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OPERATOR CONNES-AMENABILITY OF COMPLETELY
BOUNDED MULTIPLIER BANACH ALGEBRAS

Bahman Hayati, Abasalt Bodaghi, and Massoud Amini

Abstract. For a completely contractive Banach algebra B, we find conditions
under which the completely bounded multiplier algebra Mcb(B) is a dual
Banach algebra and the operator amenability of B is equivalent to the operator
Connes-amenability of Mcb(B). We also show that, in this case, these are
equivalent to the existence of a normal virtual operator diagonal.

1. Introduction

The notion of amenability of Banach algebras was introduced by B.E. Johnson
in [9]. He showed that the group algebra L1(G) is amenable if and only if the locally
compact group G is amenable. The Johnson’s result fails to be true for the Fourier
algebras A(G). In other words, there are some compact groups G, e.g. G = SO(3),
the group of all rotations about the origin of three-dimensional Euclidean space
R3 for which A(G) is not amenable [10]. In [14], Ruan introduced a variant of
amenability which is called operator amenability for operator algebras and showed
that the Fourier algebra A(G) is operator amenable if and only if G is amenable.

When there is a natural weak∗-topology on the algebra, it is suggested to
restrict the attention to those derivations which enjoy certain weak∗-continuity.
This is successfully done by B.E. Johnson, R.V. Kadison and J.V. Ringrose for
von Neumann algebras [11]. Due to some important contribution of A. Connes,
A.Ya. Helemskii coined the term Connes-amenability for this concept [7]. Later
V. Runde extended this notion to the setting of dual Banach algebras [15]. Examples
of dual Banach algebras (besides von Neumann algebras) include the measure
algebra M(G) and the Fourier-Stieltjes algebra B(G) of a locally compact group
G. Runde [17] showed that a locally compact group G is amenable if and only if
its measure algebra M(G) is Connes-amenable, see also [18]. On the other hand,
the Fourier-Stieltjes algebra B(G) is operator Connes-amenable if and only if G is
almost abelian [21]. The first and third authors in [5, 6] investigated two possible
setups in which one could guarantee that the multiplier algebraM(B) of a Banach
algebra B is a dual Banach algebra, and found conditions for the equivalence of
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amenability of B with Connes-amenability of M(B). The first paper [6] was based
on a paper by E. O. Oshobi and J. S. Pym [13] which gives conditions for M(B)
to be a dual algebra (c.f. the paragraph after [13, Theorem 1.0.1].) The same task
was done in [5] using a different condition based on the work of M. Daws in [2]
(which was weaker than that of Oshobi-Pym).

In this paper we use the latter setup and complementary results of M. Daws in
[1] to do the same for a completely contractive Banach algebra B and its completely
bounded multiplier algebra Mcb(B). We find conditions under which the operator
amenability of B is equivalent to the operator Connes-amenability of Mcb(B).

2. Notations and preliminary results

Let A be a Banach algebra and X be a Banach A-bimodule. A continuous linear
map D : A −→ X such that

D(ab) = D(a) · b+ a ·D(b) (a, b ∈ A)
is called a derivation from A into X. The space of all derivations of A into X is
denoted by Z1(A,X). For each x ∈ X, the map a 7→ a · x − x · a is a derivation,
and these maps form the space N 1(A,X) of inner derivations. The quotient space
H1(A,X) = Z1(A,X)/N 1(A,X) is the first cohomology group of A with coefficients
in X. A Banach algebra A is called amenable if H1(A,X∗) = {0}, for every Banach
A-bimodule X, where X∗ is the dual Banach A-bimodule with a canonical action
[9].

A Banach algebra A is said to be a dual Banach algebra if it is dual as a
Banach A-bimodule. It is easily checked that a Banach algebra which is also a dual
space is a dual Banach algebra if and only if the multiplication map is separately
w∗-continuous [15]. Examples of dual Banach algebras include all von Neumann
algebras, the algebra B(E) = (E ⊗γ E∗)∗ of all bounded operators on a reflexive
Banach space E where ⊗γ stands for the projective tensor product. Also the
measure algebra M(G) = C0(G)∗, the Fourier-Stieltjes algebra B(G) = C∗(G)∗,
and the second dual of Arens regular Banach algebras are dual Banach algebras.

Let A be a Banach algebra. We use the notations A ⊗γ A and B2(A; C) to
denote the projective tensor product of A with itself and the space of bounded
bilinear maps on A × A, respectively. A dual Banach A-bimodule X is called
normal if for each x ∈ X, the maps a 7→ a · x and b 7→ x · b from A into X are
w∗-continuous, and Connes-amenable if for every normal dual Banach A-bimodule
X, every w∗-continuous derivation D : A −→ X is inner [15].

Let ∆A : A⊗γA −→ A be the diagonal operator induced by a⊗b 7→ ab, a, b ∈ A.
Since the multiplication in A is separately w∗-continuous, ∆∗AA∗ ⊂ B2

w∗(A; C) ⊂
B2(A; C) ∼= (A⊗γ A)∗, where A∗ is a closed submodule of A∗ such that A = A∗∗,
and B2

w∗(A; C) is the set of all w∗-continuous bilinear maps from A⊗γ A into C.
Taking the adjoint of ∆∗A |A∗ , we may extend ∆A to a A-bimodule homomorphism
∆w∗ on B2

w∗(A; C)∗.
A multiplier of an algebra A is a pair (L,R) of linear maps of A into itself such

that aL(b) = R(a)b for all a, b ∈ A. This is also called a centralizer in the literature;
see [8] and [12]. Every element of A by the natural map, a 7→ (La, Ra), gives rise to
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a multiplier where La and Ra are left and right multiplications, respectively. The set
of all multipliers on A is denoted byM(A) which is an algebra (under composition
of maps) with identity 1M(A) = (idA, idA). We write L(A) for the collection of
left multipliers of A, that is, maps from A into itself with L(ab) = L(a)b for all a,
b ∈ A. Similarly, we define R(A), the collection of right multipliers, those maps
from A into itself with with R(ab) = aR(b) for all a, b ∈ A.

An algebra A is called faithful if the only element b ∈ A such that abc = 0, for
all a, c ∈ A, is b = 0. When A is faithful, the natural map from A into M(A) is
injective and A is an ideal of M(A). One can see that a normed algebra A with a
bounded approximate identity is faithful. In fact, assume that (eα) is a bounded
approximate identity for A. We have bc = limα eαbc = 0 for all a, c ∈ A, and so
b = limα beα = 0.

From now on, we denote the space of all bounded operators on A into itself by
B(A). Suppose that A is faithful. It can be shown that if (L,R) ∈ M(A), then
L,R ∈ B(A). Indeed, if an → a and L(an)→ b in A, then

cb = lim
n
cL(an) = lim

n
R(c)an = R(c)a = cL(a) (c ∈ A) .

Hence, L(a) = b, and so we conclude that L is bounded. Similarly, R is bounded.
A norm on M(A) is defined by considering M(A) as a subset of B(A)⊕∞ B(A).
Therefore

‖(L,R)‖M(A) = max{‖L‖, ‖R‖} .
The inclusion map A −→M(A) is norm non-increasing and if moreover A has a
bounded approximate identity (eα)α with bound K, then

‖b‖A = lim
α
‖eαb‖A ≤ K‖b‖L(A) .

Note that here b can be regarded as an element of L(A) with range {ba | a ∈ A}.
Let E be a linear space. A matricial norm on E is a family (‖ · ‖n)∞n=1 such that

‖ · ‖n is a norm on Mn(E) for n ∈ N with the following properties:
i) ‖x⊕ y‖n+m = max{‖x‖n, ‖y‖m} (x ∈Mn(E), y ∈Mm(E)),
ii) ‖αxβ‖n ≤ |α|m,n‖x‖n|β|n,m (x ∈Mn(E), α ∈Mm,n, β ∈Mm,n),

where x⊕ y :=
[
x 0
0 y

]
∈Mn+m(E)

A linear space E equipped with a matricial norm (‖ · ‖n)∞n=1 is called a matricially
normed space; for more details of matricial norms we refer the reader to [4] (see
also [3] for a similar notion on the space of matrices). If each space (Mn(E), ‖ · ‖n)
is a Banach space, then E is called an (abstract) operator space.

Let E1, E2 and F be operator spaces. A bilinear map T : E1 ×E2 −→ F is said
to be completely contractive if

‖T‖cb := sup
n1,n2∈N

‖T (n1,n2)‖ ≤ 1 ,

where
T (n1,n2) : Mn1(E1)×Mn2(E2) −→Mn1n2(F )
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is defined by (
(xi,j), (yk,l)

)
7→
(
T (xi,j , yk,l)

)
.

Next we need the notion of a completely contractive Banach algebra [20]. The
main idea is to consider both the algebra and operator space structures at the
same time.
Definition 2.1. A completely contractive Banach algebra (CCBA) is a Banach
algebra which is also an operator space such that multiplication is a completely
contractive bilinear map.

For a Hilbert space H, every closed subalgebra of B(H) is a completely contrac-
tive Banach algebra. For a locally compact group, the group algebra L1(G), the
measure algebra M(G), the Fourier algebra A(G) and the Fourier-Stieltjes algebra
B(G) are completely contractive Banach algebras.

Let E and F be operator spaces and let T ∈ B(E,F ). Then
i) T is completely bounded if

‖T‖cb := sup
n∈N
‖T (n)‖B(Mn(E),Mn(F )) <∞ .

ii) T is complete contraction if ‖T‖cb ≤ 1.
iii) T is complete isometry if T (n) is an isometry for each n ∈ N.

We denote the space of all completely bounded maps between operator spaces
E and F by Bcb(E,F ), and denote Bcb(E,E) by Bcb(E).
Definition 2.2. A dual CCBA is a Banach algebra which is a dual operator space
such that multiplication is completely contractive and separately w∗-continuous.

One should note that there are operator spaces that have predual Banach spaces,
but do not have predual operator spaces. Dual operator spaces are those operator
spaces for which there exist predual operator spaces. Let E be a reflexive operator
space, then every w∗-closed subalgebra of Bcb(E) is a dual completely contractive
Banach algebra. Also for a locally compact group G, M(G), B(G), and the reduced
Fourier-Stieltjes algebra Br(G), are dual completely contractive Banach algebras.
Definition 2.3. Let B be a CCBA. An operator space E which is also a left
B-module is called left operator B-module if the bilinear map

B × E −→ E , (b, x) 7→ b · x
is completely bounded.

Right operator B-modules and operator B-bimodules are defined analogously.
One can see that if E is an operator B-module (left, right, or bi-) then E∗ with
the corresponding dual action is again an operator B-module (right, left, or bi-,
respectively).
Definition 2.4 ([14]). Let B be a CCBA. Then B is called operator amenable if for
every operator B-bimodule E, every completely bounded derivation D : B −→ E∗

is inner.
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Clearly, if a CCBA is amenable as a Banach algebra then it is operator amenable.
The example of the Fourier algebra shows that the converse is not true [16, Chapter
7].

Let X and Y be operator spaces. Then the matricial norm (‖ · ‖π,n)∞n=1 obtained
through the embedding

X ⊗ Y ↪→ Bcb(X,Y ∗)∗

is called the operator projective tensor norm on X ⊗ Y . The completion of X ⊗ Y
with respect to this matricial norm is called the operator projective tensor product
of X and Y and is denoted by X⊗̂Y .

For a CCBA such as B, let ∆B : B⊗̂B −→ B be the continuous map defined on
elementary tensors by a⊗ b 7→ ab.

Definition 2.5 ([19]). Let B be a CCBA. M ∈ (B⊗̂B)∗∗ is called a virtual
operator diagonal for B if

b ·M = M · b , b ·∆∗∗BM = b (b ∈ B) .
A bounded net (mα)α in B⊗̂B is called an approximate operator diagonal for B if

b ·mα −mα · b→ 0 , b∆Bmα → b (b ∈ B) .

One can see that the operator amenability, the existence of a virtual operator
diagonal and the existence of an approximate operator diagonal are all equivalent
for a CCBA [16, Theorem 7.4.3].

3. Operator Connes-amenability of Mcb(B)

Let B be a completely contractive Banach algebra (CCBA). We write Mcb(B)
for the subalgebra ofM(B) consisting of those pairs (L,R) with L, R ∈ Bcb(B). We
get an operator space structure onMcb(B) by embedding it in Bcb(B)⊕∞Bcb(B),
that is,

‖(L,R)‖n = max{‖L‖n, ‖R‖n} , (L,R ∈Mn(Mcb(B)), n ≥ 1) .
When A is a dual CCBA with predual A∗, we sometimes refer to the pair (A,A∗)

as a dual CCBA (to specify that we have fixed a predual). There are conditions on
B, forcing Mcb(B) to be a dual CCBA, whenever B is a CCBA. The next result
is proved in [2, Theorem 8.6].

Theorem 3.1. Let B be a CCBA with dense products, let (A,A∗) be a dual CCBA,
and let ı : B −→ A be a complete isometry with ı(B) as an ideal in A. Suppose
further that the induced map θ : A −→Mcb(B) is injective. Then there is a unique
operator space X such that Mcb(B) is completely isometrically isomorphic to X∗,
turning Mcb(B) into a dual CCBA, and such that for a bounded net (aα) in A,
aα → a weak∗ in A if and only if θ(aα)→ θ(a) in Mcb(B).

In the light of the proofs of [2, Theorems 7.1, 8.6], we review the structure of
the operator space predual of Mcb(B) as follows:

We consider (B⊗̂A∗)⊕1 (B⊗̂A∗) with dual space Bcb(B,A)⊕∞Bcb(B,A) and
take

X = span{(b⊗ a∗ · ı(a)⊕ (−a⊗ ı(b) · a∗) : a, b ∈ B, a∗ ∈ A∗} .
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Then, the closure X̄ of X is a closed linear subspace of (B⊗̂A∗)⊕1 (B⊗̂A∗) and
X̄⊥ = X⊥ is a weak∗-closed subspace of Bcb(B,A)⊕∞Bcb(B,A). For each element
(S, T ) ∈ X, there exist L,R ∈ Bcb(B) such that T = ι ◦ L and S = ι ◦ R and
(L,R) ∈Mcb(B). Mcb(B) and X⊥ are completely isometric as operator spaces, so
a predual is (B⊗̂A∗ ⊕1 B⊗̂A∗)/X̄, where the weak∗-topology is induced by the
embedding Mcb(B)→ (B⊗̂A∗ ⊕1 B⊗̂A∗)∗ given by

〈(L,R), (a⊗ a∗)⊕ (b⊗ b∗)〉 = 〈ιL(a), a∗〉+ 〈ιR(b), b∗〉 ,

for L, R ∈ Bcb(B), a, b ∈ B and a∗, b∗ ∈ A∗.

Example 3.2. We note that Theorem 3.1 actually turns Mcb(A(G)) into a dual
CCBA. Here, we present a concrete operator space predual forMcb(A(G)), construc-
ted by Spronk in Section 6.2 of [22]. We use the usual convolution product on
L1(G), and ⊗h which is the completed Haagerup tensor product. Let K be the
closure of the set

{
∑
j

fj ⊗ gj ∈ L1(G)⊗ L1(G) :
∑
j

fj ∗ gj = 0}

in L1(G) ⊗h L1(G). Then, Q(G) = (L1(G) ⊗h L1(G))/K is an operator space in
which Q(G)∗ is isometrically isomorphic to Mcb(A(G)). The dual pairing is given
via

〈(f ⊗ g) +K, ψ〉 =
∫
G

(f ∗ g)(t)ψ(t)dt (f, g ∈ L1(G), ψ ∈Mcb(A(G))) .

A similar argument as in [2, Example 7.5] shows that as an operator space, Q(G)
is completely isometrically isomorphic to the predual constructed by Theorem 3.1

By [2, Lemma 10.1] and similar to the proof of [2, Theorem 7.2], one can show
that under a natural assumption the weak∗-topology in Theorem 3.1 is unique as
follows:

Theorem 3.3. Let B and (A,A∗) be as above, and θ : A −→ Mcb(B) be the
induced map. There is one and only one weak∗-topology on Mcb(B) such that

(i) Mcb(B) is a dual Banach algebra;
(ii) For a bounded net (aα)α in A, we have aα → a weak∗ in A if and only if

θ(aα)→ θ(a) weak∗ in Mcb(B).

Let B be a dual CCBA. A dual operator B-bimodule E is called normal if, for
each x ∈ E, the maps b 7→ b · x and b 7→ x · b from B into E are w∗-continuous.

Definition 3.4 ([20]). A dual CCBA, say B, is called operator Connes-amenable
if every w∗-continuous, completely bounded derivation from B into every normal
dual operator B-bimodule is inner.

Let B be a Banach algebra satisfying conditions of Theorem 3.1. Each element
a∗ ∈ A∗ may be considered as an element of B∗ via

〈a∗, b〉B = 〈ι(b), a∗〉A∗ (b ∈ B) .
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One can easily see that A∗ is a B-submodule of B∗ with the following module
actions
〈a∗ · a, b〉B = 〈ι(ab), a∗〉A∗ , 〈a · a∗, b〉B = 〈ι(ba), a∗〉A∗ (a, b ∈ B, a∗ ∈ A∗) .

Lemma 3.5. Let E and F be operator spaces. Then
Bcb(E,F ; C) ∼= Bcb(E,F ∗).

Proof. By [4, Proposition 7.1.2] and Smith’s Lemma, we have
Bcb(E,F ; C) ∼= Bcb(E⊗̂F,C)

∼= Bcb(E,Bcb(F,C))
∼= Bcb(E,B(F,C))
∼= Bcb(E,F ∗) .

�

We denote the set of all separately w∗-continuous elements of Bcb(B,B; C) by
B2
w∗−cb(B; C).
Let ∆B : B⊗̂B −→ B be defined as above, then ∆∗B is a map from B∗ into

(B⊗̂B)∗ ∼= Bcb(B,B; C) if B is a dual CCBA with an operator space B∗ as a
predual, we have ∆∗B(B∗) ⊆ B2

w∗−cb(B; C), since multiplication in B is separately
w∗- continuous. Now consider the map ∆∗B |B∗ : B∗ −→ B2

w∗−cb(B; C); we denote
the adjoint of this map by ∆w∗ .

Definition 3.6. For a dual CCBA such as B, a normal virtual operator diagonal
is an element M ∈ B2

w∗−cb(B; C)∗ such that
a ·M = M · a , a∆w∗M = a (a ∈ B) .

The following result is proved in [2]

Theorem 3.7. Let A be a CCBA with a bounded approximate identity (eα), and
let Φ0 ∈ A∗∗ be a weak∗-accumulation point of (eα). Then

(i) Mcb(A) ⊆ Bcb(A)×Bcb(A) is closed in the strict topology,
(ii) A is a closed ideal in Mcb(A) which is strictly dense,
(iii) σ : Mcb(A) −→ (A∗∗,♦), defined by (L,R) 7→ L∗∗(Φ0), is an algebra

homomorphism and a complete isomorphism onto its range, with σ(a) = a
for all a ∈ A.

In analogy with [6, Lemma 3.1], we have the following lemma for completely
bounded multiplier Banach algebras. The proof is similar, but we include it for the
sake of completeness.

Lemma 3.8. Let B and (A,A∗) be as in Theorem 3.1, ∼ : B2
w∗−cb(Mcb(B),C)→

B2
cb(B; C) a map defined by ψ̃ := ψ|B×B, for ψ ∈ B2

w∗−cb(Mcb(B),C)), then
(i) ∼ is a continuous linear map,
(ii) [∆∗Mcb(B)((a⊗a∗)⊕(b⊗b∗)+X̄)]∼ = ∆∗B(a ·a∗+b∗ ·b) ( a, b ∈ B, a∗, b∗ ∈

A∗ ),
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(iii) (ψ ·τ)∼ = ψ̃ ·τ, (τ ·ψ)∼ = τ ·ψ̃, ( τ ∈Mcb(B), ψ ∈ B2
w∗−cb(Mcb(B); C) ).

Proof. (i) It is easily verified that ∼ is a continuous linear map.
(ii) Let a, b, c, d ∈ B and a∗, b∗ ∈ A∗. We denote the canonical map of B in

Mcb(B) by φ. We have

〈[∆∗Mcb(B)((a⊗ a∗)⊕ (b⊗ b∗) + X̄)]∼, (c, d)〉B×B
= 〈∆∗Mcb(B)((a⊗ a∗)⊕ (b⊗ b∗) + X̄), (φ(c), φ(d)〉Mcb(B)×Mcb(B)

= 〈(a⊗ a∗)⊕ (b⊗ b∗) + X̄, φ(cd)〉Mcb(B)

= 〈(a⊗ a∗)⊕ (b⊗ b∗), (Lcd, Rcd)〉Mcb(B)

= 〈(Lcd, Rcd), (a⊗ a∗)⊕ (b⊗ b∗), 〉(B⊗̂A)⊕1(B⊗̂A∗)

= 〈ιLcd(a), a∗〉A∗ + 〈ιRcd(b), b∗〉A∗
= 〈ι(cda), a∗〉A∗ + 〈ι(cdb), b∗〉A∗
= 〈a · a∗, cd〉B + 〈b · b∗, cd〉B
= 〈a · a∗ + b · b∗,∆B(c, d)〉B
= 〈∆∗B(a · a∗ + b∗ · b), (c, d)〉B×B .

(iii) Since B is a closed ideal in Mcb(B), the argument of this part carries over
verbatim from part (iii) of [5, Lemma 3.2]. �

As in [6], we say that a (τα) in M(B) converges in weak strictly topology (wst)
to τ in M(B) if 〈φ, (τα − τ)b〉B → 0 for each φ ∈ B∗, b ∈ B.

The proof of the upcoming result is similar to the proof of [6, Theorem 3.3], and
so we omit it.

Theorem 3.9. Let B and (A,A∗) be as in Theorem 3.1. Then, the followings are
equivalent:

(i) θ : A −→Mcb(B) is w∗-wst-continuous;
(ii) ı(B) ·A∗ ⊆ A∗;
(iii) For each b ∈ B and b∗ ∈ B∗, there is a∗ ∈ A∗ with

〈b∗, ı−1(aı(b))〉B = 〈a, a∗〉A∗ (a ∈ A) .

The next theorem is the main result of this paper which shows that for a
completely contractive Banach algebra B, the operator Connes-amenability of
Mcb(B) is equivalent to the operator amenability of B under some mild conditions.

Theorem 3.10. Let B and (A,A∗) be as in Theorem 3.1 and one of the conditions
of Theorem 3.9 hold. Assume B has a bounded approximate identity. Then the
following assertions are equivalent:

(i) B is operator amenable,
(ii) Mcb(B) has a normal virtual operator diagonal,
(iii) Mcb(B) is operator Connes-amenable.
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Proof. (i)⇒ (ii) By assumption,B has a virtual operator diagonal M ∈ B2
cb(B; C)∗

such that
a ·M = M · a , a∆w∗M = a (a ∈ B) .

Define M̃ by

〈M̃, ψ〉 = 〈M, ψ̃〉 (ψ ∈ B2
w∗−cb(Mcb(B); C)).

Then M̃ is linear and M̃ ∈ B2
w∗−cb(Mcb(B); C)∗ by Lemma 3.8 (i). Let τ ∈Mcb(B).

By Theorem 3.7, B is strictly dense inMcb(B), hence there exists a net (bα)α ⊆ B
such that bα → τ in the strict topology. Since B has a bounded approximate identity,
by Cohen factorization theorem, B2

cb(B; C)∗ is a pseudo unital Banach B-bimodule
(see also [2, Theorem 2.4]). Hence, there exist a ∈ B and M′ ∈ B2

cb(B; C)∗ such
that M = a ·M′. Thus, bαa→ τa in the norm topology, and so bαa ·M′ → τa ·M′
in the weak∗-topology. Similarly there exist b ∈ B and M′′ ∈ B2

cb(B; C)∗ such
that M = M′′ · b. We have M′′ · bbα → M′′ · bτ in the weak∗-topology, and thus
τ ·M = M · τ . Now, the part (iii) of Lemma 3.8 implies that τ · M̃ = M̃ · τ . Let
(a⊗ a∗)⊕ (b⊗ b∗) + X̄ be an arbitrary element of Y . By Lemma 3.8 (ii), we get

〈∆w∗(M̃),(a⊗ a∗)⊕ (b⊗ b∗) + X̄〉Y
= 〈M̃,∆∗Mcb(B)((a⊗ a∗)⊕ (b⊗ b∗) + X̄)〉B2

w∗−cb(Mcb(B);C)

= 〈M, [∆∗Mcb(B)((a⊗ a∗)⊕ (b⊗ b∗) + X̄)]∼〉B2
cb

(B;C)

= 〈M,∆∗B(a · a∗ + b · b∗)〉B2
cb

(B;C)

= 〈∆∗∗B (M), (a · a∗ + b · b∗)〉B∗
= 〈∆∗∗B (M) · a, a∗〉A∗ + 〈∆∗∗B (M) · b, b∗〉A∗
= 〈a, a∗〉A∗ + 〈b, b∗〉A∗
= 〈ι(a), a∗〉A∗ + 〈ι(b), b∗〉A∗
= 〈(idB , idB), (a⊗ a∗)⊕ (b⊗ b∗) + X̄〉Y
= 〈1Mcb(B), (a⊗ a∗)⊕ (b⊗ b∗) + X̄〉Y .

The above relations show that ∆w∗(M̃) is the identity for Mcb(B) = Y ∗. This
completes the proof of this part.

(ii)⇒(iii) For a dual CCBA such as B, B2
w∗−cb(B; C) ⊆ B2

w∗(B; C), and this
implication is proved similar to [16, Theorem 4.4.15].

(iii)⇒(i) Without loss of generality and in view of [16, Proposition 2.1.5], we
assume that E is a neo-unital Banach operator B-bimodule and D : B −→ E∗ is
a completely bounded derivation. By Theorem 3.7, B is a closed ideal of Mcb(B)
which is strictly dense. For x ∈ E, let b ∈ B and y ∈ E be such that x = b · y. For
τ ∈ Mcb(B), define τ · x := τb · y. Let (eα)α be an approximate identity for B
bounded by K. If x = b′ · y′ where b′ ∈ B and y′ ∈ E, then

τb′ · y′ = lim
α
τeαb

′ · y′ = lim
α
τeαb · y = τb · y .

Hence, this action is well-defined. Similarly, one can define a right BanachMcb(B)-
-module structure on E, and so E is a Banach Mcb(B)-bimodule. We show that
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the above action is completely bounded. For this, suppose that [τij ] ∈Mn(Mcb(B))
and [xkl] ∈Mn(E). We have

‖[τij · xkl]‖ = ‖ lim
α

[τij · (eα · xkl)]‖ = lim
α
‖[τijeα · xkl]‖

≤ lim sup
α

C‖[τijeα]‖‖[xkl]‖

≤ CK‖[τij ]‖‖[xkl]‖ ,
where C is completely bounded norm of left action B on E. A similar inequality
holds for the right action. By the proof of [16, Proposition 2.1.6], it follows that
there exists a unique extension of D to a derivation

D̃ : Mcb(B) −→ E∗; τ 7→ w∗ − lim
α

(
D(τeα)− τ ·D(eα)

)
such that D̃ is continuous with respect to the strict topology on Mcb(B) and the
w∗-topology on E∗. We wish to show that E∗ is a normal, dual operator Banach
Mcb(B)-bimodule, and D̃ : Mcb(B) −→ E∗ is w∗-w∗-continuous, completely
bounded derivation. To prove that E∗ is a normal, we can simply follow the proof
of [6, Theorem 3.5].

To show that D̃ is w∗-w∗-continuous, let τj
w∗→ 0 in Mcb(B). We note that for

any b ∈ B,φ ∈ E∗, we have τj · φ
w∗→ 0 and τjb

w→ 0. For x ∈ E, take b ∈ B and
y ∈ E such that x = b · y. We get

〈D̃(τj), x〉 = 〈D̃(τj) · b, y〉 = 〈D̃(τjb)− τj · D̃(b), y〉
= 〈D(τjb), y〉 − 〈τj ·D(b), y〉
→ 0.

Let we see that D̃ is completely bounded. Consider the nth amplification of D̃ as
D̃(n) : Mn(Mcb(B)) −→Mn(E∗) for each n ∈ N. If [τij ] ∈Mn(Mcb(B)), we have

‖D̃‖cb = sup{‖D̃(n)([τij ])‖ : ‖[τij ]‖ ≤ 1}}
= sup{‖[w∗ − lim

α
(D(τijeα)− τij ·D(eα))]‖ : ‖[τij ]‖ ≤ 1}}

≤ sup{lim
α

(‖[(D(τijeα)]‖+ ‖[τij ·D(eα)]‖) : ‖[τij ]‖ ≤ 1}}

≤ sup{lim
α

(‖D‖‖[τij ]‖‖eα‖+M‖D‖‖eα‖) : ‖[τij ]‖ ≤ 1}}

≤ (1 +M)K‖D‖,
where M is completely bounded norm of left action Mcb(B) on E∗. Due to the
operator Connes-amenability ofMcb(B), the derivation D̃ and thus D is inner. �
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