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TIME-VARYING MARKOV DECISION PROCESSES WITH
STATE-ACTION-DEPENDENT DISCOUNT FACTORS
AND UNBOUNDED COSTS

Beatris A. Escobedo-Trujillo and Carmen G. Higuera-Chan

In this paper we are concerned with a class of time-varying discounted Markov decision
models Mn with unbounded costs cn and state-action dependent discount factors. Specif-
ically we study controlled systems whose state process evolves according to the equation
xn+1 = Gn(xn, an, ξn), n = 0, 1, . . ., with state-action dependent discount factors of the form
αn(xn, an), where an and ξn are the control and the random disturbance at time n, respectively.
Assuming that the sequences of functions {αn},{cn} and {Gn} converge, in certain sense, to
α∞, c∞ and G∞, our objective is to introduce a suitable control model for this class of systems
and then, to show the existence of optimal policies for the limit system M∞ corresponding
to α∞, c∞ and G∞. Finally, we illustrate our results and their applicability in a class of
semi-Markov control models.

Keywords: discounted optimality, non-constant discount factor, time-varying Markov de-
cision processes

Classification: 93E20, 90C40

1. INTRODUCTION

This paper deals with discrete-time, time-varying stochastic control systems of the form

xn+1 = Gn(xn, an, ξn), n ∈ IN0 := {0, 1, . . .} , (1)

where xn and an denote the state and control variables respectively, and {ξn} , the so-
called “disturbance” or “driving” process, is a sequence of independent and identically
distributed (i.i.d.) random vectors with common distribution θ. In addition, {Gn} is
a sequence of given functions such that

E1B [Gn(x, a, ξ0)]→ E1B [G∞(x, a, ξ0)] for all (x, a) and Borel set B, (2)

where 1B(·) denotes the indicator function of the set B. Assuming possible unbounded
time-varying costs cn and time-varying state-action dependent discount factors αn(xn, an),
where {αn} and {cn} are sequences of functions such that αn(x, a) → α∞(x, a) and
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cn(x, a)→ c∞(x, a), for each (x, a), one of our main objectives is to show the existence
of an α∞−discount optimal policy for the general limiting system

xt+1 = G∞(xt, at, ξt), t = 0, 1, . . . . (3)

Our approach consists of analyzing, on first step, the time-invariant system

xt+1 = Gn(xt, at, ξt), t = 0, 1, . . .

with discount rate and cost functions αn(·, ·) and cn(·, ·) respectively, for each fixed
n ∈ N0. In this case we show the existence of a stationary optimal policy f∗n. Then,
letting n → ∞ we obtain the corresponding results for the limiting system (3). In
particular we prove that an accumulation point f∗∞ of {f∗n} defines an optimal policy for
the limiting model M∞ corresponding to G∞, α∞ and c∞.

A similar problem but with a constant discount factor has been studied in [8], which
could be restrictive in some situations. In our case, for each n ∈ N0 ∪ {∞}, the role
of the discount factor rate during the evolution of the system is as follows: at initial
state x0, the controller chooses an action a0. Then a cost cn(x0, a0) is incurred, and
the system moves to a new state x1 according to a transition probability determined by
Gn and the distribution of the noise ξ0. Once the system is in state x1 the controller
selects an action a1 and incurs a discounted cost αn(x0, a0)cn(x1, a1) and the process is
repeated. For stage m ≥ 1 the discounted cost is

αn(x0, a0)αn(x1, a1) · · ·αn(xm−1, am−1)cn(xm, am).

So that, the optimality of the control policies will be analyzed according to the following
performance index

E

[ ∞∑
t=0

t−1∏
k=0

αn(xk, ak)cn(xt, at)

]
(4)

which defines the total expected discount cost.

As an additional result, we analyze the behavior of the non-stationary control policy
π = {f∗n} in the model M∞, that is, the policy giving the decision an = fn(xn) at each
stage n ∈ N0. In this case, due to the nature of the discounted criterion, we can prove
that π is asymptotically optimal in the modelM∞. From this perspective, the problem
can be seen as an adaptive control problem inM∞, when the dynamic G∞, the discount
factor and cost function, α∞ and c∞, are unknown. Then, {Gn}, {αn} and {cn} can be
considered as sequences of estimators (approximators) of G∞, α∞ and c∞ respectively.

A similar class of adaptive control problem has been analyzed in [5, 10, 17] for sys-
tems modeled as a time-invariant stochastic difference equation as (3), where {ξt} is
a sequence of i.i.d. random variable (r.v.) with unknown distribution. On the other
hand, control problems with nonconstant time-invariant discount factor have been stud-
ied, for instance, in [4, 16]. Indeed, in [4] is analyzed the case of randomized discounted
rates, while in [16] discount factors depending on state-action and a random noise are
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considered. Moreover, in [9] are studied time-varying systems as (2) where {ξt} are i.i.d.
r.v. with unknown density, by imposing restrictive conditions on the control model and
applying a complicated density estimation method.

The importance of studying this kind of systems is its application to model the real

time evolution of the concentration xn = (x
(1)
n , x

(2)
n ) of a biomass x

(1)
n and a substrate

x
(2)
n in a bioreaction, controlled by an action an. Such reaction appears, for instance, in

depollution and the agrofood industry (see, e. g., [1, 11]) where {xn} evolve as

xn+1 = H(xn)gn(xn) +K(xn, an) + ξn, (5)

where H, gn and K are given functions and {ξn} is a sequence of random noises. In
particular gn(·) is a time-varying component in the model which represents the microbial
growth rate. Under appropriate condition related with temperature, pH, etc., gn(·) tends
to stabilize at some growth rate g∞(·). In this case the time-varying system converges
to a limit system

xt+1 = H(xt)g∞(xt) +K(xt, at) + ξt.

Although the main applications of the system (2) focus on this biotechnological pro-
cess, in this paper we present as part of our main contributions, an interesting example
of a class of semi-Markov control processes with time varying sojourn time distribution.
In this case, we prove that the semi-Markov performance index can be written as a index
with state-action dependent discount factor as (4). That is, the results obtained in our
main model can be applied.

This paper is the first part of a work focused on Markov decision processes (MDPs)
with time-varying state-action-dependent discount factors, as described above, from
several aspects. In this first part we provide the theoretical foundations which include
the modeling, guaranteeing the existence of optimal policy, and showing its applicability.

The rest of the paper is organized as follows. In Section 2, we introduce the Markov
control models we are concern with. Next, in Section 3, it is defined the optimality
criterion and presented the general assumptions. The existence of an optimal stationary
policy and the construction of a policy pointwise asymptotically optimal for the control
modelM∞ are given in Section 4 (Theorem 4.3 and Theorem 4.5). In order to illustrate
our results, in Section 5, it is presented an example of a class of semi-Markov control
processes whose performance index is written as a index with discount factor dependent
on the state-action. Finally, we conclude in Section 6, presenting some direction on
future works.

Notation. We denote N0 = N ∪ {0} , N∞ = N0 ∪ {∞}. A Borel space X is a Borel
subset of a complete separable metric space and we denote by B(X) its Borel σ−algebra.
Examples of Borel spaces are countable sets with the discrete topology; Euclidean spaces
with the usual topology; a compact metric space; the product (finite or countable) of
Borel spaces.

Given a Borel space, we denote by M(X) the family of measurable and bounded
functions on X, and L(X) denotes the subclass of lower semi-continuous functions in
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M(X). Let X and Y be Borel spaces. A stochastic kernel Q(·|·) on X given Y is a
function such that Q(·|y) is a probability measure on X for each y ∈ Y and Q(B|·) is a
measurable function on Y for each B ∈ B(X).

2. MARKOV CONTROL MODELS

For each n ∈ N∞, we consider the time-varying control model with state-action-dependent
discount factors

Mn := (X,A, {A(x) | x ∈ X} , Qn, αn, cn) (6)

associated to the system

xt+1 = Gn(xt, at, ξt), t ∈ N0. (7)

The state space X and the action space A are Borel subsets, while {A(x) | x ∈ X} is a
family of non-empty Borel subsets of A such that for each state x ∈ X, A(x) represents
the set of admissible controls when the system is in state x. We define the set

K = {(x, a) : x ∈ X, a ∈ A(x)}

of admissible state-action pairs which is assumed to be a Borel subset of the Cartesian
product of X and A. Further, Qn (·|·) is a stochastic kernel which denotes the transition
law among the states corresponding to (7), and αn : K→(0, 1), n ∈ N∞, is a measurable
function representing the discount factor. Finally, the one-stage cost cn : K→R, n ∈
N∞, is a non-negative measurable real-valued function, possibly unbounded.

Observe that for each t ∈ N0, n ∈ N∞, (x, a) ∈K, and B ∈ B(X), the transition law
Qn takes the form

Qn(B | x, a) : = Prob [Gn(xt, at, ξt) ∈ B | xt = x, at = a]

= E1B [Gn(x, a, ξt)]

=

∫
S

1B [Gn(x, a, s)]θ(ds), (8)

where {ξt} is a sequence of i.i.d. random vectors (r.v.’s) on a probability space (Ω,F , P ),
with values in a Borel set S and a common distribution θ, that is

θ(D) := P [ξt ∈ D] , t ∈ N0, D ∈ B(S).

Control policies. We define the spaces of admissible histories up to time t byH0 := X
and

Ht := (K× S)t ×X, t ≥ 1.

An element ht ∈ Ht is a vector or history, of the form ht = (x0, a0, . . . , xt−1, at−1, xt),
where (xn, an) ∈ K for n = 0, . . . , t− 1 and xt ∈ X.

Definition 2.1. A control policy, is a sequence π = {πt} of stochastic kernels πt on A
given Ht, satisfying the constraint πt(A(xt)|ht) = 1 ∀ht ∈ Ht, t = 0, 1, . . . .
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Definition 2.2. A control policy π = {πt} is said to be Markovian, if each stochastic
kernel πt satisfies πt(·|ht) = πt(·|xt). A policy π = {πt} is said to be stationary, if there
exists a measurable function f such that πt(·|ht) is concentrated at f(xt), for all ht ∈ Ht,
t = 0, 1, . . . .

We denote the set of all control policies by Π, the set of all Markov policies by ΠM , and
we refer to F as the set of stationary policies. Finally, we identify a stationary policy π
with its corresponding function f .

3. OPTIMALITY CRITERION

For a fixed n ∈ N∞, and for π ∈ Π and an initial state x0 = x ∈ X, we define the total
expected discounted cost with state-action-dependent discount factor for the control
model Mn as

Vn(π, x) := E(n)π
x

[ ∞∑
t=0

Γ
(n)
t cn(xt, at)

]
, (9)

where

Γ
(n)
t :=

∏t−1

k=0
αn(xk, ak) if t ≥ 1, Γ0 = 1,

and E
(n),π
x is the expectation operator respect to a probability measure P

(n)π
x (see [3]).

Hence, the optimal value function for the control model Mn, n ∈ N∞, is

Vn(x) := inf
π∈Π

Vn(π, x), x ∈ X. (10)

Therefore, a policy π∗ ∈ Π is optimal for the control model Mn, n ∈ N∞, if

Vn(x) = Vn(π∗, x) for all x ∈ X. (11)

Next, we will impose the following assumption to our model.

Assumption 3.1. (a) For each n ∈N0, the function Gn : K × S → X is continuous,
and furthermore, there exists a continuous function G∞ : K × S → X such that
the transition law Qn(B | x, a) = E1B [Gn(x, a, ξt)] converges (setwise) to Q∞(B |
x, a) = E1B [G∞(x, a, ξt)] as n→∞, for each B ∈ B(X).

(b) For each x ∈ X, the set A(x) is compact. Moreover, the multifunction x →
A(x) is upper semi-continuous. That is, for each open set A′ ⊂ A, the set
{x ∈ X : A(x) ⊂ A′} is open in X.

(c) For each n ∈ N0, the one-stage cost cn is a nonnegative function belonging to L(K),
and there exists a function c∞ in L(K) such that cn converges to c∞. Moreover,
there exists a continuous function W : X → [1,∞) and positive constants c > 0,
β ∈ (0, 1) and b <∞ such that

cn(x, a) ≤ cW (x), (x, a) ∈ K,

and ∫
X

W (y)Qn(dy|x, a) ≤ βW (x) + b, (x, a) ∈ K, n ∈ N0. (12)
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(d) For each n ∈ N0, the discount factor function αn is continuous on K and

α∗ := sup
(x,a)∈K

αn(x, a) < 1. (13)

Moreover, there exists a continuous function α∞ such that, for each (x, a) ∈ K,

αn(x, a)→ α∞(x, a), as n→∞.

Assumption 3.1 is crucial in the development of our work since it guarantees that
both the total expected discounted cost (9) and the optimal value function (10) are well
defined, and moreover, the existence of minimizers. In particular, Assumption 3.1(a) is
satisfied by the additive-noise systems of the form

Gn(xt, at, ξt) := Ḡn(xt, at) + ξt.

Observe that the biotechnological processes given in (5) fall in this class.

Let BW be the Banach space of all measurable functions v : X → R with finite
weighted norm

‖v‖W := sup
x∈X

|v(x)|
W (x)

.

We denote by LW the subspace of nonnegative lower semi-continuous (l.s.c.) functions
in BW .

Remark 3.2. Following standard calculations we can prove (see [7]) that Assumption
3.1 yields, for each π ∈ Π, x ∈ X and t, n ∈ N0,

(a)

E(n)π
x W (xt) ≤ βtW (x) + b ≤ (1 + b)W (x), where b =

b

1− β
,

(b)

Vn(π, x) ≤ (1 + b)W (x)

1− α∗
,

(c)

Vn(x) ≤ (1 + b)W (x)

1− α∗
.

4. MAIN RESULTS

We summarize our main results as follows. In Theorem 4.3 we prove that under Assump-
tion 3.1, the value function for the Markov model Mn converges to the value function
of the Markov model M∞. Moreover, there exists an optimal policy for the control
model M∞ which is an accumulation point of a sequence of optimal policies for the
control model Mn. Next, Theorem 4.5 establishes that the sequence {fn} formed by
the minimizers corresponding to the model Mn, n ∈ N0, defines a control policy which
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is pointwise asymptotically optimal for the control model M∞. In order to state these
facts precisely, we introduce some preliminary results.

For each measurable function u on X, (x, a) ∈ K, and n ∈N∞, we define the operators

T (n)
a u(x) := cn(x, a) + αn(x, a)

∫
X

u(y)Qn(dy|x, a),

T (n)u(x) := inf
a∈A(x)

T (n)
a u(x)

and

T
(n)
f u(x) := cn(x, f) + αn(x, f)

∫
X

u(y)Qn(dy|x, f), f ∈ F.

Observe that T is monotone in the sense that if v ≥ u then Tv ≥ Tu. In addition, from
Assumption 3.1 and [20, Corollary 4.3], we have that T maps L(X) into itself.

The following theorem gives a characterization of the optimal cost and the existence
of an optimal policy for each n ∈ N0 fixed. We can see the proof of this result in [6,
Theorem 4.2.3] and [7].

Theorem 4.1. Suppose that Assumption 3.1 holds. Then, for each n ∈N0,

(a) Vn ∈ LW is a solution of the Optimality Equation for the control model Mn, i. e.,
T (n)Vn = Vn.

(b) There exists a stationary policy f∗n ∈ F such that, for all x ∈ X,

Vn(x) = T
(n)
f∗n

Vn(x), (14)

and f∗n is an optimal stationary policy for the control model Mn.

Remark 4.2. From [23], there exists f∗∞ ∈ F such that, for each x ∈ X, f∗∞(x) ∈ A(x)
is an accumulation point of {f∗n(x)}. Hence, for each x ∈ X, there exists a subsequence
{ni(x) = ni} of {n} such that

f∗ni(x)→ f∗∞(x) as i→∞.

Theorem 4.3. Suppose that Assumption 3.1 holds. Then

(a) V∞ ∈ LW is a solution in LW of the Optimality Equation for the control model
M∞, i. e., T (∞)V∞ = V∞.

(b) As n→∞, Vn(x)→ V∞(x), x ∈ X.

(c) For all x ∈ X,
V∞(x) = T

(∞)
f∗∞

V∞(x), (15)

and f∗∞ is an optimal stationary policy for the control model M∞.
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P r o o f . (a) Let {uk} be an increasing sequence of continuous and bounded functions
such that uk(x)↗W (x), x ∈ X, which exists from the continuity of W . Then, for each
(x, a) ∈ K, k, n ∈ N0,∫

X

tuk(y)Qn(dy|x, a) ≤
∫
X

W (y)Qn(dy|x, a) ≤ βW (x) + b.

Letting n→∞, from Assumption 3.1 (a) we get∫
X

uk(y)Q∞(dy|x, a) ≤ βW (x) + b, k ∈ N0.

Now, letting k →∞ we prove that inequality (12) holds for n =∞, that is∫
X

W (y)Q∞(dy|x, a) ≤ βW (x) + b, (x, a) ∈ K. (16)

From the continuity of the functions G∞ and α∞, the proof of this part follows by
applying the argument of the proof of Theorem 4.1 (a).

(b) Let
VL(x) := lim inf

n→∞
Vn(x) and VU (x) := lim sup

n→∞
Vn(x).

Observe that from Remark 3.2(c), VL, VU ∈ BW . From Theorem 4.1(a) and applying [6,
Lemma 4.2.4] and [22, p. 231] we have

VL(x) = min
a∈A(x)

{lim inf
n→∞

cn(x, a) + lim inf
n→∞

αn(x, a)

∫
X

Vn(y)Qn(dy|x, a)}

≥ min
a∈A(x)

{c∞(x, a) + α∞(x, a)

∫
X

VL(y)Q∞(dy|x, a)}, x ∈ X.

Since Q∞ is a stochastic kernel and VL is nonnegative, we have that for every r ∈ R,
the set

{(x, a) ∈ K :

∫
X

VL(y)Q∞(dy|x, a) ≤ r} ∈ B(K). (17)

This fact holds because the function V ′L(·, ·) :=
∫
X
VL(y)Q(dy|·, ·) is lower semicontin-

uous (l.s.c.). Indeed, let (xl, al) be a sequence in K such that (xl, al) → (x, a) ∈ K.
Additionally, let {vt} be a sequence of bounded functions such that vt(x) ↑ VL(x) for all
x ∈ X, which is possible due to VL is a nonnegative function in BW . Then, for each t

lim inf
l→∞

∫
X

VL(y)Q∞(dy|xl, al) ≥ lim inf
l→∞

∫
X

vt(y)Q∞(dy|xl, al) =

∫
X

vt(y)Q∞(dy|x, a).

Now, letting t→∞ by the Monotone Convergence Theorem we obtain that V ′L is l.s.c.,
so the set in (17) is closed, and so a measurable set.

Hence, from [20, Cor. 4.3], for every arbitrary ε > 0, there exists fε ∈ F such that

c∞(x, fε) + α∞(x, fε)

∫
X

VL(y)Q∞(dy|x, fε) ≤ VL(x) + ε.
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Iterating this inequality we obtain

VL(x) ≥ E(∞)fε
x [c(x0, fε) +

m−1∑
t=1

t−1∏
k=0

α∞(xk, ak)c∞(xt, fε)]

+ E(∞)fε
x [

m−1∏
k=0

α∞(xk, fε)VL(xm)]− ε
m−1∑
t=1

t−1∏
k=0

α∞(xk, ak)

= E(∞)fε
x

m−1∑
t=0

Γ
(∞)
t c∞(xt, fε) + E(∞)fε

x [Γ(∞)
m VL(xm)]− εE(∞)fε

x

m−1∑
t=0

Γ
(∞)
t

≥ E(∞)fε
x

m−1∑
t=0

Γ
(∞)
t c∞(xt, fε)− εE(∞)fε

x

m−1∑
t=0

Γ
(∞)
t . (18)

Observe that

E(∞)fε
x

m−1∑
t=0

Γ
(∞)
t ≤ E(∞)fε

x

m−1∑
t=0

(α∗)t ≤ 1

1− α∗
.

Then, letting m→∞ in (18) we get

VL(x) ≥ V∞(fε, x)− ε

1− α∗
.

As ε > 0 was arbitrary, we conclude that, for each x ∈ X VL(x) ≥ V∞(fε, x), and
therefore

VL(x) ≥ V∞(x), x ∈ X. (19)

Now we proceed to prove the inequality

VU (x) ≤ V∞(x), x ∈ X.

First observe that for all (x, a) ∈ K,

Vn(x) ≤ cn(x, a) + αn(x, a)

∫
X

Vn(y)Qn(dy|x, a),

which implies that

VU (x) ≤ c∞(x, a) + α∞(x, a)

∫
X

VU (y)Q∞(dy|x, a).

Iterating this inequality for any arbitrary police π ∈ Π we obtain

VU (x) ≤ E(∞)π
x

m−1∑
t=0

Γ
(∞)
t c∞(xt, at) + E(∞)π

x [Γ(∞)
m VU (xm)]. (20)

On the other hand, from (16) and Remark 3.2(a) we have, for π ∈ Π, x ∈ X and t ∈ N0,

E(∞)π
x W (xt) ≤ (1 + b)W (x).
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In addition, from Remark 3.2(c)

VU (x) ≤ (1 + b)

1− α∗
W (x), x ∈ X.

Thus, from Assumption 3.1(d)

0 ≤ E(∞)
x Γ(∞)

m VU (xm) ≤ (α∗)mE(∞)π
x VU (xm)

≤ (α∗)m(1 + b)

1− α∗
E(∞)π
x W (xm)

≤ (α∗)m(1 + b)2

1− α∗
W (x).

Therefore,

lim
m→∞

E(∞)
x ΓmVU (xm) = 0, π ∈ Π, x ∈ X. (21)

Hence, letting m→∞ in (20), from (21) we obtain

VU (x) ≤ V∞(π, x), π ∈ Π, x ∈ X,

which, in turn implies

VU (x) ≤ V∞(x), x ∈ X. (22)

Finally, combining (19) and (22) we get

V∞(x) = VL(x) = VU (x),

that is,

Vn(x)→ V∞(x), x ∈ X, as n→∞.

(c) For a fixed and arbitrary x ∈ X, from (14) and letting ni = i, we have

Vi(x) = ci(x, fi) + αi(x, fi)

∫
X

Vi(y)Qi(dy|x, fi).

Letting i→∞ we obtain

V∞(x) ≥ c∞(x, f∞) + α∞(x, f∞)

∫
X

V∞(y)Q∞(dy|x, f∞), x ∈ X.

As x is arbitrary, from part (a) of this Theorem, for every x ∈ X,

V∞(x) = c∞(x, f∞) + α∞(x, f∞)

∫
X

V∞(y)Q∞(dy|x, f∞).

Hence, standard arguments prove that the policy f∞ is optimal for the control model
M∞. �
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4.1. Asymptotic discount optimality

In this section we are interested in to analyse the optimality of the control policy π̂ =
{f∗n} in the control model M∞. That is, the policy giving the action at = ft(xt) at
each stage t for the limit control model M∞. It is worth observing that π̂ = {f∗n} is

a non-stationary policy in M∞, where f∗n satisfies Vn = T
(n)
f∗n

Vn, for each finite n ∈
N0. Furthermore, considering the nature of the discounted index and the convergence
Vn → V∞, on one hand we have that the discounted criterion depends on the actions
taken in the early stages, and on the other hand the best information provided by such
an approximation scheme is in the distant stages. These opposite facts imply that this
approach does not yield optimality of π̂ in the model M∞, and therefore its optimality
will be studied in an asymptotic sense. To ease computations, we assume that cn = c for
a function c : K → R satisfying Assumption 3.1(c). Let Φ(∞) : K → R be the function
defined as

Φ(∞)(x, a) = c(x, a) + α∞(x, a)

∫
X

V∞(y)Q∞(dy|x, a)− V∞(x).

Observe that the optimality equation for the model M∞ is equivalent to

min
a∈A(x)

Φ(∞)(x, a) = 0.

Furthermore, a control policy f∗∞ ∈ F is optimal if Φ(∞)(x, f∗∞) = 0, x ∈ X. This fact
gives rise to the following definition.

Definition 4.4. A Markov policy π = {fn} is pointwise asymptotically optimal for the
control model M∞ if, for each x ∈ X,

lim
n→∞

Φ(∞)(x, fn(x)) = 0.

Hence, we can state our result as follows.

Theorem 4.5. Under Assumption 3.1, the control policy π̂ = {f∗n} is pointwise asymp-
totically optimal in the control model M∞.

P r o o f . Let Φ(n) : K→ R be the function defined as

Φ(n)(x, a) := c(x, a) + αn(x, a)

∫
X

Vn(y)Qn(dy|x, a)− Vn(x).

Observe that
Φ(n)(x, f∗n) = 0.

Then, from Theorem 4.1(b) for each x ∈ X,

Φ(∞)(x, f∗n(x)) = |Φ(∞)(x, f∗n(x))− Φ(n)(x, f∗n(x))|
≤ sup
a∈A(x)

|Φ(∞)(x, a)− Φ(n)(x, a)|. (23)
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Hence, to prove the theorem it is sufficient to show that, for each x ∈ X,

sup
a∈A(x)

|Φ(∞)(x, a)− Φ(n)(x, a)| → 0 as n→∞. (24)

Observe that

sup
a∈A(x)

|Φ(∞)(x, a)− Φ(n)(x, a)| = sup
a∈A(x)

|c(x, a) + α∞(x, a)

∫
X

V∞(y)Q∞(dy|x, a)

− V∞(x)− c(x, a)− αn(x, a)

∫
X

Vn(y)Qn(dy|x, a) + Vn(x)|

≤ sup
a∈A(x)

|α∞(x, a)

∫
X

V∞(y)Q∞(dy|x, a)− αn(x, a)

∫
X

V∞(y)Q∞(dy|x, a)|

+ sup
a∈A(x)

|αn(x, a)

∫
X

V∞(y)Q∞(dy|x, a)− αn(x, a)

∫
X

Vn(y)Q∞(dy|x, a)|

+ sup
a∈A(x)

|αn(x, a)

∫
X

Vn(y)Q∞(dy|x, a)− αn(x, a)

∫
X

Vn(y)Qn(dy|x, a)|

+ sup
a∈A(x)

|Vn(x)− V∞(x)|.

≤ sup
a∈A(x)

|α∞(x, a)− αn(x, a)|
∫
X

V∞(y)Q∞(dy|x, a) (25)

+ sup
a∈A(x)

αn(x, a)

∫
X

|V∞(y)− Vn(y)|Q∞(dy|x, a) (26)

+ sup
a∈A(x)

αn(x, a)

∫
X

|Vn(y)||Q∞(dy|x, a)−Qn(dy|x, a)| (27)

+ sup
a∈A(x)

|Vn(x)− V∞(x)|. (28)

Thus, by Assumption 3.1 (a),(d) and Theorem 4.3(b) the terms (25-28) goes to zero as
n increase, that is

lim
n→∞

sup
a∈A(x)

|Φ(∞)(x, a)− Φ(n)(x, a)| = 0,

so (24) is demonstrated, and therefore the policy π̂ is pointwise asymptotically optimal.
�

The previous approach can be thought of as an adaptive control approach for the
model M∞ in the following sense. We suppose that the transition kernel Q∞(·|·) and
discount factor function α∞(·, ·) from control modelM∞ are unknown and the sequences
{Qn(·|·)} and {αn(·, ·)} are sequences of approximators converging to Q∞ and α∞,
respectively, in the sense of the Assumption 3.1. Then, π̂ = {f∗n} is an adaptive policy
which is pointwise asymptotically optimal in the model M∞

A similar class of adaptive control problem has been analyzed in [5, 9, 10, 17] for
systems modeled as a stochastic difference equations as (3), where {ξt} is a sequence
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of i.i.d. r.v. with unknown distribution. In this case, by applying suitable statistical
estimation techniques together with control schemes, are constructed asymptotically
discounted optimal policies.

5. AN APPLICATION TO SEMI-MARKOV CONTROL MODELS

We consider a standard semi-Markov control model

MSM = (X,A,Q,H,D, d) (29)

with the following interpretation. At time of the n−th decision epoch Tn, the system is
in the state xn = x and the controller chooses a control an = a ∈ A(x). Then the system
remains in state x during a nonnegative random time δn+1 with distribution H(·|x, a),
and the following happen: 1) an immediate cost D(x, a) is incurred; 2) the system jumps
to a new state xn+1 = y according to the transition law Q(·|x, a); and 3) a cost rate
d(x, a) is imposed until the transition occurs. Once the transition to state y occurs, the
process is repeated.

Observe that the decision epochs are Tn := Tn−1 + δn for n ∈ N, and T0 = 0. The
random variables δn+1 = Tn+1 − Tn are called the sojourn or holding times at state xn.

As usual the costs are continuously discounted, and therefore the one-stage cost takes
the form:

c(x, a) := D(x, a) + d(x, a)

∫ ∞
0

∫ t

0

exp(−αs)dsH(dt|x, a), (x, a) ∈ K.

Further, it is possible to prove (see [14, 15]) that for each (x, a) ∈ K,

c(x, a) = D(x, a) + τ(x, a)d(x, a), (30)

where,

τ(x, a) :=
1−∆(x, a)

α
(31)

and

∆(x, a) :=

∫ ∞
0

e−αtH(dt|x, a). (32)

The standard performance index is defined as follows. For each π ∈ Π and x0 = x ∈
X,

V (π, x) = Eπx

[ ∞∑
n=0

e−αTnc(xn, an)

]
.

In the spirit of our work, we are interested in to study the following time-varying
semi-Markov decision model

M(n)
SM = (X,A,Qn, Hn, D, d)
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where, {Qn} is a sequence of stochastic kernels on X given K, converging (setwise) to
a stochastic kernel Q∞ on X given K, and {Hn} is a sequence of distribution functions
converging weakly to H∞.

Similarly to (30) – (32), we define

cn(x, a) = D(x, a) + τn(x, a)d(x, a)

where

τn(x, a) :=
1−∆n(x, a)

α

and

∆n(x, a) :=

∫ ∞
0

e−αtHn(dt|x, a) < 1.

Observe that, as n→∞,

∆n(·, ·)→ ∆∞(·, ·)

and

τn(·, ·)→ τ∞(·, ·),

where

∆∞(x, a) =

∫ ∞
0

e−αtH∞(dt|x, a).

For n ∈ N∞, we define the total expected cost

V (n)(π, x) = E(n)π
x

[ ∞∑
m=0

eαTmcn(xm, am)

]
. (33)

It is well-known that to analyze semi-Markov control models it is sufficient to con-
sider the Markov policies ΠM (see, e. g., [19]). Hence, if we restrict ourselves to the
Markovian policies, we will prove that the semi-Markov index (33) can be expressed as a
discounted index with state-action dependent discount factor (see (9)). Hence, provided
that Assumption 3.1 holds, the results in Theorem 4.3 are applicable. Specifically we
have the following result:

Proposition 5.1. For each n ∈ N∞ and π ∈ ΠM ,

V (n)(π, x) = E(n)π
x

∞∑
m=0

Γ(n)
m cn(xm, am), (34)

where Γ
(n)
m :=

∏m−1
k=0 ∆n(xk, ak) and Γ

(n)
0 = 1.
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P r o o f . Let π = {πn} be a Markov policy. We proceed to analyze each term of the
sum on the right side of equation (33). The first one is for m = 0,

E(n)π
x cn(x0, a0) =

∫
A

cn(x, a)π0(da|x0)

=

∫
A

Γ
(n)
0 cn(x0, a)π0(da|x0)

= E(n)π
x Γ

(n)
0 cn(x0, a0).

Now, for m = 1, using that π ∈ ΠM we have

E(n)π
x e−αT1cn(x1, a1)

=

∫
A

∫
X

∫
A

∫ ∞
0

e−αδ1cn(x1, a1)Hn(dδ1|x0, a0)π1(da1|x0, a0, δ1, x1)Qn(dx1|x0, a0)π0(da0|x0)

=

∫
A

∫ ∞
0

e−αδ1Hn(dδ1|x0, a0)

∫
X

∫
A

cn(x1, a1)π1(da1|x1, a0, x0)Qn(dx1|x0, a0)π0(da0|x0)

=

∫
A

∆n(x0, a0)

∫
X

∫
A

cn(x1, a1)π1(da1|x1, a0, x0)Qn(dx1|x0, a0)π0(da0|x0)

=

∫
A

∫
X

∫
A

∆n(x0, a0)cn(x1, a1)π1(da1|x1)Qn(dx1|x0, a0)π0(da0|x0)

= E(n)π
x ∆n(x0, a0)cn(x1, a1)

= E(n)π
x Γ

(n)
1 cn(x1, a1).

Similarly we can prove for m = k,

E(n)π
x e−α(Tk)cn(xk, ak) = E(n)π

x Γ
(n)
k cn(xk, ak).

Thus using an inductive process over m, each term of V (n) can be written in terms of

Γ
(n)
m , which proves (34). �

Remark 5.2. Taking into account the previous section, and Proposition 5.1, we can
analyze the case of semi-Markov control models with unknown holding time distribution.
Indeed, if we assume that the holding time distribution H∞ is unknown, {Hn} can be
considered as a sequence of estimators of H∞. This class of problems has been studied
in [13, 14] considering that the distribution H∞ has a density independent of the state-
action pair.

6. CONCLUDING REMARKS

The paper is the first part of a project whose objective is to study time-varying MDPs
with state-action dependent discount factors. Specifically, in this paper we have intro-
duced the main elements to analyze this class of control systems from a theoretical point
of view. Indeed, under suitable assumptions on the control modelMn, n <∞, we have
proved the existence of optimal policies for the limit model M∞. Such assumptions are
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essentially continuity and W−boundedness conditions on the cost functions together
with a convergence property of the dynamics. For the sake of generality, our model is
defined on Borel spaces and it is assumed possibly unbounded one-stage costs. This fact
allows us to consider examples as general as the LQ-systems (linear systems/quadratic
costs) where the one-stage cost is unbounded, some class of inventory and queueing
models, biotechnological processes as in (5), as well as the corresponding partially ob-
servable systems whose analysis, under the standard approach, leads us to define an
equivalent control problem where the state space is a set of probability measures, which
in turn is a Borel space. Furthermore, as discussed in Sections 4 and 5, our results have
important applications to two widely studied problems in this general context, namely,
the adaptive control problem and the control problem for semi-Markov processes.

The second part of the project, which is a future work in progress of the authors,
consists of developing approximation algorithms for optimal policies and value functions.
There are well-known and powerful methods that address this problem but in the sce-
nario of constant discount factors. Among these are, for instance, approximate dynamic
programming (see, e. g., [2, 18, 21] and references therein) and the analysis by means of
Turnpike Theorems (see, e. g., [12, 24]). In the context of our paper, that is assuming
time-varying state-actions dependent discount factors, the problem remains open.
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mate policy iteration algorithm for discounted Markov decision models with bounded costs
and Borel spaces.Risk Decision Analysis 6 (2017), 2, 79-95. DOI:10.3233/rda-160116

[22] H. L. Royden: Real Analysis. Prentice Hall 1968.

[23] M. Schäl: Conditions for optimality and for the limit on n-stage optimal policies to be
optimal. Z. Wahrs. Verw. Gerb. 32 (1975), 179–196. DOI:10.1007/bf00532612

[24] J. F. Shapiro: Turnpike planning horizon for a markovian decision model. Magnament
Sci. 14 (1968), 292–300. DOI:10.1287/mnsc.14.5.292

Beatris A. Escobedo-Trujillo, Engineering Faculty, Universidad Veracruzana, Coatza-
coalcos, Ver. 96538. México.
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