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1. Introduction

In this paper, all groups are finite. In [4], Seitz determined the groups with exactly

one nonlinear irreducible character. Zhang classified in [5] groups with exactly two

nonlinear irreducible characters. Iranmanesh and Saeidi in [1] studied groups with

exactly one nonlinear non-faithful irreducible character. Furthermore, Saeidi in [3]

classified solvable groups with a unique nonlinear non-faithful irreducible character.

In [2], Li, Chen and Li classify the p-groups that have two nonlinear non-faithful

irreducible characters. In this paper, we move beyond p-groups to consider all groups

with two nonlinear non-faithful irreducible characters. Our goal is modest. In par-

ticular, we classify the groups with exactly two nonlinear non-faithful irreducible

characters whose kernels intersect trivially.

Theorem 1. Let G be a group. Then G has exactly two nonlinear non-faithful

irreducible characters whose kernels intersect trivially if and only if G is a 2-group

with nilpotence class 2 satisfying |G′| = 2, and Z(G) is a Klein-4-group.
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We observe that the groups in the conclusion of Theorem 1 appear in Zhang’s list

in [5]. Thus, the groups satisfying the conclusion of Theorem 1 have exactly two

nonlinear irreducible characters. This gives the following consequence of Theorem 1.

Let G be a group with exactly two nonlinear non-faithful irreducible characters χ1

and χ2 whose kernels intersection is trivial. Then χ1 and χ2 are the only nonlinear

irreducible characters of G.

2. Proof

Seitz proved in [4] that G has exactly one nonlinear irreducible character if and

only if either G is an extraspecial 2-group or G is a Frobenius group with elementary

abelian Frobenius kernel G′ and a cyclic Frobenius complement H that satisfies

|G′| − 1 = |H |. In particular, if G has only one nonlinear irreducible character, then

G is solvable.

P r o o f of Theorem 1. Let χ1 and χ2 be the two nonlinear non-faithful irre-

ducible characters of G. Since kerχ1 ∩ kerχ2 = 1, it follows that G is isomorphic

to a subgroup of G/ kerχ1 × G/ kerχ2. Since the remaining nonlinear irreducible

characters are faithful, it follows that χi is the only nonlinear irreducible character

of G/ kerχi for i = 1, 2. Thus, we may apply Seitz’s result to both of these quotients.

In particular, each of these quotients is solvable, so G is solvable. This implies that

1 < G′ < G, where G′ is the derived subgroup of G.

Let K = kerχ1 kerχ2. Notice from Sietz’s theorem that G
′ kerχi/ kerχi is the

unique minimal normal subgroup of G/ kerχi for each i. Since kerχ1 ∩ kerχ2 = 1,

it follows that K > kerχi for each i. This implies that G′ kerχi 6 K for each i.

We claim that K = G′ kerχi for each i. To prove this claim, suppose it is not true

for some i. Without loss of generality, we may assume that G′ kerχ2 < K. Let

L = kerχ1 ∩ G′ kerχ2. Notice that K/L = kerχ1/L × G′ kerχ2/L. Thus, (G/L)′

is not the unique minimal normal subgroup of G/L, and so G/L does not satisfy

Seitz’s theorem. On the other hand, it is not difficult to see that χ1 must be the

only nonlinear irreducible character of G/L, so we have a contradiction. Therefore

K = G′ kerχ2. A similar proof can be used to show that K = G′ kerχ1.

This implies that

G/K = (G/ kerχ1)/(G/ kerχ1)
′ = (G/ kerχ2)/(G/ kerχ2)

′.

Notice that when G/ kerχ1 is a Frobenius group, G/K is cyclic, and when G/ kerχ2

is an extraspecial 2-group, then G/K is a noncyclic elementary abelian 2-group.

Therefore we have two cases: either both quotients are Frobenius groups or both

quotients are extraspecial 2-groups.
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1. Suppose that both G/ kerχi are Frobenius groups. Notice that |kerχ1| =

|K/ kerχ2| = |G : K| + 1. Similarly, |kerχ2| = |G : K| + 1. It follows that K is an

elementary abelian p-group of order (|G : K|+ 1)2 for some prime p. In particular,

K is a Sylow p-subgroup of G. Let H be a Hall p-complement of G.

We know that H kerχ1
∼= G/ kerχ2 and H kerχ2

∼= G/ kerχ1 are Frobenius

groups. We have [kerχi, H ] = kerχi. This yields K = [kerχ1, H ][kerχ2, H ] 6 G′.

Since G′ 6 K, we deduce that K = G′. Notice that we can identify the elements in

kerχ1 and kerχ2, and that H will preserve this identification. The resulting diagonal

subgroup D will be normalized by H , and so D is normal in G. Since D < K = G′,

we see that G/D is not abelian. Thus, Irr(G/D) will contain a nonlinear irreducible

character that is not faithful and not equal to χ1 or χ2, which is a contradiction.

Therefore, we conclude that this case cannot occur.

2. Thus, both G/ kerχi are extraspecial 2-groups. Since |kerχ1| = |K : kerχ2|

that G is a 2-group. We now apply Theorem 3.1 of [2] to see that G is as stated.

Conversely, suppose G is a 2-group with |G′| = 2 and Z(G) ∼= Z2 × Z2. By

Theorem 3.1 of [2], we see that G has the desired property. �
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