1M ) 6 p such that N = p1M .

For N ∈ M we define C(N) = {x ∈ L : x � (N : 1M )}.

Lemma 2.9. Let M be a multiplication lattice module over a PG C-lattice L.

An element P ∈ M is a prime if and only if C(P ) is a multiplicatively closed subset

of L.

P r o o f. Suppose that P ∈ M is a prime and x, y ∈ C(P ). Then x � (P : 1M )

and y � (P : 1M ). Since P ∈ M is a prime, by Lemma 2.8 we have that (P : 1M ) ∈ L

is a prime. As x � (P : 1M ), y � (P : 1M ) and (P : 1M ) is a prime, xy � (P : 1M ),

i.e. xy ∈ C(P ) and hence C(P ) is multiplicatively closed.

Conversely, suppose that C(P ) is a multiplicatively closed subset of L and

xy1M 6 P for x, y ∈ L. Then xy 6 (P : 1M ) and so xy /∈ C(P ). If x � (P : 1M )

and y � (P : 1M ), then x ∈ C(P ), y ∈ C(P ) and this contradicts the fact that C(P )

is multiplicatively closed. Therefore x 6 (P : 1M ) or y 6 (P : 1M ), i.e. x1M 6 P or

y1M 6 p. Consequently, P is a prime. �

Lemma 2.10 ([11]). Let a be an element of a C-lattice L and S be a multiplica-

tively closed subset of L satisfying the property s � a for all s ∈ S. Then there is

a multiplicatively closed subset S′ of L containing S which is maximal with respect

to the property s′ � a for all s′ ∈ S′.
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Lemma 2.11 ([11]). (Separation lemma) Let S be a sub-multiplicatively closed

subset of a C-lattice L. Suppose that a ∈ L and t � a for every t ∈ S. Then there

exists a prime element p ∈ L such that a 6 p and it is maximal with respect to t � p

for each t ∈ S.

An element a in a complete lattice L is said to be completely join prime if a 6
∨

S,

S ⊆ L implies a 6 s for some s ∈ S.

Lemma 2.12. Let M be a multiplication lattice module over a PG C-lattice L

and suppose every element of L is a completely join prime. A prime element P ∈ M

with a1M 6 P is minimal if and only if C(P ) is a maximal multiplicatively closed

subset of L with x � a for all x ∈ C(P ) and a ∈ L.

P r o o f. Suppose that C(P ) is a maximal multiplicatively closed subset of L with

x � a for all x ∈ C(P ). By Lemma 2.11 there is a prime element (Q : 1M ) > a that is

maximal with respect to the property that x � (Q : 1M ) for all x ∈ C(P ). Hence, by

Lemma 2.9, C(Q) is a multiplicatively closed subset of L. As a 6 (Q : 1M ), we have

x � a for any x ∈ C(Q). But C(P ) is a maximal multiplicatively closed subset of L

with the property that x � a for all x ∈ C(P ), hence we must have C(Q) ⊆ C(P ).

Now, if y ∈ C(P ), then y � (Q : 1M ) and hence y ∈ C(Q). Consequently, we have

C(P ) = C(Q). Now, let z 6 (P : 1M ), i.e. z ∈ C(P ). Then z /∈ C(Q) and it implies

that z 6 (Q : 1M ) and it further implies (P : 1M ) 6 (Q : 1M ). Similarly, we have

(Q : 1M ) 6 (P : 1M ) and hence (P : 1M ) = (Q : 1M ). It follows that P = Q.

Now we show that P is a minimal prime. Suppose that P ′ ∈ M is a prime with

a 6 (P ′ : 1M ) < (P : 1M ). Then by Lemma 2.9, C(P ′) is a multiplicatively closed

subset of L with x � a for all x ∈ C(P ′) and C(P ) ⊆ C(P ′). This contradicts the

maximality of C(P ). Hence, P is a minimal prime element of M with a1M 6 P .

Conversely, suppose that P ∈ M is a minimal prime with a1M 6 P . Then by

Lemma 2.9, C(P ) is a multiplicatively closed subset of L with x � a for all x ∈ C(P ).

By Lemma 2.10, there is a maximal multiplicatively closed subset S which contains

C(P ) and x � a for all x ∈ S. We show that S = C(P ′), where P ′ = p1M and

p =
∨

(L− S). Let y ∈ C(P ′) = {z ∈ L : z �
∨

(L− S)}. This gives y �
∨

(L − S),

i.e. y ∈ S and C(P ′) ⊆ S. On the other hand, if s ∈ S, then s /∈ L − S and

s �
∨

(L − S). As each element of L is a completely join prime, we have s ∈ C(P ′)

and therefore C(P ) = C(P ′).

By the first part, as S is a maximal multiplicatively closed subset of L with respect

to x � a for all x ∈ S, we conclude that P ′ is a minimal prime with a1M 6 P ′.

Clearly, C(P ) ⊆ S = C(P ′) gives that P ′ 6 P and since P is minimal, we must have

P = P ′. Hence, C(P ) = S = C(P ′) is the required maximal multiplicatively closed

subset of L with x � a for all x ∈ M and a ∈ L. �
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For N ∈ M define M
√
N =

∨{x ∈ L : xn1M 6 N}1M .

Theorem 2.13. Let L be a PG C-lattice in which every element is completely

join prime and let M be a multiplication lattice module over L. For N ∈ M , the

radical
M
√
N =

∧

{P : P is a minimal prime element of M with N 6 P}.

P r o o f. Observe that for a prime element P ∈ M with N 6 P we have M
√
N 6 P .

Therefore M
√
N 6

∧{P : P is a minimal prime element of M with N 6 P}.
Now, let x ∈ L∗ be such that x1M � M

√
N and let S = {xi : xi � (N : 1M ) and i is

an integer}. Observe that S is a multiplicatively closed subset of L. By Lemma 2.10,
there is a maximal multiplicatively closed set S′ such that y � (N : 1M ) for y ∈ S′.

Let p′ =
∨

(L− S′). Then S′ = C(p′1M ) = C(P ′). By Lemma 2.12, P ′ is a minimal

prime element of M with N 6 P ′. Clearly, x ∈ C(P ′) and as such x � (P : 1M ).

This gives that
∧{P : P is a minimal prime element of M with N 6 P} 6

M
√
N .

Consequently,
√
N =

∧

{P : P is a minimal prime element of M with N 6 P}. �

Corollary 2.14. Let M be a lattice module over a reduced PG C-lattice L and

N ∈ M . Then for a prime element P ∈ M with N 6 P there exists a minimal prime

element Q ∈ M such that N 6 Q 6 P .

P r o o f. Suppose P ∈ M is a prime element with N 6 P . Then by Lemma 2.9,

C(P ) is a multiplicatively closed subset of L with x � (N : 1M ) for all x ∈ C(P ). By

Lemma 2.10, there is a maximal multiplicatively closed set S such that y � (N : 1M )

for all y ∈ S. Also, C(Q) = S, where Q = p1M =
∨

(L − S)1M is a minimal prime

element of M with N 6 Q and C(P ) ⊆ C(Q) = S implies that Q 6 P . �

Lemma 2.15 ([12]). Let L be a C-lattice. Then each nonzero element of L is

contained in a maximal multiplicatively closed subset of L not containing zero.

For N ∈ M we set U(N) = {P ∈ π(M) : N � P}.

Theorem 2.16. Let L be a PG C-lattice in which every element is completely

join prime and let M be a multiplication lattice module over L. Then (0M : a) =
∧

U(a1M ) = {P ∈ π(M) : a1M � P}, a ∈ L.

P r o o f. Suppose P ∈ M is a minimal prime. Then by Theorem 2.4 we

have (0M : a) 6 P when a1M � P and therefore (0M : a) 6
∧{P ∈ π(M) :

a1M � P} = Q. If (0M : a) < Q, then there exists x ∈ L∗ such that x1M 6 Q

and x1M � (0M : a). Clearly, ax1M � 0M and so ax 6= 0. By Lemma 2.15, ax is

contained in some maximal multiplicatively closed subset S of L not containing 0.

As proved in Lemma 2.12, S = C(P ), where P = p1M and p =
∨

(L − S) is a mini-

mal prime element of L. Now ax ∈ S implies ax � (P : 1M ) and hence ax1M � P .
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Since P is a minimal prime and a1M � P , we have x1M � P . Therefore x1M � Q,

a contradiction and consequently, (0M : a) =
∧

{P ∈ π(M) : a1M � P}. �

Theorem 2.17. Let L be a PG C-lattice in which every element is a completely

join prime and let M be a multiplication lattice module over L. Then a1M =

(0M : (0M : a1M )) if and only if a1M =
∧

{P ∈ π(M) : a1M 6 P}, a ∈ L.

P r o o f. Suppose a1M = (0M : (0M : a1M )), a ∈ L. By Theorem 2.4

we have
∧{P ∈ π(M) : (0M : a) � P} =

∧{P ∈ π(M) : a1M 6 P}. But
(0M : (0M : a1M )) =

∧

{P ∈ π(M) : (0M : a) � P} gives that a1M =
∧

{P ∈
π(M) : a1M 6 P}.
Conversely, suppose that a1M =

∧{P ∈ π(M) : a1M 6 P}. By Theorem 2.16 we
have (0M : (0M : a1M )) =

∧{P ∈ π(M) : (0M : a) � P}. Now, by Theorem 2.4 we
have

∧{P ∈ π(M) : (0M : a) � P} =
∧{P ∈ π(M) : a1M 6 P} and by assumption,

a1M = (0M : (0M : a1M )). �

Theorem 2.18. LetM be a multiplication lattice module over a PG C-lattice L.

Then (0M : a) =
∧{V (0M : a)}, a ∈ L.

P r o o f. Note that (0M : a) 6
∧

{V (0M : a)}, a ∈ L follows immediately. Now,

let x ∈ L∗ be such that x1M � (0M : a). Then ax1M � 0M and so ax 6= 0.

Therefore ax is contained in some maximal multiplicatively closed subset S of L.

Then S = V (P ) = V (p1M ), where p =
∨

(L − S) and p is a minimal prime element

of L. Now ax ∈ C(P ) implies ax � (P : 1M ) and hence ax1M � P . Since P

is a minimal prime, we have x1M � P and a1M � P . By Theorem 2.4 we have

(0M : a) 6 P and hence P ∈ V (0M : a). As x1M � P , we have x1M �
∧

(V (0M : a)).

Thus, x1M � (0M : a) implies x1M �
∧

(V (0M : a)), i.e.
∧

(V (0M : a)) 6 (0M : a).

�

We now show that the minimal prime spectrum π(M) is a completely regular

Hausdorff space, i.e. a Tychonoff space.

Theorem 2.19. LetM be a multiplication lattice module over a PG C-lattice L.

Then the topology on π(M) for which the collection {U(a1M ) : a ∈ L} is a base for
open sets is Tychonoff.

P r o o f. Suppose that P1, P2 ∈ π(M) with P1 6= P2. Clearly P1 � P2 and

P2 � P1. Let x ∈ L∗ with x1M 6 P1 be such that x1M � P2. By Theorem 2.3,

there is y ∈ L∗ with y1M � P1 and xny1M = 0M for some integer n. If y1M � P2,

then this together with x1M � P2 gives x
ny1M � P2, which is a contradiction to the

fact that 0M 6 P2. Therefore y1M 6 P2. Clearly, P1 ∈ U(y1M ), P2 ∈ U(x1M ) and
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U(x1M )∩U(y1M ) = {P ∈ π(M) : x1M � P, y1M � P} = U(xy1M ) = U(xny1M ) =

U(0M ) = ϕ. Consequently, π(M) is a Hausdorff space and hence singletons are

closed.

Now, let Q ∈ π(M) and F be a closed subset of π(M) such that Q /∈ F . Then

Q ∈ π(M) − F and π(M) − F is open in π(M). Then there is an open set U(s1M )

for some s ∈ L such that Q ∈ U(s1M ) ⊆ π(M) − F . Define a function f on π(M)

as f(Q) = 0M if Q ∈ U(s1M ) and f(Q) = 1M otherwise. Then f(Q) = 0M and

f(F ) = 1. Note that f is continuous and hence π(M) is completely regular. Conse-

quently, π(M) is a completely regular Hausdorff space, i.e. a Tychonoff space. �

Corollary 2.20. π(M) is totally disconnected and zero dimensional space.

Theorem 2.21. LetM be a multiplication lattice module over a PG C-lattice L.

Let x, y ∈ L. Then U(x1M ) ⊆ U(y1M ) if and only if 0M : (0M : x1M ) 6 0M : (0M :

y1M ). In addition, U(x1M ) = U(y1M ) if and only if (0M : x) 6 (0M : y).

P r o o f. Suppose that U(x1M ) ⊆ U(y1M ) for x, y ∈ L. By Theorem 2.16 we

have (0M : y) 6 (0M : x) and hence (0M : y) � P which implies (0M : x) � P and

so {P ∈ π(M) : (0M : y) � P} ⊆ {P ∈ π(M) : (0M : x) � P}. By Theorem 2.4 we
have 0M : (0M : x1M ) 6 0M : (0M : y1M ).

Conversely, suppose that 0M : (0M : x1M ) 6 0M : (0M : y1M ). Therefore

{P ∈ π(M) : (0M : y) � P} ⊆ {P ∈ π(M) : (0M : x) � P} and so {P ∈ π(M) :

y1M 6 P} ⊆ {P ∈ π(M) : x1M 6 P} by Theorem 2.4. This gives {P ∈ π(M) :

x1M � P} ⊆ {P ∈ π(M) : y1M � P} and therefore U(x1M ) ⊆ U(y1M ).

For the second part, suppose that U(x1M ) = U(y1M ). Then U(x1M ) ⊆ U(y1M )

implies 0M : (0M : x1M ) 6 0M : (0M : y1M ) and U(y1M ) ⊆ U(x1M ) implies 0M :

(0M : y1M ) 6 0M : (0M : x1M ). Hence, 0M : (0M : y1M ) = 0M : (0M : x1M ) and

0M : (0M : (0M : y1M )) 6 0M : (0M : (0M : x1M )). Consequently, (0M : x) =

(0M : y).

Conversely, suppose that (0M : x) = (0M : y). Then 0M : (0M : x1M ) = 0M :

(0M : y1M ), i.e. 0M : (0M : x1M ) 6 0M : (0M : y1M ) and 0M : (0M : y1M ) 6 0M :

(0M : x1M ) and the result follows by the first part. �

Theorem 2.22. LetM be a multiplication lattice module over a PG C-lattice L.

Let I be an indexing set and S = {xr : r ∈ I} be a set of points in L such that the

collection of sets {U(xr1M ) : r ∈ I} has the finite intersection property. Then the
intersection of all {U(xr1M ) : r ∈ I} is nonempty.

P r o o f. We have
n
⋂

i=1

U(xi) = U(y1M ), where y = x1x2 . . . xn. Note that the

multiplication of finite number of nonzero xr, r ∈ I is nonzero. The collection of
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all nonzero xr , r ∈ I together with finite multiplication of xr ∈ S is multiplica-

tively closed subset of L not containing 0. By Lemma 2.10, there is a maximal

multiplicatively closed subset S′ of L containing S and not containing 0. We have

S′ = C(P ) = C(p1M ), where p =
∨

(L− S′) and p is a minimal prime element of L.

Clearly, P ∈ U(xr1M ) for all xr ∈ S′. As S ⊆ S′, we have P ∈ U(xr1M ) for all

xr ∈ S. Thus, P ∈ ⋂

r∈I

U(xr1M ), which implies that
⋂

r∈I

U(xr1M ) 6= ϕ. �

If the family {V (x1M ) : x ∈ L} is considered as an open basis for π(M), the

resulting topology is called the dual topology and denoted by τd. We denote the

topology for which {U(x1M ) : x ∈ L} is an open basis by τ .

Theorem 2.23. LetM be a multiplication lattice module over a PG C-lattice L.

The topology τ on π(M) for which {U(x1M ) : x ∈ L} is a basis for open sets is finer
than the topology τd on π(M) for which {V (x1M ) : x ∈ L} is a basis for open sets
and moreover τ = τd.

P r o o f. We know that {V (x1M ) : x ∈ L} is a basis for open sets for the topology
on π(M) denoted by τd. Clearly, V (x1M ) = π(M) − U(x1M ) for all x ∈ L. Note

that for x ∈ L, U(x1M ) is closed in π(M). Hence, V (x1M ) is open in the topology τ

for π(M), i.e. τ is finer than τd.

Now, for any x ∈ L we have U(x1M ) = V (0M : x). Thus, every basic open set

in τ is open in τd and so we conclude that τ = τd. �

Theorem 2.24. LetM be a multiplication lattice module over a PG C-lattice L.

The following statements are equivalent in M .

(1) π(M) is compact.

(2) The poset {U(x1M ) : x ∈ L}, under set inclusion, is a Boolean lattice.
(3) For x ∈ L there exist N1 = y11M , N2 = y21M , . . . , Nn = yn1M ∈ M with

yi1M = Ni 6 (0M : x) for i = 1, 2, . . . , n and (0M : x) ∧
n
∧

i=1

(0M : yi) = 0M .

(4) For x ∈ L there exist N1 = y11M , N2 = y21M , . . . , Nn = yn1M ∈ M such that

0M : (0M : x1M ) =
n
∧

i=1

(0M : yi).

(5) τ = τd.

(6) {U(x1M ) : x ∈ L} is a subbasis for open sets of π(M) with respect to the

topology τ .

(7) {V (x1M ) : x ∈ L} is a subbasis for open sets of π(M) with respect to the

topology τd.

P r o o f. (1) ⇒ (2): Clearly the set {U(x1M ) : x ∈ L} is partially ordered under
set inclusion.
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Now, we first show that

(i) U(x1M ) ∪ U(y1M ) = U(x1M ∨ y1M );

(ii) U(x1M ) ∩ U(y1M ) = U(xy1M ).

Let P ∈ U(x1M ) ∪ U(y1M ), then P ∈ U(x1M ) or P ∈ U(y1M ) and so x1M � P

or y1M � P . Therefore x1M ∨ y1M � P and this implies P ∈ U(x1M ∨ y1M ). Now,

let Q ∈ U(x1M ∨ y1M ), then x1M ∨ y1M � Q and this implies that x1M � Q or

y1M � Q. Therefore Q ∈ U(x1M ) ∪ U(y1M ). Consequently, U(x1M ) ∪ U(y1M ) =

U(x1M ∨ y1M ). Similarly, U(x1M ) ∩ U(y1M ) = U(xy1M ).

From this we conclude that ({U(x1M ) : x ∈ L},∪,∩) is a lattice.
Now, U(0.1M ) = U(0M ) = ϕ and U(1.1M ) = U(1M ) = π(M). This shows

that ({U(x1M ) : x ∈ L},∪,∩) is a bounded lattice. Again, observe that U(x1M ) ∪
(U(y1M ) ∩ U(z1M)) = (U(x1M ) ∪ U(y1M)) ∩ (U(x1M ) ∪ U(z1M)) and U(x1M ) ∩
(U(y1M ) ∪U(z1M )) = (U(x1M ) ∩U(y1M )) ∪ (U(x1M ) ∩U(z1M)). This shows that

({U(x1M ) : x ∈ L},∪,∩) is a distributive lattice.
Finally, we show that ({U(x1M ) : x ∈ L},∪,∩) is complemented. Note that for

x ∈ L we have V (x1M )∩ V (0M : x) = ϕ. Then V (x1M )∩ {V (N) : N 6 (0M : x)} =

ϕ. Since π(M) is compact, there existN1, N2, . . . , Nn 6 (0M : x) such that V (x1M )∩
{V (Ni) : Ni 6 (0M : x), i = 1, 2, . . . , n} = ϕ. By taking complements in π(M),

we get π(M) = U(x1M ) ∪ U(N1) ∪ . . . ∪ U(Nn). Since each Ni 6 (0M : x) for

i = 1, 2, . . . , n, we have U(x1M ) ∩
n
⋃

i=1

U(Ni) = ϕ. For, if P ∈ U(x1M ) ∩
n
⋃

i=1

U(Ni),

then x1M � P , which implies (0M : x) 6 P . Therefore Ni 6 P for i = 1, 2, . . . , n,

a contradiction as P ∈
n
⋃

i=1

U(Ni) and so Nk � P for some k, 1 6 k 6 n. Thus,

we have π(M) = U(x1M ) ∪
n
⋃

i=1

U(Ni) and U(x1M ) ∩
n
⋃

i=1

U(Ni) = ϕ. Consequently,

({U(x1M ) : x ∈ L},∪,∩) is a Boolean lattice.
(2) ⇒ (3): Suppose that the finite union of {U(x1M ) : x ∈ L} forms a Boolean

lattice and suppose that the complement of U(x1M ) is
n
⋃

i=1

U(Ni). As U(x1M ) ∩
n
⋃

i=1

U(Ni) = ϕ, we get U(x1M ) ∩ U(Ni) = ϕ, i = 1, 2, . . . , n. Therefore {P ∈

π(M) : xNi � P} = ϕ, i = 1, 2, . . . , n, i.e. U(xNi) = ϕ for i = 1, 2, . . . , n, which

implies xNi = 0M for i = 1, 2, . . . , n. Thus Ni 6 (0M : x) for i = 1, 2, . . . , n. Also,

π(M) = U(x1M ) ∪
n
⋃

i=1

U(Ni) gives
∧

(π(M)) =
∧

(

U(x1M ) ∪
n
⋃

i=1

U(Ni)
)

, i.e. 0M =

∧

(π(M)) =
∧

(

U(x1M ) ∨
n
∨

i=1

Ni

)

. Note that
∧

(

U(x1M ) ∨
n
∨

i=1

Ni

)

=
∧

(U(x1M )) ∧
n
∧

i=1

(U(Ni)). Then by Theorem 2.16 we have (0M : x) ∧
n
∧

i=1

(0M : yi) = 0M .

(3) ⇒ (4): Suppose that (3) holds. Then for any x ∈ L there exist N1 = y11M ,

N2 = y21M , . . ., Nn = yn1M ∈ M with yi1M = Ni 6 (0M : x) for i = 1, 2, . . . , n

95



and (0M : x) ∧
n
∧

i=1

(0M : yi) = 0M . This implies (0M : x1M )
n
∧

i=1

(0M : yi) = 0M ,

i.e.
n
∧

i=1

(0M : yi) 6 (0M : (0M : x1M )). Also note that (0M : (0M : x1M )) 6 (0M : yi)

for i = 1, 2, . . . , n. Hence (0M : (0M : x1M )) 6
n
∧

i=1

(0M : yi) and consequently,

(0M : (0M : x1M )) =
n
∧

i=1

(0M : yi).

(4) ⇒ (5): Let x be an element of L. By (4), there exist N1 = y11M , N2 =

y21M , . . . , Nn = yn1M ∈ M such that (0M : (0M : x1M )) =
n
∧

i=1

(0M : yi). Hence we

have

V (0M : (0M : x1M )) = V

( n
∧

i=1

(0M : yi)

)

=

n
⋃

i=1

V (0M : yi) =

n
⋃

i=1

U(yi1M ) = V (x1M ).

Taking complements in π(M), we have π(M) − V (x1M ) = π(M) −
n
⋃

i=1

U(yi1M ),

i.e. U(x1M ) =
n
⋂

i=1

V (yi1M ). It follows that U(x1M ) is a finite intersection of open

sets in dual topology τd. Hence, U(x1M ) is open in τd, which implies τd is finer

than τ , and τ is finer than τd follows by Theorem 2.23.

(5) ⇒ (1): Suppose that τ = τd. Then {U(x1M ) : x ∈ L} is also a base for closed
sets in π(M). Let {U(y1M) : y ∈ K} be a family of closed sets with finite intersection
property in π(M), where K ⊆ L. Then

n
⋂

i=1

U(yi1M ) = U(y1y2 . . . yn1M ) 6= ϕ and

so y1y2 . . . yn1M 6= 0M for any finite number of elements y1, y2, . . . , yn ∈ K. All

the nonzero elements in K together with the finite multiplication of elements in K

form a multiplicatively closed set not containing 0. This multiplicatively closed set

is again contained in some maximal multiplicatively closed set S not containing 0.

As proved in Lemma 2.12, S = C(P ) = C(p1M ), where p =
∨

(L − S) is a minimal

prime element of L. Note that K ⊆ C(P ) and therefore P ∈ U(y1M ) for all y ∈ K.

Thus, p ∈ ⋂{U(y1M) : y ∈ K} 6= ϕ and so π(L) is compact.

(5) ⇒ (6): The implication follows immediately as {V (x1M ) : x ∈ L} is a basis
for open sets in τd.

(6) ⇒ (5): Let {U(x1M ) : x ∈ L} be any basis for open sets in τ . Then we have

U(x1M ) =
n
⋂

i=1

V (xi) as {V (x1M ) : x ∈ L} is a subbasis for open sets in π(M) with

respect to τ . This implies that {U(x1M ) : x ∈ L} is open in τd and hence τ ⊆ τd

and the result follows by Theorem 2.23.

(6) ⇒ (7): If {V (x1M ) : x ∈ L} is a subbasis for open sets in τ , then {π(M) −
V (x1M ) : x ∈ L} = {U(x1M ) : x ∈ L} forms a subbasis for open sets in τd and

conversely. �
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