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Abstract. A subgroup H of a finite group G is weakly-supplemented in G if there exists
a proper subgroup K of G such that G = HK. In this paper, some interesting results with
weakly-supplemented minimal subgroups or Sylow subgroups of G are obtained.
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1. Introduction

Only finite groups are considered in this paper. The terminology and notions

employed agree with standard usage, as in Doerk and Hawkes [2]. In addition, the

set of distinct primes dividing the order of the group G will be denoted by π(G).

A subgroup H of G is complemented in G if there exists a subgroup K of G such

that G = HK and H ∩K = 1. In 1937, Hall proved that a finite group is solvable

if and only if every Sylow subgroup of G is complemented (see [4]). Arad and Ward

in [1] proved that a finite group is solvable if and only if every Sylow 2-subgroup and

every Sylow 3-subgroup are complemented. In particular, Hall in [5] proved that

a finite group G is supersolvable with elementary abelian Sylow subgroups if and

only if every subgroup of G is complemented in G. In a recent paper [7], Kong and

Liu studied finite groups for which every minimal subgroup is weakly-supplemented.

A subgroup H of G is weakly-supplemented in G if there exists a proper subgroup K
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of G such that G = HK. One can easily see that being weakly-supplemented is

a generalization of being complemented. Kong and Liu proved that every minimal

subgroup of G is weakly-supplemented in G if and only if G is a supersolvable group

and all Sylow subgroups of G are elementary abelian.

The purpose of this paper is to take the above mentioned studies further. More

precisely, we improve and generalize the result of [4] and [7] as follows.

Theorem 1.1. If every subgroup of a group G of prime odd order is weakly-

supplemented in G, then G is solvable.

Theorem 1.2. Let G be a group. If every Sylow subgroup of G of odd order is

weakly-supplemented in G, then G is solvable.

2. Preliminary results

In this section, we give one result that will be needed later in this paper.

Lemma 2.1 ([7], Lemma 2.2). Let G be a group and N be a normal subgroup

of G.

(1) If H 6 K 6 G and H is weakly-supplemented in G, then H is weakly-

supplemented in K.

(2) If N is contained in H and H is weakly-supplemented in G, then H/N is

weakly-supplemented in G/N .

(3) Let π be a set of primes. Let N be a π′-subgroup and A be a π-subgroup of G.

If A is weakly-supplemented in G, then AN/N is weakly-supplemented in G/N .

3. The proof of the main result

P r o o f of Theorem 1.1. Suppose that the theorem is false and let G be a coun-

terexample of minimal order. Then we prove the theorem following these steps:

Step 1. |π(G)| > 3. Assume that 1 6 |π(G)| 6 2. Then G is solvable by Burnside’s

theorem (see [2], page 21), a contradiction.

Step 2. Every subgroup of G is solvable. Let M be any subgroup of G. Hence,

if M is of prime power order, M is solvable. So, assume that M is of composite

order. Then, by Lemma 2.1. (1), every subgroup of prime odd order ofM is weakly-

supplemented in M . Then M is solvable by our choice of G.

Step 3. For each odd prime p dividing the order of G there exists a non-normal

subgroup L of G of order p. Assume that there exists an odd prime, say p, such that
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each subgroup L of G of order p is normal in G. Then G′ 6 CG(L), where G
′ is the

commutator subgroup of G. Hence, Ω1(G
′ ∩ P ) 6 Z(G′) a Sylow p-subgroup of G

and so G′ is p-nilpotent by [6], page 435, Satz 5.5. This, together with Step 2, imply

that G is solvable, a contradiction.

Step 4. There exist two subgroups H and K of G such that |G : H | = p and

|G : K| = q, where p and q are distinct odd primes. By Step 1, there exist two

distinct odd primes p and q with p < q. By Step 3, there exist two non-normal

subgroups L1 and L2 such that |L1| = p and |L2| = q. By the hypothesis, L1 and L2

are weakly-supplemented in G and since L1 and L2 are non-normal subgroups in G,

we have that L1 and L2 are complemented in G. Then there exist two subgroups H

and K such that G = L1H = L2K, L1 ∩H = 1 = L2 ∩K, that is, |G : H | = p and

|G : K| = q.

Step 5. HG = KG = 1. Assume that HG 6= 1. Clearly, if H E G, then G is

solvable, a contradiction. Thus H is non-normal in G. Since H is solvable by Step 2,

it follows that HG is solvable. Hence, if HG is not contained in K, G = HGK

and so G is solvable, a contradiction. Thus HG 6 K and so HG 6 KG. Clearly

KG 6 H , otherwise G is solvable, and we have a contradiction. So KG 6 HG, and

since HG 6 KG, it follows that HG = KG = 1. Clearly, HG ∩ Li = 1, i = 1, 2

and (H/HG)G = (K/KG)G = (K/HG)G = 1. Now it follows easily that |(G/HG) :

(H/HG)| = |G : H | = p and |(G/HG) : (K/HG)| = |G : K| = q = |(G/KG) :

(K/KG)|. Then G/HG is isomorphic to a subgroup of Sp, where Sp is a symmetric

group of degree p and G/HG = G/KG is isomorphic to a subgroup of Sq. Hence q

divides |Sp| = p! and since p < q, we have a contradiction. Thus HG = 1. Similarly,

KG = 1.

Step 6. Finishing the proof. By step 5, H has no nontrivial normal subgroup

of G and |G : H | = p. Then G is isomorphic to a subgroup of Sp. Similarly,

G is isomorphic to a subgroup of Sq, where p < q. Hence q divides |Sp|, a final

contradiction. The proof of the theorem is complete. �

P r o o f of Theorem 1.2. If G is solvable, then by Hall’s theorem [4], every

Sylow subgroup of G is complement in G, and so every Sylow subgroup of G is

weakly-supplemented in G, in particular, every Sylow subgroup of G of odd order is

weakly-supplemented in G.

Conversely, assume that every Sylow subgroup of G of odd order is weakly-

supplemented in G. We argue that every Sylow subgroup of G of odd order is

weakly-supplemented in G. If not, there exists a Sylow p-subgroup P of G, where

p > 2, such that P is not complement in G. By hypothesis, P is weakly-supplemented

in G. Then PG 6= 1. Consider the group G/PG. Hence, if PG = P , then by the

Schur-Zassenhaus theorem in [2], Theorem 11.3, page 38, P is complement in G,
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a contradiction. Thus 1 6= PG < P . By Lemma 2.1, G/PG satisfies the hypothesis of

the theorem. By induction on the order of G, G/PG is solvable. Hence G is solvable,

and this implies that P is complemented in G, a contradiction. Thus, every Sylow

subgroup of G of odd order is complemented in G.

By Burnside’s Theorem, we may assume that |π(G)| > 3. Thus, there exist

two different odd primes p and q dividing the order of G with p < q. Let P be

a Sylow p-subgroup of G and Q be a Sylow q-subgroup of G. Since Sylow subgroups

of odd order are complemented in G, G possesses two subgroups H and K such

that |G : H | = |P | and |G : K| = |Q|. Hence if G is simple, G ∼= PSL(2, 7) by

Guralnick [3], page 304. Therefore |G : H | = 3, and consequently, G is not simple,

a contradiction. Thus we may assume that G is not simple.

Now, let L be a minimal normal subgroup of G. Then by [2], Lemma 4.20, page 15,

either L is an elementary abelian p-group for some prime p or L is the direct product

of isomorphic non-abelian simple groups. Assume first that L is an elementary

abelian p-group. Then G/L satisfies the hypothesis of the theorem by Lemma 2.1.

So, by induction on the order of G, G/L is solvable, and hence G is solvable as

desired. So, assume that L is the direct product of isomorphic nonabelian simple

groups. Consider PL, where P is any Sylow subgroup of G of odd order. Since P is

complemented in G, it follows that P ∩ L is complemented in L (note that P ∩ L is

a Sylow p-subgroup of L). This means that every Sylow subgroup of L of odd order

is complemented in L. Since complemented subgroups are weakly-supplemented, it

follows that every Sylow subgroup of L of odd order is weakly-supplemented in L.

By induction on the order of G, L is solvable, a contradiction. This completes the

proof of the theorem. �

Based on Theorem 1.1 and Theorem 1.2, the following conjecture arise.

Conjecture. Let G be a finite group such that every noncyclic Sylow subgroup P

of G of odd order has a subgroup such that 1 < |D| 6 |P | and all subgroups H of P

with |H | = |D| are weakly-supplemented in G. Is G solvable?
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