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Abstract. A ∗-ring R is strongly 2-nil-∗-clean if every element in R is the sum of two
projections and a nilpotent that commute. Fundamental properties of such ∗-rings are
obtained. We prove that a ∗-ring R is strongly 2-nil-∗-clean if and only if for all a ∈ R,
a2 ∈ R is strongly nil-∗-clean, if and only if for any a ∈ R there exists a ∗-tripotent e ∈ R
such that a− e ∈ R is nilpotent and ea = ae, if and only if R is a strongly ∗-clean SN ring,
if and only if R is abelian, J(R) is nil and R/J(R) is ∗-tripotent. Furthermore, we explore
the structure of such rings and prove that a ∗-ring R is strongly 2-nil-∗-clean if and only if
R is abelian and R ∼= R1, R2 or R1 ×R2, where R1/J(R1) is a ∗-Boolean ring and J(R1)
is nil, R2/J(R2) is a ∗-Yaqub ring and J(R2) is nil. The uniqueness of projections of such
rings are thereby investigated.
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1. Introduction

Throughout, all rings are associative with an identity. An element in a ring is

strongly nil-clean if it is the sum of an idempotent and a nilpotent that commute.

A ring R is strongly nil-clean if every element in R is strongly nil-clean. The subject

of strongly nil-clean rings is interested for many mathematicians, e.g., [12] and [15].

A ring R is strongly 2-nil-clean if every element in R is the sum of two idempotents

and a nilpotent that commute. Such rings were extensively studied by the authors

(see [4]). An involution of a ring R is just an anti-automorphism whose square is

the identity map 1R. Thus an involution of a ring R is an operation ∗ : R → R such

that (x + y)∗ = x∗ + y∗, (xy)∗ = y∗x∗ and (x∗)∗ = x for all x, y ∈ R. A ring R

with an involution ∗ is called a ∗-ring. The class of ∗-rings is very large. For
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instance, all C∗-algebras, all Rickart ∗-rings, all Baer ∗-rings, etc. (see [8], [9],

[11], [13]). Moreover, every commutative ring can be seen as a ∗-ring with the

identity involution ∗ (see [1]).

The motivation of this paper is to characterize strongly 2-nil-clean rings with

involutions, and completely determine the structure of such ∗-rings. An element

e ∈ R is a projection if e = e∗ = e2. A ∗-ring is called strongly 2-nil-∗-clean if every

element in R is the sum of two projections and a nilpotent that commute.

An element e ∈ R is a ∗-tripotent if it is a self-adjoint tripotent, i.e., e = e∗ = e3.

A ∗-ring is a ∗-tripotent if every element in R is a ∗-tripotent. An element a ∈ R is

strongly nil-∗-clean if there exists a projection e ∈ R such that a−e ∈ R is a nilpotent

and ae = ea. In Section 2, we investigate elementary properties of strongly 2-nil-

∗-clean rings. We prove that a ∗-ring R is strongly 2-nil-∗-clean if and only if for

all a ∈ R, a2 ∈ R is strongly nil-∗-clean, if and only if for any a ∈ R there exists

a ∗-tripotent e ∈ R such that a − e ∈ R is a nilpotent and ea = ae. A ∗-ring R

is strongly ∗-clean if every element in R is the sum of a projection and a unit that

commute (see [14]). In a ∗-ring, an element u is called a symmetry if it is self-adjoint

(u = u∗) and unitary (u2 = 1) (see [1]). A ∗-ring R is an SN ring if every unit in R

is the sum of a symmetry and a nilpotent that commute. In Section 3, we prove

that a ∗-ring R is strongly 2-nil-∗-clean if and only if R is a strongly ∗-clean SN

ring. In Section 4, we are concerned with homomorphic images of such rings. It is

proved that a ∗-ring R is strongly 2-nil-∗-clean if and only if R is abelian, J(R) is nil

and R/J(R) is ∗-tripotent. In Section 5, the structure of such rings is explored. We

prove that a ∗-ring R is strongly 2-nil-∗-clean if and only if R is abelian and R ∼= R1,

R2 or R1 × R2, where R1/J(R1) is a ∗-Boolean ring and J(R1) is nil, R2/J(R2)

is a ∗-Yaqub ring and J(R2) is nil. Finally, in the last section, we establish the

connections between strong 2-nil-∗-cleanness and the uniqueness of projections. We

prove that a ∗-ring R is strongly 2-nil-∗-clean if and only if R/J(R) is ∗-tripotent,

J(R) is nil and e− f ∈ J(R) implies e = f for all projections e, f ∈ R.

We useN(R) to denote the set of all nilpotent elements inR and J(R) the Jacobson

radical of R. N stands for the set of all natural numbers.

2. Elementary properties

The purpose of this section is to investigate certain elementary properties of

strongly 2-nil-∗-clean rings. We start by a simple fact which will be used frequently.

Lemma 2.1. Let R be a strongly 2-nil-∗-clean ring. Then every idempotent in R

is a projection, and so R is abelian.
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P r o o f. Let e ∈ R be an idempotent. Then we have two projections g, h ∈ R

such that 1 − e = g + h + w, where w ∈ N(R) and e, g, h, w commute. Hence,

e = (1 − g) − h − w. Set k = (1 − g) − h. Then k ∈ R is a projection and

e − k ∈ N(R) and ek = ke. Hence, e = e2 = k2 + w′ for some w′ ∈ N(R). We infer

that e− k2 ∈ N(R) and ek2 = k2e. Since (e− k2)3 = e− k2, we see that e = k2 ∈ R

is a projection. By virtue of [5], Lemma 3.1, R is abelian. �

Theorem 2.2. Let R be a ∗-ring. Then the following conditions are equivalent:

(1) R is strongly 2-nil-∗-clean.

(2) R is strongly ∗-clean and R is strongly 2-nil-clean.

(3) For all a ∈ R, a2 ∈ R is strongly nil-∗-clean.

P r o o f. (1) =⇒ (2) Clearly, R is strongly 2-nil-clean. In view of [4], Proposi-

tion 3.5, R is strongly clean. By virtue of Lemma 2.1, R is strongly ∗-clean.

(2) =⇒ (3) Due to [14], Theorem 2.2, every idempotent in R is a projection. Let

a ∈ R. By using [4], Theorem 2.3, a2 ∈ R is strongly nil-clean, and then it is strongly

nil-∗-clean.

(3) =⇒ (1) In view of [4], Theorem 2.3, R is strongly 2-nil-clean. Let e ∈ R be an

idempotent. Then e2 ∈ R is strongly nil-∗-clean. Hence, we have a projection f ∈ R

such that e − f ∈ N(R) and ef = fe. As (e − f)(1 − (e − f)2) = 0, we get e = f ,

i.e., every idempotent is a projection. This completes the proof. �

Corollary 2.3. Every ∗-subring of a strongly 2-nil-∗-clean ring is strongly 2-nil-

∗-clean.

P r o o f. Let S be a ∗-subring of a ∗-ring R. As R is a strongly 2-nil-∗-clean ring,

it is strongly 2-nil-clean. In view of [4], Corollary 2.4, S is strongly 2-nil-clean. Let

e ∈ S be an idempotent. Then e ∈ R is a projection by Lemma 2.1. Hence, e ∈ S is

a projection. Therefore S is a strongly 2-nil-∗-clean ring. �

Corollary 2.4. Let R be a strongly 2-nil-∗-clean ring. Then eRe is strongly

2-nil-∗-clean for all projections e ∈ R.

P r o o f. Let e be a projection of R, then eRe is a ∗-subring of R. Thus we

obtain the result by Corollary 2.3. �

Let {Ri : ∈ I} be a family of ∗-rings and |I| < ∞. We easily see that the direct

product R =
∏

i∈I

Ri of ∗-rings Ri is strongly 2-nil-∗-clean if and only if each Ri is

strongly 2-nil-∗-clean.

Theorem 2.5. Let R be a ∗-ring. Then the following conditions are equivalent:
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(1) R is strongly 2-nil-∗-clean.

(2) For any a ∈ R, there exists a ∗-tripotent e ∈ R such that a−e ∈ R is a nilpotent

and ea = ae.

P r o o f. (1) =⇒ (2) Let a ∈ R. Then we have two projections f , g and

a w ∈ N(R) that commute such that 1 − a = f + g + w. Set e = (1 − f) − g.

By virtue of Lemma 2.1, R is abelian. Hence, e ∈ R is a ∗-tripotent, ae = ea and

a− e = −w ∈ N(R), as desired.

(2) =⇒ (1) By virtue of [4], Theorem 2.8, R is strongly 2-nil-clean. Let a ∈ R.

Then there exists a ∗-tripotent e ∈ R such that a− e ∈ N(R) and ea = ae. Hence,

a2 − e2 ∈ N(R) and a2e2 = e2a2. Clearly, e2 ∈ R is a projection. Thus, a2 ∈ R is

strongly nill-∗-clean. According to Theorem 2.2, we complete the proof. �

Lemma 2.6. Let R be a ∗-ring, let I ⊆ J(R), and let e ∈ R be an idempotent.

If e− e∗ ∈ I, then there exists a projection f ∈ R such that eR = fR and e− f ∈ I.

P r o o f. Let z = 1+ (e∗ − e)∗(e∗ − e). Then z ∈ U(R) and z∗ = z. Let t = z−1.

Then t∗ = t. We check that ez = e(1−e−e∗+ee∗+e∗e) = (1−e−e∗+ee∗+e∗e)e = ze,

whence et = te and e∗t = te∗. Let f = ee∗t. Then f∗ = f = f2. Hence, f ∈ R is

a projection. Obviously, eR = fR. Furthermore, we verify that e−f = e(ez−ee∗)t =

e(ee∗e − ee∗)t = ee∗(e − e∗)t ∈ I, as asserted. �

Theorem 2.7. Let R be a ∗-ring. Then R is strongly 2-nil-∗-clean if and only if

(1) R is abelian;

(2) a− a∗ ∈ N(R) for all a ∈ R;

(3) R is strongly 2-nil-clean.

P r o o f. =⇒ In light of Lemma 2.1, R is abelian. Let a ∈ R. By virtue of

Theorem 2.5, we have a ∗-tripotent e ∈ R such that a − e ∈ N(R) and ae = ea.

Hence, a− a3, a− a∗ ∈ N(R), as N(R)∗ ⊆ N(R).

⇐= In view of [4], Theorem 3.6, N(R) forms an ideal of R. Hence, N(R) ⊆ J(R).

Let a ∈ R. Then we can find two idempotents e, f ∈ R such that a− e− f ∈ N(R).

As e− e∗, f − f∗ ∈ N(R), it follows by Lemma 2.6 that e− g, f −h ∈ N(R) for some

projections g, h ∈ R. Hence, a− g− h ∈ N(R). As g, h ∈ R are central, we conclude

that R is strongly 2-nil-∗-clean. �

We note that the above conditions are necessary as the following examples show.

Example 2.8. Let R = Z2 ⊕ Z2. Define ∗ : R → R, (a, b)∗ = (b, a). Then R is

abelian and strongly 2-nil-clean, but it is not strongly 2-nil-∗-clean.
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P r o o f. Clearly, R is Boolean, and so it is abelian and strongly 2-nil-clean.

But (1, 0) − (1, 0)∗ = (1, 1) 6∈ N(R). Hence, R is not strongly 2-nil-∗-clean by

Theorem 2.7. �

Example 2.9. Let R = Z3×Z3. Define σ : R → R by σ(x, y) = (y, x). Consider

the ring T2(R, σ) =
{(

a b

0 a

)

: a, b ∈ R
}

with the following operations:

(

a b

0 a

)

+

(

c d

0 c

)

=

(

a+ c b + d

0 a+ c

)

,

(

a b

0 a

)

.

(

c d

0 c

)

=

(

ac ad+ bσ(c)

0 ac

)

.

Define ∗ : T2(R, σ) → T2(R, σ) by
(

a b

0 a

)∗

=
(

a σ(b)

0 a

)

. Then T2(R, σ) is strongly

2-nil-clean and a− a∗ ∈ N(T2(R, σ)), but it is not strongly 2-nil-∗-clean.

P r o o f. Let A =
(

a b

0 a

)

∈ T2(R, σ). Then A−A3 ∈ N(T2(R, σ)). In light of [4],

Theorem 2.3, T2(R, σ) is strongly 2-nil-clean. Additionally, we easily check that

A − A∗ ∈ N(T2(R, σ)). Let E =
(

(0,1) (0,0)

(0,0) (0,1)

)

. We check that E2 = E ∈ T2(R, σ)

is not central, and so T2(R, σ) is not abelian. Therefore the ring T2(R, σ) is not

strongly 2-nil-∗-clean, by Lemma 2.1. �

3. Symmetry and nilpotent decompositions

The aim of this section is to characterize strongly 2-nil-∗-clean rings in terms of the

decompositions of symmetries and nilpotents. Using the techniques already known,

developed in [6], Proposition 2.6, equation (1) and [7], Corollary 2.16, we now derive:

Lemma 3.1. Let R be an SN ring. Then J(R) is nil.

P r o o f. Let x ∈ J(R), then 1+x = u+w, where w ∈ N(R) and u is a symmetry.

So (1−w)+x = u and (1−w)2+x2+2(1−w)x = 1. This implies that x2+2x ∈ N(R).

Similarly, as x2 ∈ J(R), 2x2 + x4 ∈ N(R). Also x(x2 + 2x) = x3 + 2x2 ∈ N(R).

Then x4 − x3 = x4 + 2x2 − (x3 + 2x2) = x3(1 − x) ∈ N(R). As 1 − x ∈ U(R), we

have x3 ∈ N(R) and so x ∈ N(R). This completes the proof. �

Lemma 3.2. Let R be a strongly ∗-clean SN ring. If 2 ∈ N(R), then for any

a ∈ R, a4 − a6 ∈ N(R).

P r o o f. Let a ∈ R. Then a = e + u for some projection e and unit u. Since

R is an SN ring, u = v + w for some tripotent v and nilpotent w, where eu = ue.

As vw = wv, we have ev = ve. Hence a = e + v + w, which implies a + N(R) =

(e + v) + N(R), a4 + N(R) = (e + v)4 + N(R) = (e + v)2(e + v)2 + N(R) =
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(e + 1 + 2ev)(e + 1 + 2ev) + N(R) = (7e + 1 + 8ev) + N(R) = 7e + 1 + N(R),

as 8 = 23 ∈ N(R). By a similar argument we have a6 + N(R) = 15e + 1. Then

a4 − a6 +N(R) = N(R). We obtain the result. �

Lemma 3.3. Let R be a strongly ∗-clean SN ring. If 3 ∈ N(R), then for any

a ∈ R, a− a3 ∈ N(R).

P r o o f. Let a ∈ R, then a = e + u = a + v + w for some projection e and an

involution v and w ∈ N(R), where wv = vw and as ue = eu, ev = ve. It is clear

that a3 + N(R) = e + v + 3e + 3ev + N(R), as ev = ve. Since 3 ∈ N(R), we have

a3 − a = 3e(e+ v) ∈ N(R). �

A ring R is ∗-periodic if R is a periodic ring in which every idempotent is a pro-

jection. We now have at our disposal all the information necessary to prove the

following theorem.

Theorem 3.4. Let R be a ∗-ring. Then the following properties are equivalent:

(1) R is strongly 2-nil-∗-clean.

(2) R is a strongly ∗-clean SN ring.

(3) R is a ∗-periodic SN ring.

P r o o f. (1) =⇒ (3) As R is strongly 2-nil-∗-clean, so it is strongly ∗-clean. In

light of [14], Theorem 2.2, every idempotent in R is a projection. Furthermore, R is

strongly 2-nil-clean. In view of [4], Proposition 3.5, R is periodic. Accordingly, R is

∗-periodic.

Now let u ∈ U(R), u = e + w for some ∗-tripotent e and nilpotent w such that

ew = we. Hence uw = u(u − e) = (u − e)u = wu, since e is a central idempotent.

This implies that u and w commute and so u − w is a unit. This implies that e is

a unit. As e is an idempotent, we see that e = 1 which is an involution. Therefore

R is an SN ring, as desired.

(3) =⇒ (2) As R is ∗-periodic, it is periodic and every idempotent in R is a pro-

jection. In view of [14], Theorem 2.2, R is strongly ∗-clean, as required.

(2) =⇒ (1) In light of [14], Theorem 2.2, R is abelian. Write 3 = e + u for

a projection e and a unit u in R. Since R is an SN ring, we can find an involution

v ∈ R and a nilpotent w ∈ R such that u = v + w. Hence, 3 − v = e + w,

and then (3 − v)2 = e + q for some q ∈ N(R). Thus, 9 − 6v + v2 = 3 − v + r

for some r ∈ N(R). It follows that 7 = 5v + r; hence, 49 = 25v2 + t for some

t ∈ N(R). Thus, 24 ∈ N(R), and so 6 ∈ N(R). Write 2n3n = 0 for some n ∈ N.

Clearly, 2nR ∩ 3nR = {0}. As 2nR+ 3nR = R, by the Chinese Reminder Theorem,

R ∼= R/2nR⊕R/3nR. Since 3 ∈ N(R/3nR), it follows from Lemma 3.3 that for any
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a ∈ R/3nR, a− a3 ∈ N(R/3nR). By using [4], Theorem 2.3, we deduce that R/3nR

is strongly 2-nil-clean, and by Theorem 2.2, it is strongly 2-nil-∗-clean. For any

a ∈ R/2nR, by Lemma 3.2, a4− a6 = a4(1− a2) ∈ N(R/2nR), since 2 ∈ N(R/2nR).

Then (1−a2)4a4(1−a)2a ∈ N(R/2nR), and by using the same argument we conclude

that R/2nR is strongly 2-nil-∗-clean. Therefore R is strongly 2-nil-∗-clean. �

Corollary 3.5. A ∗-ring R is ∗-tripotent if and only if for any a ∈ R there exists

a symmetry u ∈ R such that a = a∗ = aua.

P r o o f. =⇒ Let a ∈ R. Then a = a∗ = a3. Let u = 1 − a2 + a. Then

u = u∗ = u−1, and so u is a symmetry. We directly verify that a = a∗ = aua, as

desired.

⇐= Let u ∈ U(R), there exists a symmetry v ∈ U(R) such that u = u∗ = uvu,

then vu = 1, and so v = u−1. As v2 = 1, we see that u2 = 1. Hence, u is a symmetry

and then R is an SN ring. Now let a ∈ J(R), so a(1−ua) = 0 for some unit u ∈ U(R).

As 1 − ua ∈ U(R), we deduce that a = 0 and so J(R) = 0. It is clear that R is

strongly clean and as for any a ∈ R, a = a∗, hence it is strongly ∗-clean. According

to Theorem 3.4, R is strongly 2-nil-∗-clean. By virtue of [4], Theorem 3.3, R/J(R)

is tripotent, and so R is tripotent. For any a ∈ R, a = a∗, so we conclude that R is

∗-tripotent. �

Corollary 3.6. Let R be a ∗-ring. Then R is strongly 2-nil-∗-clean if and only if

(1) for any a ∈ R, there exists e = e∗ = en (n > 2) such that a − e ∈ N(R) and

ae = ea;

(2) R is an SN ring.

P r o o f. =⇒ Choose n = 3. Then we prove (1). And (2) easily follows from

Theorem 3.4.

⇐= From (1) we deduce that R is periodic. Let f ∈ R be an idempotent. Then

there exists e = e∗ = en (n > 2) such that f − e ∈ N(R) and fe = ef . Hence,

f − en−1 ∈ N(R). Clearly, (f − en−1)3 = f − en−1, and then f = en−1 ∈ R is

a projection. Hence, R is ∗-periodic. The result follows by Theorem 3.4. �
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4. Homomorphic images

In this section, we investigate various homomorphic images of strongly 2-nil-∗-

clean rings. We say that an ideal I of a ∗-ring R is a ∗-ideal provided I∗ ⊆ I. If I is

a ∗-ideal of a ∗-ring, it is easy to check that R/I is also a ∗-ring.

Lemma 4.1. Let I be a nil ∗-ideal of a ring R. Then R is strongly 2-nil-∗-clean

if and only if R is abelian and R/I is strongly 2-nil-∗-clean.

P r o o f. =⇒ This is obvious.

⇐= Let a ∈ R. Then there exist two projections e, f ∈ R/I and a nilpotent

w ∈ R/I such that a = e + f + w. Since I is nil, every idempotent lifts modulo I.

Thus, we may assume that e, f ∈ R are idempotents. Clearly, e−e∗, f−f∗ ∈ I. Since

I ⊆ J(R), by Lemma 2.6 we have two projections g, h ∈ R such that e− g, f−h ∈ I.

Clearly, w ∈ N(R). Thus, a = g + h + w′ for some w′ ∈ N(R). Therefore R is

strongly 2-nil-∗-clean. �

Theorem 4.2. Let R be a ∗-ring. Then the following conditions are equivalent:

(1) R is strongly 2-nil-∗-clean.

(2) R is abelian, J(R) is nil and R/J(R) is ∗-tripotent.

(3) R is abelian, R is ∗-periodic and R/J(R) is ∗-tripotent.

P r o o f. (1) =⇒ (3) In light of Lemma 2.1, R is abelian. By virtue of Theo-

rem 3.4, R is ∗-periodic.

In view of [4], Theorem 3.3, R/J(R) is tripotent. Let a ∈ R. Then a − a∗ ∈

N(R) ⊆ J(R) by Theorem 2.7. Therefore R/J(R) is ∗-tripotent, as desired.

(3) =⇒ (2) This is obvious as the Jacobson radical of every periodic ring is nil.

(2) =⇒ (1) Clearly, R/J(R) is strongly 2-nil-∗-clean by Theorem 2.5. Therefore

we obtain the result by Lemma 4.1. �

A ∗-ringR is 2-∗-Boolean if a2 ∈ R is a projection for all a ∈ R. For instance, every

∗-Boolean ring R, i.e., such that every element in R is a projection, is 2-∗-Boolean.

A ring R is strongly π-∗-regular provided that for any a ∈ R there exist a projection

e ∈ R, a unit u ∈ R and n ∈ N such that an = eu where a, e and u commute with

each other (see [5]). We have the following corollary.

Corollary 4.3. Let R be a ∗-ring. Then the following conditions are equivalent:

(1) R is strongly 2-nil-∗-clean.

(2) R is abelian, J(R) is nil and R/J(R) is 2-∗-Boolean.

(3) R is abelian, strongly π-∗-regular, and R/J(R) is 2-∗-Boolean.
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P r o o f. (1) =⇒ (3) In view of Theorem 4.2, R is abelian, strongly π-∗-regular,

and R/J(R) is ∗-tripotent. We easily see that every ∗-tripotent ring is 2-∗-Boolean,

as required.

(3) =⇒ (2) This is obvious as the Jacobson radical of every strongly π-∗-regular

ring is nil.

(2) =⇒ (1) Let a ∈ R/J(R), then a2 = e for some projection e ∈ R/J(R). This

implies that a2 is strongly nil-∗-clean, then by Theorem 2.2, R/J(R) is strongly

2-nil-∗-clean. This completes the proof by Lemma 4.1. �

5. Structure theorems

A ∗-ring R is a ∗-Yaqub ring if it is isomorphic to the subdirect product of Z3’s

and every element in R is self-adjoint (i.e., a = a∗ for all a ∈ R). Next, we are

concerned with the structure of strongly 2-nil-∗-clean rings. Our starting point is

this lemma.

Lemma 5.1. A ∗-ring R is ∗-tripotent if and only if R is a ∗-Boolean ring,

a ∗-Yaqub ring, or the product of such ∗-rings.

P r o o f. =⇒ Since R is ∗-tripotent, 23 = 2; hence, 6 = 0. Thus, R ∼= R/2R ×

R/3R. Let R1 = R/2R and R2 = R/3R. By Birkhoff’s Theorem, Ri (i = 1, 2) is the

subdirect product of some subdirectly irreducible rings Sij . Here, a ring is subdirectly

irreducible if and only if the intersection of all its non-zero ideals is non-zero. As

a homomorphic image of Ri, each Sji is ∗-tripotent. Thus, Sji is a commutative

ring in which every element is the sum of two projections, by [10], Theorem 1. Since

Sji is subdirectly irreducible, it has no central projections except for 0 and 1. Thus,

Sji = {0, 1,−1}. As 2 ∈ N(R1) and 3 ∈ N(R2), we see that Sj1
∼= Z2 and Sj2

∼= Z3.

Let R1 and R2 be the product of Z2’s and Z3’s, respectively. Therefore R is R1, R2

or R1 ×R2, as desired.

=⇒ Since ∗-Boolean rings and ∗-Yaqub rings are all ∗-tripotent, we easily obtain

the result. �

Theorem 5.2. A ring R is strongly 2-nil-∗-clean if and only if

(1) R is abelian;

(2) J(R) is nil;

(3) R/J(R) is isomorphic to a ∗-Booelan ring, a ∗-Yaqub ring, or the product of

such ∗-rings.

P r o o f. Combining Theorem 4.2 and Lemma 5.1, we complete the proof. �
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Lemma 5.3. A ring R is ∗-Boolean if and only if

(1) 2 ∈ R is nilpotent;

(2) R is ∗-tripotent.

P r o o f. =⇒ This is clear.

⇐= Let a ∈ R. By virtue of Lemma 5.1, R is a ∗-Boolean ring, a ∗-Yaqub ring,

or the product of such ∗-rings. Since 2 ∈ N(R), R is ∗-Boolean. �

Lemma 5.4. A ring R is a ∗-Yaqub ring if and only if

(1) 3 ∈ R is nilpotent;

(2) R is ∗-tripotent.

P r o o f. =⇒ Since 3 ∈ Z3 is nilpotent, we see that 3 ∈ N(R). As Z3 is

∗-tripotent, so is R, as required.

⇐= Let a ∈ R. In view of Lemma 5.1, R is a ∗- Boolean ring, a ∗-Yaqub ring, or

the product of such ∗-rings. As 3 ∈ N(R), R is a ∗-Yaqub ring, as asserted. �

We have accumulated all the information necessary to prove the following theorem.

Theorem 5.5. A ring R is strongly 2-nil-∗-clean if and only if R is abelian and

R ∼= R1, R2 or R1 ×R2, where

(1) R1/J(R1) is a ∗-Boolean ring and J(R1) is nil;

(2) R2/J(R2) is a ∗-Yaqub ring and J(R2) is nil.

P r o o f. =⇒ In view of Lemma 2.1, R is abelian. Since R is strongly 2-nil-

clean, it follows by [4], Theorem 3.6 that 6 ∈ N(R). Write 6n = 0 (n ∈ N).

Then 2nR + 3nR = R; hence, R ∼= R1, R2 or R1 × R2, where R1 = R/2nR and

R2 = R/3nR. As the homomorphic images of R, R1 and R2 are strongly 2-nil-∗-

clean. In light of Theorem 4.2, R1/J(R1) is ∗-tripotent. As 2 ∈ N(R1/J(R1)), it

follows by Lemma 5.3 that R1/J(R1) is ∗-Boolean. Likewise, R2/J(R2) is ∗-tripotent

and 3 ∈ N(R2/J(R2)). By using Lemma 5.4, R2/J(R2) is a ∗-Yaqub ring. In light

of Theorem 4.2, J(R) is nil; whence, J(R1) and J(R2) are both nil, as required.

⇐= By hypothesis, R/J(R) is a ∗-Boolean ring R1/J(R1), a ∗-Yaqub ring

R2/J(R2), or the direct product of such ∗-rings. According to Lemma 5.1, R/J(R)

is ∗-tripotent. Clearly, J(R) ∼= J(R1) × J(R2) is nil. Therefore R is strongly 2-nil-

∗-clean, by virtue of Theorem 4.2. �

A ∗-ring R is a strongly weakly nil-∗-clean (nil-clean) ring if every element in R is

the sum or the difference of a nilpotent and a projection (idempotent) that commute.

As a consequence of Theorem 5.5, we now derive this corollary.
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Corollary 5.6. A ∗-ring R is strongly weakly nil-∗-clean if and only if

(1) R has no homomorphic image Z3 × Z3;

(2) R is strongly 2-nil-∗-clean.

P r o o f. =⇒ Since R is strongly weakly nil-clean, so is every homomorphic image

of R. But Z3 × Z3 is not strongly weakly nil-clean, as (1,−1) cannot be written as

the sum or difference of a nilpotent and an idempotent, and this proves (1). We

easily prove (2).

⇐= Since R is strongly 2-nil-∗-clean, by Theorem 5.5, R ∼= R1, R2 or R1 × R2,

where R1/J(R1) is a ∗-Boolean ring and J(R1) is nil; R2/J(R2) is a ∗-Yaqub ring

and J(R2) is nil. Since R has no homomorphic image Z3 × Z3, we see that neither

does R2/J(R2). This forces that R2/J(R2) ∼= Z3. Therefore R is strongly weakly

nil-∗-clean, as in [12], Theorem 1. �

6. Uniqueness for projections

In this section, we observe that the condition “R is abelian” in Theorem 4.2 could

be replaced by the unique property of projections. An element a in a ∗-ring R is

uniquely ∗-clean provided that there exists a unique projection e such that a− e is

invertible (see [3]). The next result is the goal we will be striving for throughout this

section.

Theorem 6.1. Let R be a ∗-ring. Then the following conditions are equivalent:

(1) R is strongly 2-nil-∗-clean.

(2) R/J(R) is ∗-tripotent, J(R) is nil and e − f ∈ J(R) implies e = f for all

projections e, f ∈ R.

(3) R/J(R) is ∗-tripotent, J(R) is nil and a2 ∈ R is uniquely ∗-clean for all a ∈ R.

P r o o f. (1) =⇒ (3) In view of Theorem 4.2, R/J(R) is ∗-tripotent and J(R)

is nil. Let a ∈ R. Then there exist a ∗-tripotent e ∈ R and a w ∈ N(R) such that

a = e + w with ae = ea by Theorem 2.5. Hence, a2 = e2 + w′ where w′ ∈ N(R).

This implies that a2 = (1 − e2) + ((2e2 − 1) + w′). Clearly, (2e2 − 1) + w′ =

(2e2− 1)(1+ (2e2− 1)w′) ∈ U(R). Thus, a2 ∈ R is ∗-clean. Assume that a2 = f + v,

where f ∈ R is a projection and v ∈ U(R). Then e2 − f ∈ U(R). In view of

Lemma 2.1, R is abelian; hence, it follows from (e2 − f)3 = e2 − f that (e2 − f) ×

(1−(e2−f)2) = 0. Thus, 1−e2+2e2f−f = 0, and so f = (1−2e2)−1(1−e2) = 1−e2.

Therefore a2 ∈ R is uniquely ∗-clean.

(3) =⇒ (2) Let e, f ∈ R be projections with e − f ∈ J(R). By hypothesis, e2 is

uniquely ∗-clean. Obviously, e2 = (1− e) + (2e− 1) = (1− f) + ((2f − 1) + (e− f)).
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We see that both 1− e, 1− f are projections, (2e− 1)2 = 1 and (2f − 1)+ (e− f) =

(2f − 1)(1 + (2f − 1)(e− f)) ∈ U(R). Thus 1− e = 1− f , and so e = f , as needed.

(2) =⇒ (1) Let e ∈ R be an idempotent. Then e− e∗ ∈ J(R).

Set z = 1+(e−e∗)∗(e−e∗). Write t = z−1. It follows from z∗ = z that t∗ = t. Since

e∗z = e∗ee∗ = ze∗, we get e∗t = te∗ and et = te. Set f = e∗et = te∗e. Then f∗ = f ,

f2 = e∗ete∗et = e∗ee∗(tet) = e∗ztet = e∗et = f , fe = f and ef = ee∗et = ezt = e.

Now e = f +(e− f) and e− f = e− e∗et = ee∗et− e∗et = (e− e∗)e∗et ∈ J(R). Here

f = f∗ = f2, where f = e∗e(1 + (e∗ − e)(e− e∗))−1.

Set z′ = 1+(e∗−e)∗(e∗−e). Write t′ = (z′)−1. Since (z′)∗ = z′, we have (t′)∗ = t′.

Also ez′ = ee∗e = z′e. Set f ′ = ee∗t′ = t′ee∗. As in the preceding proof, we see that

f ′ = (f ′)2 = (f ′)∗ and ef ′ = f ′, f ′e = e. In addition,

e− f ′ = f ′e− f ′ = t′ee∗(e − e∗) ∈ J(R),

where f ′ = (1 + (e− e∗)(e∗ − e))−1ee∗.

Thus e−f, e−f ′ ∈ J(R), f and f ′ are projections. Hence, f−f ′ = (e−f ′)−(e−f) ∈

J(R). By hypothesis, f = f ′, and so

e∗e(1 + (e∗ − e)(e − e∗))−1 = (1 + (e − e∗)(e∗ − e))−1ee∗.

This implies that

(1 + (e − e∗)(e∗ − e))e∗e = ee∗(1 + (e∗ − e)(e − e∗)).

Clearly, (e− e∗)(e∗− e)e∗e = −e∗e+ e∗ee∗e and ee∗(e∗− e)(e− e∗) = −ee∗+ ee∗ee∗.

Thus, e∗ee∗e = ee∗ee∗. One easily checks that

(e− e∗)3 − (e − e∗) = −ee∗e+ e∗ee∗;

((e − e∗)3 − (e− e∗))(e + e∗) = (e− e∗)3 − (e − e∗).

Thus (e − e∗)((e − e∗)2 − 1)((e + e∗)− 1) = 0.

As e− f ∈ J(R), we get e∗ − f ∈ J(R). Thus, (e+ e∗)− 2f ∈ J(R). This implies

that (e + e∗) − 1 = (2f − 1) + ((e + e∗) − 2f) ∈ U(R), as (2f − 1)2 = 1. Since

(e− e∗)2 − 1, (e+ e∗)− 1 ∈ U(R), we get e = e∗. Therefore every idempotent in R is

a projection. In light of [14], Theorem 2.1, R is abelian. Accordingly, R is strongly

2-nil-∗-clean, by Theorem 4.2. �

Projections e, f in R are said to be equivalent, written e ∼ f , in case there exists

w ∈ R such that w∗w = e and ww∗ = f (see [2]). Let R be a ∗-ring. An element

a ∈ R is called a partial isometry provided that a = aa∗a. An element u ∈ R is

called a unitary element provided that uu∗ = u∗u = 1.
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Corollary 6.2. Let R be a ∗-ring. Then the following conditions are equivalent:

(1) R is strongly 2-nil-∗-clean.

(2) R/J(R) is ∗-tripotent, J(R) is nil and e ∼ f implies e = f for all projections

e, f ∈ R.

(3) R/J(R) is ∗-tripotent, J(R) is nil and for any partial isometry a ∈ R there exist

a projection e and a unitary u such that a = eu = ue.

P r o o f. (1) =⇒ (3) In view of Theorem 4.2, R/J(R) is ∗-tripotent and J(R) is

nil. Let w ∈ R be a partial isometry. Then w = ww∗w. Hence, w∗ = w∗ww∗, ww∗

and w∗w are projections with ww∗R ∼= w∗wR. By Lemma 2.1, R is abelian; hence

ww∗ = w∗w. Let u = 1−w∗w+w. Then u∗ = 1−w∗w+w∗ and uu∗ = u∗u = 1, i.e.,

u ∈ R is a unitary element. Let e = ww∗. Then e ∈ R is a projection. Furthermore,

w = ww∗(1− ww∗ + w) = eu = ue, as desired.

(3) =⇒ (2) Suppose e ∼ f for projections e, f ∈ R. Write e = w∗w and f = ww∗.

We may assume that w ∈ fRe and w∗ ∈ eRf . Then ww∗w = we = w, i.e., w ∈ R

is a partial isometry. By hypothesis, there exist a projection g and a unitary u such

that w = gu = ug. Accordingly, e = w∗w = (u∗g)(gu) = u∗gu = (u∗u)g = g and

f = ww∗ = (gu)(u∗g) = g(uu∗)g = g, and then e = f , as desired.

(2) =⇒ (1) Let e, f ∈ R be projections such that e− f ∈ J(R). Set u = 1− e− f .

Then eu = −ef = uf . Clearly, u = u∗ = u−1 ∈ U(R). Set w = fu−1e. Then

f = u−1eu = ww∗ and e = ufu−1 = w∗w. We infer that e ∼ f . By hypothesis,

e = f . By virtue of Theorem 6.1, R is strongly 2-nil-∗-clean. �
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