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Abstract. Laplace interpolation is a popular approach in image inpainting using partial
differential equations. The classic approach considers the Laplace equation with mixed
boundary conditions. Recently a more general formulation has been proposed, where the
differential operator consists of a point-wise convex combination of the Laplacian and the
known image data. We provide the first detailed analysis on existence and uniqueness
of solutions for the arising mixed boundary value problem. Our approach considers the
corresponding weak formulation and aims at using the Theorem of Lax-Milgram to assert
the existence of a solution. To this end we have to resort to weighted Sobolev spaces. Our
analysis shows that solutions do not exist unconditionally. The weights need some regularity
and must fulfil certain growth conditions. The results from this work complement findings
which were previously only available for a discrete setup.
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1. Introduction

Image inpainting deals with recovering lost image regions or structures by means

of interpolation. It is an ill-posed process; as soon as a part of the image is lost,

it cannot be recovered correctly with absolute certainty, unless the original image

is completely known. The inpainting problem goes back to the works of Masnou

and Morel as well as Bertalmío et al. [4], [37], although similar problems have been

considered in other fields already before. There exist many inpainting techniques,

often based on interpolation algorithms, but partial differential equation (PDE)-

based approaches are among the most successful ones, see e.g. [21]. Among these,
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strategies based on the Laplacian stand out [5], [12], [34], [44]. In that context, the

elliptic mixed boundary value problem

(1.1)






−∆u = 0 in Ω \ ΩK ,

u = f in ∂ΩK ,

∂nu = 0 in ∂Ω,

is very popular. Here, f represents known image data in a region ΩK ( Ω (or on the

boundary ∂ΩK) of the whole image domain Ω. Further, ∂nu denotes the derivative in

outer normal direction. An exemplary sketch of the layout of the problem is given in

Figure 1. Equations like (1.1), which involve different kinds of boundary conditions,

are commonly referred to as mixed boundary value problems and in rare cases also

as Zaremba’s problem [54]. Image inpainting based on (1.1) appears under various

names in the literature: Laplace interpolation [45], harmonic interpolation [48], or

homogeneous diffusion inpainting [34]. The latter name is often used in combination

with the steady state solution of the parabolic counterpart of (1.1).

ΩK

ΩK

∂Ω
∂ΩK

∂ΩK

Ω \ ΩK

f

u

Figure 1. Generic PDE-based inpainting, as given e.g. in (1.1), with known image data f

in ΩK . The task consists in recovering a reasonable approximation u in Ω \ ΩK
from the original image data f given in ΩK . Source image: [53]

Applications of image inpainting are manifold and range from art restoration to

image compression. The earliest uses of (1.1) go back to Noma and Misulia [40]

(1959) and Crain [13] (1970) for generating topographic maps. Further applications

include the works of Bloor and Wilson (1989) [5], who studied partial differential

equations for generating blend surfaces. Finally, we refer to [48], [25] for a broad

overview on PDE-based inpainting and the closely related problem of PDE-based

image compression.

In the context of image reconstructions, (1.1) is often favoured over other more

complex models due to its mathematically sound theory, even though the strong
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smoothing properties may yield undesirable blurry reconstructions. Models based

on anisotropic diffusion [19], [47] or total variation [12] may be more powerful, but

are much harder to grasp from a mathematical point of view. In the context of image

compression, the data ΩK used for the reconstruction can be freely chosen, since the

complete image is known beforehand. The difficulty in compressing an image with

a PDE lies in the fact that one has to optimise two contradicting constraints. On the

one hand, the size of the data ΩK should be small to allow an efficient coding, but

on the other hand one wishes to have an accurate reconstruction from this sparse

amount of information, too. The optimal data also depends on the choice of the

differential operator and the simplicity of the Laplacian offers many design choices

for optimization strategies to find the best ΩK . Some of these approaches belong

to the state-of-the-art methods in PDE-based image compression. We refer to [43]

for a comparison of different PDE-based models and to [18], [35], [26] for data opti-

mization strategies in the compression context. Figure 2 demonstrates the potential

of such a careful data optimization. In Figure 2(a) an arbitrary rectangle (marked

in black) has been removed from the image. Figure 2(b) shows the reconstruction

of this missing region. The reconstruction is severely blurred and the texture of

the scarf is almost completely lost. On the other hand, Figure 2(c) represents an

optimized set of 5% of the data points (missing data marked in black) with the cor-

responding colour values. These 5% have been obtained with the method from [26].

Figure 2(d) depicts the corresponding reconstruction. Although the reconstruction

has a few artefacts, its overall quality is very convincing.

(a) Arbitrary data (b) Reconstruction (c) Optimal data (d) Reconstruction

Figure 2. (a) Image data with an arbitrary missing rectangular region (marked in black).
(b) Corresponding reconstruction with (1.1). The reconstruction suffers from
blurring effects. (c) Remaining data (5% of all pixels) with optimal reconstruction
property. Missing data is black. (d) Corresponding reconstruction with (1.1).
The reconstruction is sharp although the Laplacian causes strong smoothing.
Source original image: [49]

As already mentioned, finding the best pixel data is a very challenging task.

Mainberger et al. [35] consider the combinatorial point of view of this task while

Belhachmi et al. [3] approach the topic from the analytic side. Recently [26], the
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“hard” boundary conditions in (1.1) have been replaced by softer weighting schemes.

These blend the given image data with the information obtained from the differential

operator and can be written as

(1.2)

{
c(u− f) + (1− c)(−∆)u = 0 in Ω,

∂nu = 0 in ∂Ω,

with a weighting function (also called mask) c : Ω → R. Optimising such a weighting
function is notably simpler, at least in discrete setups. We note that (1.1) is a special

case of (1.2) with c(x) = 1 for x ∈ ΩK and c(x) = 0 else.

Equation (1.1) is well understood and there exist many results on existence,

uniqueness and regularity of solutions, see [16], [8] for a generic analysis and [12],

[11] for a more specific analysis in the inpainting context with Dirichlet boundary

conditions only. Finite difference discretizations of (1.1) and (1.2) have also been

object of several investigations in the past. One can show that the discrete coun-

terpart of (1.1) admits a unique solution as soon as the Dirichlet boundary set is

nonempty [34]. Similarly, the discrete finite difference formulation of (1.2) admits

a unique solution if c is positive in at least one position [22].

An important question that arises in this context is what these discrete require-

ments relate to in the continuous setting. If we consider for example the following

model problem that one may extract from the formulation (1.1),

(1.3)






−∆u = 0 in B1 \Bε,

u = 0 in ∂B1,

u = 1 in ∂Bε,

where Br ⊂ R2 is a ball or radius r with the centre at the origin and where ∂Br is its

boundary, then one can show that a smooth solution exists for every ε > 0, but that

no solution in the classic sense (i.e. twice differentiable and fulfilling all boundary

conditions) exists in the limiting case ε → 0. Indeed, the solution is given by

(1.4) u(x, y) =
ln(x2 + y2)

2 ln(ε)
.

Yet, the discrete formulation will admit a unique solution independently of the choice

of ε. It suffices that the corresponding matrix is block irreducible. We refer to [22],

[34] for a detailed discussion on the existence of solutions. To remedy the situation

for the continuous formulation in (1.1), the authors of [3] have required that the set

ΩK should have positive α-capacity. The α-capacity (α > 0) of a subset E ⊂ D of

a smooth, bounded and open set D is given by

(1.5) inf
u∈UE

∫

D

(|∇u|2 + α|u|2) dx,
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where UE is the set of all functions u of the Sobolev space H
1
0 (D) such that u > 1

almost everywhere in a neighbourhood of E. If ΩK has positive α-capacity, then

a solution of (1.1) exists in the Sobolev space H1(Ω) [3]. This requirement, that ΩK

must have positive capacity, can be understood as requiring that image pixels are “fat

enough” to allow a reconstruction. It reconciles the continuous and discrete worlds

and leads to a consistent theory on both sides. A higher regularity than H1(Ω) can

be achieved for specific constellations of the boundary data. A rather general theory

is given in [17], [36], [2]. The author of [38] shows that a Hölder continuous solution

exists if the data is regular enough. Finally, [7] discusses the regularity of solutions

on Lipschitz domains. Let us mention that Caselles et al. [9] have also discussed

this inability of the Laplacian to recover images from isolated points and that they

suggested absolutely minimizing Lipschitz extensions as an alternative.

The authors of this manuscript are not aware of any similar theory that would

remedy the apparent discrepancy between (1.2) and its discrete counterpart. The

discrete setup is almost always solvable. On the other hand, solutions for the contin-

uous model are only known for some special cases such as c being bounded between

two positive constants in the interval (0, 1), or c being itself a constant [8], [16]. For

inpainting purposes it is important that c may map to the whole unit interval and

even beyond. Regions with c ≡ 1 keep the data fixed and if c exceeds the value 1,

then contrast enhancing in the reconstruction is possible, see [23], [27].

Here, we attempt to bridge that gap between the discrete setup and the continuous

model for the case when c maps to [0, 1]. We show that a weak solution exists if

certain assumptions on the weight functions are met. Special interest will be paid to

occurring requirements on c and whether they correspond to discrete counterparts.

We aim at applying the Theorem of Lax-Milgram in purpose-built weighted Sobolev

spaces. As such, the contributed novelties of this manuscript are twofold. First,

we complement the well-posedness study of (1.1) and c > 1, which has recently

been discussed in [24], with the missing case where c maps to [0, 1], and secondly,

we introduce weighted Sobolev spaces to the image processing community. These

spaces bear a certain number of interesting properties that can also be useful for

other image analysis tasks, see e.g. [6].

In the next section we first derive the weak formulation corresponding to (1.1)

and introduce the weighted Sobolev spaces where the solution is sought. Then we

will state the necessary conditions on the weight function c that must be fulfilled to

assert the existence of a solution. Finally, we show that a unique solution exists.
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2. Inpainting with the weighted Laplacian

We assume the following requirements on our domain Ω and our data f . These

assumptions will hold throughout the whole paper, unless mentioned otherwise. Even

though some of these are stronger than necessary, they are not uncommon in the

image processing context. Further, they help us to keep the discussion on PDE-

based models low on technical details.

(1) Ω is an open, connected and bounded subset of R2 with C∞ boundary ∂Ω.

(2) ΩK $ Ω is a closed subset of Ω with positive Lebesgue measure. It represents

the known data locations used to recover the missing information on Ω \ ΩK .

The interpolation data is given by f(ΩK). The boundary ∂ΩK is assumed to be

C∞, too.

(3) f : Ω → R is a C∞ function representing the given image data to be interpolated

by the underlying PDE. Here, Ω denotes the closure of Ω.

(4) The boundaries ∂Ω and ∂ΩK do not intersect and neither of the boundaries ∂Ω

or ∂ΩK are empty.

As already mentioned in the previous section, the classic formulation for PDE-based

inpainting with the Laplacian reads

(2.1)





−∆u = 0 in Ω \ ΩK ,

u = f in ∂ΩK ,

∂nu = 0 in ∂Ω.

Using the findings from [16], [24], it is easy to show that (2.1) is well-posed and

that a unique weak solution exists in a subspace of H1(Ω). If we define a function

c : Ω → {0, 1} with c(x) ≡ 1 when x ∈ ΩK and c(x) ≡ 0 else, then (2.1) can also be

rewritten as

(2.2)

{
c(u− f) + (1− c)(−∆)u = 0 in Ω,

∂nu = 0 in ∂Ω.

Interestingly, the latter formulation also makes sense if we generalise to c : Ω → R
a fact which was first exploited in [26]. If c has binary values in the set {0, 1},
then (2.2) is equivalent to (2.1) with the Dirichlet boundary conditions specified

by f at those regions where c equals 1. Equation (2.2) can also be interpreted from

a physical or chemical point of view. We are in the presence of a stationary reaction-

diffusion equation. The diffusive term (1− c)(−∆)u is responsible for spreading the

information generated by the reactive term c(u− f). The weight c is responsible for

the speed at which information is generated and spread.
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If c is bounded between two non-negative numbers strictly smaller than one, then

it follows from [8], [24] that a solution exists in C2,α(Ω) if the data f and c are

regular enough. We refer to the cited references for the concrete requirements. For

inpainting purposes it is however important to allow c(x) = 1 or even c(x) > 1.

In order to derive the weak formulation of (2.2), we follow the presentation in [24],

where the setup in (2.2) with c > 1 was discussed by outlining its relationship to the

Helmholtz equation. We also introduce the following additional requirements on the

function c.

(5) We have c ≡ 1 inside the set of known data ΩK .

(6) The function c : Ω → [0, 1] is an element of H1(Ω, [0, 1]) and the function 1 − c

is an element of the A2(R2) Muckenhoupt class (see next page for the precise

definition). Finally, ∇f/
√
1− c is an element of L2(Ω \ ΩK).

(7) The function c has a trace on ∂Ω and c|∂Ω ≡ 0 holds.

Let us briefly comment on these requirements. The first part of item (1) is trivially

fulfilled by images. Its second part is more restrictive. Assuming the boundary

of Ω to be piecewise C∞ would be more realistic, but this would in general also

reduce the regularity of solutions of PDEs. Item (2) and item (3) do not impose any

severe restrictions for image processing tasks. Images can always be rendered C∞ by

convolving them with a Gaussian. Nevertheless, we emphasise that our requirements

in items (2) and (5) forbid setups where the data is given on a one dimensional

set ΩK . Thus, our model deviates from the original formulation in [35], where all

the information is extracted from ∂ΩK . Items (4) and (7) are necessary for technical

reasons. If the Neumann and Dirichlet boundary conditions meet each other, it is

possible to generate setups that lead to contradicting requirements, see [2], [36] for

a more detailed discussion on the existence and regularity of solutions when the

boundary conditions intersect. A more thorough discussion of intersecting boundary

conditions would however be beyond the scope of this work. Finally, item (6) is

necessary to assert the existence of our weighted Sobolev spaces. We remind that

a weight function (i.e. a measurable and almost everywhere positive function) ω is in

the Ap(Rn) (1 < p < ∞) Muckenhoupt class if there exists a positive constant Cp,ω

such that

(2.3) sup
B

{(
1

|B|

∫

B

ω(x) dx

)(
1

|B|

∫

B

ω(x)1/(1−p) dx

)p−1}
= Cp,ω < ∞,

where the supremum is taken over all balls B in Rn. We remark that it follows

from (2.3) that ω1/(1−p) will be an element of L1
loc(R

n) (see [39]). Therefore, item (6)

implies that 1/
√
1− c is an element of L1

loc(Ω \ ΩK). Let us also remark that it

follows from Theorem 2.1.4 (or Corollary 2.1.6) in [50] that C∞ functions are dense
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in weighted Sobolev spaces with Muckenhoupt weights. In concrete applications it

may be difficult to verify that ∇f/
√
1− c is in L2(Ω \ ΩK). In many cases the

function c has been determined by an optimization strategy and its properties are

not completely known. Therefore, we have to require explicitly that ∇f/
√
1− c is

an element of L2(Ω \ ΩK).

Let us now rewrite (2.2) in a more suitable form (also see Figure 3). In the first

step we explicitly set the regions where c ≡ 1 apart.

(2.4)






c(u− f) + (1− c)(−∆)u = 0 in Ω \ ΩK ,

u = f in ∂ΩK ,

∂nu = 0 in ∂Ω.

The previous reformulation implies that c < 1 almost everywhere in Ω \ ΩK .

A small detail that will become important in the forthcoming discussions. Since

c ∈ H1(Ω, [0, 1]), we can apply the product rule and rewrite (2.4) as

(2.5)






−div((1 − c)∇u)−∇c · ∇u+ c(u− f) = 0 in Ω \ ΩK ,

u = f in ∂ΩK ,

∂nu = 0 in ∂Ω.

If u solves (2.5), it follows that v := u− f also solves

(2.6)






−div((1 − c)∇v)−∇c · ∇v + cv = g in Ω \ ΩK ,

v = 0 in ∂ΩK ,

∂nv = h in ∂Ω

with g := (1 − c)∆f and h := −∂nf . For convenience of writing, we will continue

calling the sought solution of (2.6) u and not v. Being able to solve (2.6) is equivalent

to being able to solve (2.5). Yet, this change lets us reduce the problem to the

case with homogeneous Dirichlet boundary conditions. Deriving the associated weak

formulation is now straightforward. Multiplying with a suitable test function ϕ from

some space V (with ϕ ≡ 0 on ∂ΩK) and integrating (2.6) by parts implies that we

must seek a function u ∈ V which solves

(2.7)

∫

Ω\ΩK

((1 − c)∇u · ∇ϕ− (∇c · ∇u)ϕ+ cuϕ) dx

︸ ︷︷ ︸
=:Bc(u,ϕ)

=

∫

Ω\ΩK

gϕdx+

∫

∂Ω

hϕdH1

︸ ︷︷ ︸
=:F (ϕ)

for all ϕ ∈ V . Here, H1 denotes the one dimensional Hausdorff measure. We defer

the exact specification of V to the forthcoming sections.
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c(x)≡ 0

c(x)≡ 1

c(x) ∈ [0, 1)

ΩK

ΩK

∂Ω
∂ΩK

∂ΩK

Ω \ ΩK

Figure 3. Visualization of the setup specified in (2.4) with a nonbinary valued mask func-
tion c.

Since c maps to the unit interval, we are in the presence of a so called degenerate

elliptic equation [51], [46] or sometimes also referred to as a PDE with non-negative

characteristic form [41]. Such PDEs are characterized by the fact that their high-

est order term is allowed to vanish. This fact, that the second order differential

operator may vanish locally, requires a more sophisticated analysis. The key issue

to approach such problems is to select the correct function space V and to place

necessary restrictions onto c.

The canonic strategy to show the existence and uniqueness of a weak solution

consists in applying the Lax-Milgram Theorem [16]. The crucial part will be the

coercivity of the bilinear form Bc and the boundedness of Bc and F . Obviously, the

boundedness of Bc and F depends a lot on the choice of the space V and c. To show

coercivity of the bilinear form, we must study the behaviour of

(2.8) Bc(u, u) =

∫

Ω\ΩK

((1− c)|∇u|2 − (∇c · ∇u)u+ cu2) dx.

The coercivity of (2.8) is not immediately visible due to the complex interplay be-

tween u, c and their derivatives. The following section sheds light on the requirements

to prove well-posedness of the considered problem.

2.1. Weighted Sobolev spaces. Weighted Sobolev spaces have been studied

intensively in the past. Their uses are manifold, but they are most often found in

the analysis of PDEs with vanishing or singular diffusive term. The works [51], [41],

[46], [28], [33], [39] give an almost complete overview of their usefulness. For the sake

of completeness, we shortly summarize how these spaces are set up.

In the following, we denote by WΩ the set of weight functions ω, i.e. ω is a mea-

surable and almost everywhere positive function in some domain Ω. For 1 6 p < ∞
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and ω ∈ WΩ we define the corresponding weighted Lp space as

(2.9) Lp(Ω;ω) :=

{
u : Ω → R

∣∣∣ ‖u‖Lp(Ω;ω) :=

(∫

Ω

|u(x)|pω(x) dx
)1/p

< ∞
}
.

In a similar way as Sobolev spaces refine the Lebesgue spaces we can also refine our

weighted Lp spaces by including the weak derivatives into the norm. Here, weak

derivatives Dαu of a function u are to be understood as (see also [20])

(2.10)

∫

Ω

u(x)(Dαη(x)) dx = (−1)|α|
∫

Ω

(Dαu(x))η(x) dx ∀ η ∈ C∞
0 (Ω).

Different weights for different derivatives are also possible. For a given collection

Sk := {ωα ∈ WΩ | |α| 6 k} of weight functions we denote byW k,p(Ω;Sk) the set of all

functions u defined on Ω and whose (weak) derivativesDαu of order |α| 6 k (α being

a multi-index) belong to Lp(Ω;ωα). We can equip this vector spaceW
k,p(Ω;Sk) with

the norm

(2.11) ‖u‖Wk,p(Ω;Sk) :=

( ∑

|α|6k

∫

Ω

‖Dαu(x)‖pωα(x) dx

)1/p

=

( ∑

|α|6k

‖Dαu‖pLp(Ω;ωα)

)1/p

.

One can show that the space W k,p(Ω;Sk) is a Banach space if ωα ∈ L1
loc(Ω) and

ω
−1/(p−1)
α ∈ L1

loc(Ω) for all |α| 6 k, see [30], [31]. Note that this requires that all

derivatives up to the order k must be attributed to such a weight ωα. However, one

can also show that W k,p(Ω; S̃k) is still complete if S̃k $ Sk contains at least one

weight ωα with |α| = k and a weight for |α| = 0, see [29], [32].

We note that for p = 2 there is a canonical choice for a scalar product:

(2.12) 〈u, v〉Wk,2(Ω;Sk) :=
∑

|α|6k

∫

Ω

Dαu(x)Dαv(x)ωα(x) dx.

Thus, with a suitable choice of weights we obtain a Hilbert space. If all the weight

functions are constant and equal to one, then our weighted spaces coincide with the

usual definition of Sobolev spaces. We refer to [28], [33] for a more complete listing

of possible weighted Sobolev space constructions.

By looking at (2.7) it becomes apparent why these weighted Sobolev spaces are

useful. The function c (or 1− c) can be considered as a weight function and simply

be integrated into the space definition. This simplifies the proofs to show existence
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and uniqueness, since boundedness and coercivity are easier to show and theorems

such as Lax-Milgram can be applied in any Hilbert space.

Our goal now will be to consider the corresponding weak formulation of (2.5) in

a suitable weighted Sobolev space V . By applying the Theorem of Lax-Milgram in

these spaces we will show the existence and uniqueness of a weak solution of (2.5).

Let us also note that alternative approaches may be derived from the works [10], [14].

The weights for our space definition should be chosen so that the bilinear form is

equivalent to the norm of our space. Often the multiplicative factors of the individual

derivatives in the bilinear form offer themselves as viable choices for this task. In our

case however, the function c may vanish locally. This prevents us from using 1 − c

and c as weights to define a norm. They only give us a seminorm structure. Such

a situation is briefly described in [29]. We mostly follow that presentation and we

propose the following correspondence between multi-indices α ∈ N2
0 and weights ωα

(2.13) ω(00)
:= 1, ω(10)

:= 1− c(x), ω(01)
:= 1− c(x).

This yields the scalar product and norm

〈u, v〉V :=

∫

Ω\ΩK

((1 − c)∇u · ∇v + uv) dx,(2.14a)

‖u‖V :=

(∫

Ω\ΩK

((1− c)|∇u|2 + u2) dx

)1/2

,(2.14b)

as well as the following definition for our space V :

(2.15) V := {φ ∈ W 1,2(Ω \ ΩK ;Sc) | φ ≡ 0 on ∂ΩK},

where Sc is our set of weights given in (2.13). In addition, we define the seminorm

(2.16) |||u|||V :=

(∫

Ω\ΩK

(1− c)|∇u|2 dx
)1/2

.

Finally, following the presentation in [33], we note that the bilinear form Bc in (2.7)

can be written compactly as a ternary quadratic form

(2.17) Bc(u, ϕ) =
∑

|α|,|β|61

∫

Ω\ΩK

aα,βD
βuDαϕdx,

where α, β are multi-indices in N2
0. The weights aα,β must be set as follows to yield

our model:

a(10),(
1
0)

= a(01),(
0
1)

= 1− c(x), a(00),(
0
0)

= c(x),(2.18a)

a(00),(
1
0)

= −∂xc(x), a(00),(
0
1)

= ∂yc(x),(2.18b)
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and aα,β = 0 for any other combination of multi-indices. In addition to the previous

assumptions, we now assume further:

(8) There exists a constant κ > 0 such that for all |α|, |β| 6 1, α 6= β,

(2.19) |aα,β| 6 κ
√
aα,αaβ,β

almost everywhere in Ω \ ΩK . For our choice in (2.18), this reduces to

(2.20) |∂xc| 6 κ
√
c(1− c), |∂yc| 6 κ

√
c(1− c)

almost everywhere in Ω \ ΩK .

(9) There exists a constant κ′ > 0 such that for all real vectors ξ ∈ R3 with entries

ξγ (γ being a multi-index in N2
0 such that |γ| 6 1) we have

(2.21)
∑

|α|,|β|61

aα,βξαξβ > κ′
∑

|γ|61

aγ,γξ
2
γ

almost everywhere in Ω \ ΩK . For our choice in (2.18), this reduces to

cξ21 + (1− c)ξ22 + (1 − c)ξ23 − ∂xcξ1ξ3 + ∂ycξ1ξ2(2.22a)

> κ′((1 − c)ξ23 + (1− c)ξ22 + cξ21)

⇔ (∂yc)ξ1ξ2 − (∂xc)ξ1ξ3 > (κ′ − 1)((1− c)ξ23 + (1− c)ξ22 + cξ21)(2.22b)

almost everywhere in Ω \ ΩK .

Items (8) and (9) are technical requirements that are necessary for the coercivity and

the boundedness of Bc. They cannot be avoided without substantial changes to the

forthcoming proofs. Let us point out that (2.21) can be deduced from (2.19) provided

that κ < 1
2 holds. We refer to [33] for a detailed proof. Equations (2.20) and (2.22b)

enforce a certain well-behaviour on c by restricting for example the growth speed.

The following findings are a direct consequence of the foregoing results.

Proposition 2.1. The bilinear form Bc from (2.17) is continuous.

P r o o f. By using (2.19) and the Hölder inequality we obtain

(2.23) |Bc(u, ϕ)| 6
∑

|α|,|β|61

∫

Ω\ΩK

|aα,β||Dβu||Dαϕ| dx

6 max{κ, 1}
∑

|α|,|β|61

∫

Ω\ΩK

|Dβu|
√
|aβ,β| |Dαϕ|

√
|aα,α|dx

6 K‖u‖V ‖ϕ‖V ,

where K is a positive constant. We emphasise that the last estimate requires c 6 1

almost everywhere to be valid. �
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Proposition 2.2. There exists a constant κ′ > 0 such that the bilinear form Bc

from (2.17) satisfies the estimate Bc(u, u) > κ′|||u|||2V .

P r o o f. We replace ξα byD
αu and ξβ byD

βu in (2.21). Integrating the resulting

inequality over Ω \ ΩK yields

(2.24) Bc(u, u) =
∑

|α|,|β|61

∫

Ω\ΩK

aα,βD
αuDβu dx

> κ′
∑

|γ|61

∫

Ω\ΩK

aγ,γ(D
γu)2 dx > κ′|||u|||2V .

�

To complete the proof of the coercivity of the bilinear formBc we need a Friedrichs-

like estimate of the form ‖u‖V 6 K|||u|||V with a positive constant K. The particular
formulation and preliminaries that we need can be found in [52] as Theorem 2.3.

We repeat it here verbatim for the sake of completeness but refer to its source for

a detailed proof.

In the following theorem we denote byWc(X) the subset of weights on the spaceX

which are bounded from above and below by positive constants on each compact

subset Q ⊂ X , i.e. we only allow our weights to degenerate at the boundary of the

domain. The next theorem also considers a constant A which is defined as follows.

For an arbitrary domain X we assume that we can write

(2.25) X =

∞⋃

k=1

Xk,

where (Xk)k is a sequence of bounded domains whose boundary can be locally de-

scribed by functions satisfying the Lipschitz condition and where Xk ⊂ Xk ⊂ Xk+1

holds for each k. Finally, let Xk := X \Xk and define

(2.26) Ak = sup
‖u‖Wm,p(X;Sm)61

‖u‖Lp(Xk;w0),

where w0 ∈ Sm is the weight that corresponds to |α| = 0. We define additionally

A := lim
k→∞

Ak. Obviously A ∈ [0, 1] always holds. This number A is also the ball

measure of noncompactness of the embedding Wm,p(X ;Sm) → Lp(X ;w0), see [52],

[15]. One can interpret the number A as the distance from the embedding operator

to the next closest compact operator from Wm,p(X ;Sm) into Lp(X ;w0). Also, the

numbers Ak can be understood as indicators on how much “weight” is put onto the

function along the boundary. Ak < 1 means that there is at least some weight on
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the derivatives or inside the domain. Note that in our setup (2.26) simplifies to

(2.27) Ak = sup
‖u‖

W1,2(Ω\ΩK ;Sc)
61

‖u‖L2(Xk),

where Xk is the complement of a set Xk ⊂ Ω\ΩK and where Sc is the set of weights

from (2.13).

For the following theorem it is important that A < 1, i.e. the weight is not com-

pletely concentrated on the boundary. Let us remark that this requirement is in

accordance with the discrete theory established in [34], [22]. In the discrete set-

ting, there should be at least one position with positive weight in the interior of the

domain.

Let us also emphasise that for our task at hand, such a construction with the

requirement that A < 1 is an additional regularity assumption on our image data f

and the mask function c. Indeed, part of the boundary of the domain that we

consider is fixed where c ≡ 1. Since Ωk need boundaries that can be described

locally by functions that fulfil the Lipschitz condition, this requirement carries over

to the function c.

As already mentioned, the next theorem is a almost verbatim copy of Theorem 2.3

in [52].

Theorem 2.1. Suppose 1 6 p < ∞ and Sk ⊂ Wc(X). Let l be a functional on

W k,p(X ;Sk) with the following properties.

(1) l is continuous on W k,p(X ;Sk).

(2) l(λu) = λl(u) for all λ > 0 and all u ∈ W k,p(X,Sk).

(3) If u ∈ Pk−1∩W k,p(X ;Sk) (Pk−1 being the set of all polynomials on Rn of degree

less than k) and l(u) = 0, then u = 0.

Let A < 1. Then there is a constant κ0 such that

(2.28)

∫

X

|u|pw0 dx 6 κ0

(
|l(u)|p +

∑

|α|=k

‖Dαu‖pLp(X;wα)

)
.

Here, w0 is the weight that corresponds to |α| = 0.

The previous theorem can be seen as a generalisation to weighted spaces of

a well-known theorem for constructing equivalent norms out of seminorms in regular

Sobolev spaces. See Theorem 7.3.12 in [1]. Equation (2.28) can also be considered

as a higher dimensional generalisation of the Hardy inequality. We refer to [42] for

an extensive treatise on this inequality.
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We now use Theorem 2.1 with p = 2, k = 1, n = 2, w0 ≡ 1, wα = 1− c for all α,

and

(2.29) l(u) =

∫

∂ΩK

u dH1.

With these choices we obtain Friedrichs’ inequality in our space V :

(2.30) ‖u‖2L2(Ω\ΩK) 6 κ0|||u|||2V .

Equation (2.30) is the final key building block in showing the existence and unique-

ness of a solution of our PDE. It allows us to show the coercivity of our bilinear

form.

Proposition 2.3. If (2.30) holds, i.e. the requirements of Theorem 2.1 are fulfilled

for the choice of l from (2.29) and for our selection of weights for our space V , then

the bilinear form Bc from (2.17) is coercive.

P r o o f. Equation (2.30) immediately implies that ‖u‖2V 6 (1 + κ0)|||u|||2V . In
combination with (2.24) it follows that

(2.31) Bc(u, u) > κ′|||u|||2V >
κ′

1 + κ0
‖u‖2V .

�

Proposition 2.3 completes the analysis of our bilinear form Bc. It remains to show

that the right-hand side of our weak formulation is continuous if we want to apply

the Theorem of Lax-Milgram. This final step is done in the following proposition.

Proposition 2.4. The linear operator F from (2.7) is continuous provided that g,

∆f and ∇f/
√
1− c are in L2(Ω \ ΩK).

P r o o f. We note that ϕ ∈ V is 0 along ∂ΩK , and thus we can extend the

boundary integral over that part. Using the Hölder inequality and Green’s first

identity, we obtain

(2.32) |F (ϕ)| 6
∫

Ω\ΩK

|g| |ϕ| dx+

∣∣∣∣
∫

∂Ω

hϕdH1

∣∣∣∣

6 ‖g‖L2(Ω\ΩK)‖ϕ‖L2(Ω\ΩK) +

∣∣∣∣
∫

Ω\ΩK

(∆fϕ+∇f · ∇ϕ) dx

∣∣∣∣

6 ‖g‖L2(Ω\ΩK)‖ϕ‖V + ‖∆f‖L2(Ω\ΩK)‖ϕ‖V +

∣∣∣∣
∫

Ω\ΩK

∇f · ∇ϕdx

∣∣∣∣.
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The last integral can be estimated as

(2.33)

∣∣∣∣
∫

Ω\ΩK

∇f · ∇ϕdx

∣∣∣∣ =
∣∣∣∣
∫

Ω\ΩK

∇f√
1− c

√
1− c∇ϕdx

∣∣∣∣

6

∥∥∥
∇f√
1− c

∥∥∥
L2(Ω\ΩK)

‖∇ϕ‖L2(Ω\ΩK ;1−c)

6

∥∥∥
∇f√
1− c

∥∥∥
L2(Ω\ΩK)

‖ϕ‖V .

Therefore, it follows that

(2.34) |F (ϕ)| 6
(
‖g‖L2(Ω\ΩK) + ‖∆f‖L2(Ω\ΩK) +

∥∥∥
∇f√
1− c

∥∥∥
L2(Ω\ΩK)

)
‖ϕ‖V .

Thus, F is a bounded linear functional. �

The authors are not aware of a proof that shows that the requirement∇f/
√
1− c ∈

L2(Ω \ ΩK) follows from the requirement

ω
−1/2

(10)
=

1√
1− c

∈ L1
loc(Ω).

As a consequence, both assumptions need to be stated separately. We can now

combine our results to prove our main result.

Theorem 2.2. The weak formulation (2.7) of the mixed boundary value prob-

lem (2.6) has a unique solution in the space V . In addition, we know that

(2.35) ‖u‖V 6
1 + κ0

κ′
‖F‖V ∗ ,

where κ′/(1 + κ0) is the constant from (2.31). Here, V
∗ denotes the dual space of V .

P r o o f. From Proposition 2.1 and Proposition 2.3 it follows that our bilinear

form Bc is bounded and coercive. Proposition 2.4 shows that the corresponding

right-hand side F is bounded, too. Therefore, from the Theorem of Lax-Milgram

(see [16]) it follows that there exists a unique u ∈ V such that Bc(u, ϕ) = F (ϕ) holds

for all ϕ ∈ V . In addition, this u fulfils ‖u‖ 6 (1 + κ0)/κ
′‖F‖V ∗ . �

Theorem 2.2 shows that a unique solution exists in the space V , which is a subspace

of W 1,2(Ω \ ΩK ;Sc). We now use the following Proposition from [50], where it is

stated as Proposition 2.1.3.

Proposition 2.5. Let D ⊂ Rn be open, 1 6 p < ∞ and m a non-negative

integer. Suppose ω ∈ Ap(Rn). Then Wm,p
ω (D) ⊂ Wm,1

loc (D) and if D is bounded,

Wm,p
ω (D) ⊂ Wm,1(D).
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It follows from Proposition 2.5 that V ⊂ W 1,1(Ω \ ΩK). We remark that Propo-

sition 2.1.3 in [50] is stated for a single weight. However, it carries over to multiple

weight functions since it relies only on the inclusions Lp(D,ω) ⊂ L1
loc(D).

2.2. What happens if c > 1? Let us shortly discuss the consequences of c

exceeding its upper limit 1. Similar conclusions can also be drawn for the case c 6 0,

however, this latter situation usually does not occur in practice.

There are no restrictions on c when establishing the weak formulation. Applying

c > 1, the main difference would be that 1 − c and c would have different signs. In

order to follow the same strategy as in this paper, one would have to find suitable

weights for the space definition. In [29] the authors discuss the situation when one

of the weights in the weak formulation is negative and they suggest to multiply the

negative weight with another negative constant to render it positive. Afterwards,

a similar approach as in this paper could be possible.

In our situation there exists a second issue that may be harder to resolve. We

require certain restrictions on the growth of the function c, which are of the form

(2.36) |∂zc| 6 κ
√
c(1 − c)

for z being either x or y. The left-hand side of this inequality is always a non-negative

real number. However, the right-hand side becomes complex-valued once c exceeds 1.

These growth restrictions are important to show the coercivity of the bilinear form.

To conclude this section we remark that an alternative approach by means of the

Helmholtz equation already exists for the case c > 1, see [24]. However, this approach

uses different assumptions and yields a well-posedness theory in different spaces.

3. Conclusion

We have shown that a solution to the inpainting problem with the weighted Lapla-

cian exists if the weight is a function that maps into the interval [0, 1]. The well-

posedness of the task can be asserted if certain regularity conditions on the weight

function c are met. These requirements are similar to what is needed to show exis-

tence and uniqueness of a solution in a discrete setting. The results in this manuscript

complete the analysis of the inpainting problem with the Laplacian. While the the-

ory for the discrete setup was complete for any choice of c > 0, the continuous theory

only covered the setup where c > 1. This work complements the setup where c maps

to [0, 1].
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