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Abstract. Let k > 5 be an odd integer and η be any given real number. We prove that if
λ1, λ2, λ3, λ4, µ are nonzero real numbers, not all of the same sign, and λ1/λ2 is irrational,
then for any real number σ with 0 < σ < 1/(8ϑ(k)), the inequality

|λ1p
2
1 + λ2p

2
2 + λ3p

2
3 + λ4p

2
4 + µpk5 + η| <

(

max
16j65

pj

)−σ

has infinitely many solutions in prime variables p1, p2, . . . , p5, where ϑ(k) = 3 × 2
(k−5)/2

for k = 5, 7, 9 and ϑ(k) = [(k2 + 2k + 5)/8] for odd integer k with k > 11. This improves
a recent result in W.Ge, T.Wang (2018).

Keywords: Diophantine inequalities; Davenport-Heilbronn method; prime

MSC 2010 : 11D75, 11P55

1. Introduction

In 1937, Vinogradov [23] proved that every sufficiently large odd integer is a sum

of three primes. Later, Hua [11] refined Vinogradov’s result and showed that all

sufficiently large odd integers are sums of two primes and a kth power of a prime,

where k is any given positive integer. In [11], Hua also proved that all sufficiently

large odd integers satisfying some necessary congruence conditions can be represented
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in the form of four squares of primes and a kth power of a prime. It is of some interest

to consider the analogous form for Diophantine inequalities. Some authors obtained

many significant results in this direction, see [1], [2], [6], [8], [9], [13], [14], [15], [16],

[19], [20], [21] for details. In [14], Li and Wang established the following theorem.

Theorem 1.1. Let k > 3 be a fixed integer and η be any given real number.

Suppose that λ1, λ2, λ3, λ4, µ are nonzero real numbers, not all of the same sign,

and λ1/λ2 is irrational. Then the inequality

(1.1) |λ1p
2
1 + λ2p

2
2 + λ3p

2
3 + λ4p

2
4 + µpk5 + η| <

(
max
16j65

pj

)−σ

has infinitely many solutions in prime variables p1, p2, . . . , p5 for 0 < σ < 1/(3k2k).

In [17], we improved the above result and showed that under the same assumptions

as in Theorem 1.1, inequality (1.1) has infinitely many solutions in prime variables

p1, p2, . . . , p5, where 0 < σ < 1/16 for k = 3, 0 < σ < 5/(3k2k) for 4 6 k 6 5, and

0 < σ < 40/(21k2k) for k > 6. The proof is based on the method of Languasco

and Zaccagnini in [12], together with Heath-Brown’s improvement on Hua’s lemma

(see [4], Lemma 5 and [10], Theorem 2). Let

s(k) =
[k + 1

2

]
, σ(k) = min(2s(k)−1, 12s(k)(s(k) + 1)),

where [x] denotes the largest integer not exceeding the real number x. Very recently,

Ge and Wang [6] refined the result in [17]. They proved that under the same as-

sumptions as in Theorem 1.1, inequality (1.1) has infinitely many solutions in prime

variables p1, p2, . . . , p5 for 0 < σ < 1/(8σ(k)) (see [6], Theorem 1.3).

The aim of the present paper is to further enlarge the range 0 < σ < 1/(8σ(k))

for odd integer k with k > 5. The following theorem is proved.

Theorem 1.2. Let k > 5 be an odd integer. Suppose that λ1, λ2, λ3, λ4, µ and η

satisfy the same conditions as in Theorem 1.1. Then for any real number σ with

0 < σ < 1/(8ϑ(k)), inequality (1.1) has infinitely many solutions in prime variables

p1, p2, . . . , p5, where

(1.2) ϑ(k) =

{
3× 2(k−5)/2 if k = 5, 7, 9,

[(k2 + 2k + 5)/8] if k > 11 and 2 ∤ k.

With the help of Corollary 3.2 below, we obtain a wider major arc, this with the

very recent work of Bourgain (see [3], Theorem 10) yields the desired conclusion.
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2. Notation and preliminaries

The proof of Theorem 1.2 is dependent on the Davenport-Heilbronn circle method

(see [22], Chapter 11). For each integer j > 2 set

(2.1) ψ(j) =

{
2j when 2 6 j 6 4,

j(j + 1) when j > 5.

In what follows, we use ε and δ to denote fixed positive constants which are arbitrarily

small. The letter p, with or without subscript, always stands for a prime number. The

letter k, except as specially provided, usually denotes an odd integer not less than 5.

Since λ1/λ2 is irrational, we let q be a large enough denominator of a convergent

to λ1/λ2. Put

X = q2, N (X) =
∑

δX6p2j6X, 16j64, δX6pk
5
6X

|λ1p
2

1
+λ2p

2

2
+λ3p

2

3
+λ4p

2

4
+µpk

5
+η|<τ

1,

τ = X−1/(16ϑ(k))+30ε, Kτ (α) =





( sin(πτα)
πα

)2
when α 6= 0,

τ2 when α = 0,

Sj(α) =
∑

δX6pj6X

(log p)e(αpj),

I(τ, η,X) =

∫

X

4∏

j=1

S2(λjα)Sk(µα)e(αη)Kτ (α) dα,

where e(α) = e2πiα, X denotes any measurable subset of R and ϑ(k) is defined

by (1.2). For the Dirichlet kernel Kτ (α) we have the trivial estimate

(2.2) Kτ (α) ≪ min(τ2, |α|−2).

It follows from Lemma 4 of Davenport and Heilbronn [5] that

(2.3)

∫ ∞

−∞

e(xy)Kτ (x) dx = max(0, τ − |y|).
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Thus,

(2.4) N (X) >
1

τ

∑

δX6p2j6X

16j64

δX6pk
5
6X

max(0, τ − |λ1p
2
1 + λ2p

2
2 + λ3p

2
3 + λ4p

2
4 + µpk5 + η|)

>
1

τ(logX)5

∑

δX6p2j6X

16j64

δX6pk
5
6X

5∏

j=1

log pj

×max(0, τ − |λ1p
2
1 + λ2p

2
2 + λ3p

2
3 + λ4p

2
4 + µpk5 + η|)

=
1

τ(logX)5

∑

δX6p2j6X

16j64

δX6pk
5
6X

5∏

j=1

log pj

×

∫ ∞

−∞

e((λ1p
2
1 + λ2p

2
2 + λ3p

2
3 + λ4p

2
4 + µpk5 + η)α)Kτ (α) dα

=
1

τ(logX)5
I(τ, η,R).

To prove Theorem 1.2, it suffices to establish the estimate I(τ, η,R) ≫ τ2X1+1/k.

For this purpose, we split the real line into three parts

M = {α : |α| 6 ϕ}, m = {α : ϕ < |α| 6 ξ}, t = {α : |α| > ξ},

where ϕ = X−1/(2k)−ε, ξ = τ−2X3ε. Usually, these sets are called the major arc,

the minor arcs and the trivial arcs, respectively. Therefore

(2.5) I(τ, η,R) = I(τ, η,M) + I(τ, η,m) + I(τ, η, t).

It should be noted that the major arc M is wider than that of [6]. In what follows,

we shall show that

|I(τ, η,M)| ≫ τ2X1+1/k, |I(τ, η,m)| ≪ τ2X1+1/k−ε, |I(τ, η, t)| ≪ τ2X1+1/k−ε.
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3. The major arc

Let M = {α : |α| 6 X−1+5/(6k)−ε}, then M ⊂ M. In [17], Section 3, we have

proved that

(3.1) |I(τ, η,M)| ≫ τ2X1+1/k.

The conditions ‘λ1, λ2, λ3, λ4, µ are nonzero real numbers, not all of the same sign’

play an important role in the proof of (3.1), see [17], pages 485–486 for details. It

remains to discuss the estimate for |I(τ, η,M \M)|.

Lemma 3.1 (see [7], Theorem 1). Let j be an integer with j > 2, and N > 2.

Suppose that a and q are integers with

(3.2) |qα− a| 6
1

q
, (a, q) = 1, q > 1.

Then for any ε > 0,

(3.3)
∑

p6N

(log p)e(αpj) ≪ N1+ε
(1
q
+

1

N1/2
+

q

N j

)41−j

.

Corollary 3.2. Suppose that X−1+5/(6k)−ε 6 |α| 6 X−1/(2k)−ε. Then for any

given nonzero real µ and ε > 0 we have

(3.4) |Sk(µα)| ≪ X1/k(1−1/2×41−k)+ε.

The implicit constant in the ≪ notation depends on k, µ, δ.

P r o o f. Notice that

(3.5) |Sk(µα)| 6

∣∣∣∣
∑

p6X1/k

(log p)e(µαpk)

∣∣∣∣+
∣∣∣∣

∑

p6(δX)1/k

(log p)e(µαpk)

∣∣∣∣.

Similarly to [9], Corollary 2, we take µα in place of α in (3.2), and take q = [1/|µα|],

a = ±1 (the sign of a is the same as that for µα), then (3.4) follows from (3.5)

and (3.3). �
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By Corollary 3.2 and the arithmetic-geometric mean inequality, we get

(3.6) |I(τ, η,M \M)|

6

∫

M\M

|S2(λ1α)S2(λ2α)S2(λ3α)S2(λ4α)Sk(µα)|Kτ (α) dα

≪ τ2 max
α∈M\M

|Sk(µα)|
4∑

j=1

∫

M\M

∣∣S2(λjα)
∣∣4 dα

≪ τ2X1/k(1−1/2×41−k)+ε

∫ 1

0

∣∣S2(α)
∣∣4 dα

≪ τ2X1+1/k−ε,

where (2.2) and Hua’s lemma (see [4], page 85) are used. Noting that I(τ, η,M) =

I(τ, η,M) + I(τ, η,M \M), this with (3.1) and (3.6) implies

(3.7) |I(τ, η,M)| ≫ τ2X1+1/k.

4. The minor arcs

Let m̃ = m1 ∪m2, where

mj = {α ∈ m : |S2(λjα)| 6 X7/16+2ε} for j = 1, 2.

To estimate the integral I(τ, η,m), we need several lemmas.

Lemma 4.1. Let j and s be positive integers with s 6 j. Then

(4.1)

∫ 1

0

|Sj(α)|
s(s+1) dα≪ Xs2/j+ε

holds for all ε > 0.

P r o o f. It follows from [3], Theorem 10 that

(4.2)

∫ 1

0

∣∣∣∣
∑

δX6xj6X

e(αxj)

∣∣∣∣
s(s+1)

dα ≪ Xs2/j+ε.

By considering the number of solutions of the underlying Diophantine equation and

using (4.2), we obtain (4.1). �

358



Lemma 4.2. Let j > 2 be an integer. Suppose that λ and µ are nonzero real

constants and k is an odd integer with k > 5. Then for any ε > 0 we have

∫

R

|Sj(λα)|
ψ(j)Kτ (α) dα≪ τXψ(j)/j−1+ε,(4.3)

∫

R

|S2(λα)|
2|Sk(µα)|

2ϑ(k)Kτ (α) dα ≪ τX2ϑ(k)/k+ε,(4.4)

where ψ(j) and ϑ(k) are defined by (2.1) and (1.2), respectively. The implicit con-

stant in the ≪ notation of (4.3) depends on λ, j, and the implicit constant in

the ≪ notation of (4.4) depends on k, λ, µ.

P r o o f. For (4.3), see [18], Lemma 4.5 for details. It remains to prove (4.4). Let

a = (k − 1)/2, b = (k + 1)/2.

We first consider the case of k > 11, 2 ∤ k, recalling that ϑ(k) = [(k2 + 2k + 5)/8]

in this case. When k ≡ 1 (mod 4), we have

ϑ(k) =
k2 + 2k + 5

8
=
a(a+ 1) + b(b+ 1)

4
+

1

2
.

It follows from the Cauchy-Schwarz inequality and Lemma 4.1 that

(4.5)

∫ 1

0

|Sk(α)|
2ϑ(k) dα ≪ X1/k

∫ 1

0

|Sk(α)|
(a(a+1)+b(b+1))/2 dα

≪ X1/k

(∫ 1

0

|Sk(α)|
a(a+1)

)1/2(∫ 1

0

|Sk(α)|
b(b+1)

)1/2

≪ X1/k(Xa2/k+ε)1/2(Xb2/k+ε)1/2

≪ X(k2+5)/(4k)+ε ≪ X2ϑ(k)/k−1/2+ε,

where the trivial upper bound Sk(α) ≪ X1/k is used. When k ≡ 3 (mod 4), we have

ϑ(k) =
(k + 1)2

8
=
a(a+ 1) + b(b+ 1)

4
.

By a similar argument as that in (4.5), we also obtain

(4.6)

∫ 1

0

|Sk(α)|
2ϑ(k) dα≪ X2ϑ(k)/k−1/2+ε.

It follows from (2.3) that

(4.7)

∫

R

|S2(λα)|
2|Sk(µα)|

2ϑ(k)Kτ (α) dα ≪ τΣ,
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where Σ denotes the number of solutions of

|µ(pk1 + . . .+ pkϑ(k) − pkϑ(k)+1 − . . .− pk2ϑ(k)) + λ(p22ϑ(k)+1 − p22ϑ(k)+2)| < τ

with pki ∈ [δX,X ] for 1 6 i 6 2ϑ(k), and p2j ∈ [δX,X ] for 2ϑ(k) + 1 6 j 6

2ϑ(k) + 2. Note that τ → 0 as X → ∞. When p2ϑ(k)+1 6= p2ϑ(k)+2, the values of

p1, p2, . . . , p2ϑ(k) determine the values of p2ϑ(k)+1 and p2ϑ(k)+2 with at most X
ε pos-

sibilities; these solutions contribute ≪ X2ϑ(k)/k+ε to Σ. When p2ϑ(k)+1 = p2ϑ(k)+2,

we get

(4.8) pk1 + . . .+ pkϑ(k) − pkϑ(k)+1 − . . .− pk2ϑ(k) = 0.

By (4.5) and (4.6), it follows that equation(4.8) has O(X2ϑ(k)/k−1/2+ε) solutions in

primes p1, p2, . . . , p2ϑ(k). In this case, these solutions also contribute ≪ X2ϑ(k)/k+ε

to Σ. Thus, we get Σ ≪ X2ϑ(k)/k+ε; this with (4.7) yields (4.4).

In the cases of k = 5, 7, 9, noting that ϑ(k) = 3 × 2(k−5)/2 = 2a−2 + 2b−2, we can

also prove (4.6) using the Cauchy-Schwarz inequality and Hua’s lemma. In a similar

manner as above, we can prove (4.4). This completes the proof of Lemma 4.2. �

From the arithmetic-geometric mean inequality, Hölder’s inequality and Lem-

ma 4.2, we get

I(τ, η,m1) ≪
4∑

j=2

∫

m1

|S2(λ1α)||S2(λjα)|
3|Sk(µα)|Kτ (α) dα

≪
(
sup
α∈m1

|S2(λ1α)|
)1/ϑ(k)(∫

R

|S2(λ1α)|
4Kτ (α) dα

)1/4−1/(2ϑ(k))

×

(∫

R

|S2(λ1α)|
2|Sk(µα)|

2ϑ(k)Kτ (α) dα

)1/(2ϑ(k))

×
4∑

j=2

(∫

R

|S2(λjα)|
4Kτ (α) dα

)3/4

≪ (X7/16+2ε)1/ϑ(k)(τX1+ε)1/4−1/(2ϑ(k))(τX2ϑ(k)/k+ε)1/(2ϑ(k))(τX1+ε)3/4

≪ τX1+1/k−1/(16ϑ(k))+4ε ≪ τ2X1+1/k−ε.

By symmetry, the same bound holds for m2 in place of m1. This implies that

(4.9) I(τ, η, m̃) ≪ τ2X1+1/k−ε.

It therefore remains to discuss the set m∗ = m \ m̃, in which

|S2(λ1α)| > X7/16+2ε, |S2(λ2α)| > X7/16+2ε, X−1/(2k)−ε < |α| 6 τ−2X3ε
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hold simultaneously. By a familiar dyadic dissection argument, we divide m∗ into at

most ≪ log3X disjoint sets E(Z1, Z2, y). For α ∈ E(Z1, Z2, y) we have

Z1 < |S2(λ1α)| 6 2Z1, Z2 < |S2(λ2α)| 6 2Z2, y < |α| 6 2y,

where Z1 = 2k1X7/16+2ε, Z2 = 2k2X7/16+2ε and y = 2k3X−1/(2k)−ε for some non-

negative integers k1, k2, k3.

For simplicity, we take the notation A as a shortcut for E(Z1, Z2, y), and let

m(A ) denote the Lebesgue measure of A .

Lemma 4.3. We have

m(A ) ≪ yX5/2+8ε(Z1Z2)
−4.

P r o o f. See [17], Lemma 6. �

By (2.2), the arithmetic-geometric mean inequality and Hölder’s inequality, we

have

I(τ, η,A ) ≪
4∑

j=3

∫

A

|S2(λ1α)S2(λ2α)||S2(λjα)|
2|Sk(µα)|Kτ (α) dα

≪

(∫

A

|S2(λ1α)S2(λ2α)|
4Kτ (α) dα

)1/4(∫

R

|Sk(µα)|
ψ(k)Kτ (α) dα

)1/ψ(k)

×

(∫

A

Kτ (α) dα

)1/4−1/ψ(k) 4∑

j=3

(∫

R

|S2(λjα)|
4Kτ (α) dα

)1/2

≪ ((Z1Z2)
4m(A )min(τ2, y−2))1/4(τXψ(k)/k−1+ε)1/ψ(k)

× (min(τ2, y−2)m(A ))1/4−1/ψ(k)(τX1+ε)1/2

≪ τ1/2+1/ψ(k)(ymin(τ2, y−2))1/2−1/ψ(k)X7/8+1/k+3ε

≪ τX7/8+1/k+3ε ≪ τ2X1+1/k−2ε,

where Lemmas 4.2–4.3 and the bounds Zj > X7/16+2ε (j = 1, 2) are used. Thus,

(4.10) I(τ, η,m∗) ≪ (log3X)max
A

|I(τ, η,A )| ≪ τ2X1+1/k−ε.

It follows from (4.9) and (4.10) that

(4.11) I(τ, η,m) ≪ τ2X1+1/k−ε.
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5. The trivial arcs

The proof of |I(τ, η, t)| ≪ τ2X1+1/k−ε is almost identical to that of inequality (25)

in [17]. We list it for the sake of completeness.

(5.1)
∣∣I(τ, η, t)| ≪

∫ ∞

ξ

|S2(λ1α)S2(λ2α)S2(λ3α)S2(λ4α)Sk(µα)
∣∣Kτ (α) dα

≪ X1/k
4∑

j=1

∫ ∞

ξ

|S2(λjα)|
4Kτ (α) dα

≪ X1/k
4∑

j=1

∫ ∞

|λj |ξ

|S2(α)|4

α2
dα

≪ X1/k
4∑

j=1

∑

n>|λj |ξ

1

(n− 1)2

∫ n

n−1

|S2(α)|
4 dα

≪
X1/kX1+ε

ξ
≪ τ2X1+1/k−ε.

6. Completion of the proof

By (3.7), (4.11), (5.1) and (2.5), we get I(τ, η,R) ≫ τ2X1+1/k. It follows

from (2.4) that

N (X) ≫ τX1+1/k(logX)−5 ≫ X1+1/k−1/(16ϑ(k))+ε.

Recalling that λ1/λ2 is irrational, q is a large enough denominator of a convergent

to λ1/λ2 and X = q2. When q → ∞, we have X → ∞; this implies N (X) → ∞.

The value of τ and max pj ≍ X1/2 give the desired range of σ on the right-hand side

of (1.1). This completes the proof of Theorem 1.2.

Acknowledgment. The authors are very grateful to the referee for many valuable

suggestions.
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