
Czechoslovak Mathematical Journal

Mihai Cipu
Complete solution of the Diophantine equation xy + yx = zz

Czechoslovak Mathematical Journal, Vol. 69 (2019), No. 2, 479–484

Persistent URL: http://dml.cz/dmlcz/147740

Terms of use:
© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147740
http://dml.cz


Czechoslovak Mathematical Journal, 69 (144) (2019), 479–484

COMPLETE SOLUTION OF THE DIOPHANTINE EQUATION

xy + yx = zz

Mihai Cipu, Bucharest

Received August 25, 2017. Published online August 7, 2018.

Abstract. The triples (x, y, z) = (1, zz − 1, z), (x, y, z) = (zz − 1, 1, z), where z ∈ N,
satisfy the equation xy + yx = zz. In this paper it is shown that the same equation has no
integer solution with min{x, y, z} > 1, thus a conjecture put forward by Z. Zhang, J. Luo,
P. Z.Yuan (2013) is confirmed.
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1. Introduction

The title equation is one of the exponential Diophantine equations which were

studied in recent years. It is clear that it has solutions of the type (x, y, z) =

(1, zz − 1, z), (x, y, z) = (zz − 1, 1, z) with z ∈ N. Zhang, Luo, and Yuan proved

in [8] that the equation

(1.1) xy + yx = zz, x, y, z ∈ N, min{x, y, z} > 1,

has only finitely many solutions and all of them satisfy z < 2.8 · 109. The same

authors put forward a more ambitious statement.

Conjecture 1.1 ([8]). Equation (1.1) has no solution.

Additional information on hypothetical solutions is provided by subsequent work.

Thus, Deng and Zhang [2] excluded the possibility that both x and y be odd primes.

More recently Wu showed in [7] that z has to be even. Using this result and bounds

on linear forms in 2-adic logarithms due to Bugeaud [1], Du [3] substantially shrinked

the region where solutions of (1.1) are confined.
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Theorem 1.2 ([3]). All solutions (x, y, z) of (1.1) with z even satisfy

max{x, y, z} < 480000.

The same author has proved another theorem, according to which both x and y

are singular numbers, and Du suggested to verify the above conjecture by combining

this result with older computational results found in [4], [6].

The aim of this note is to confirm Conjecture 1.1.

Theorem 1.3. There are no positive integers satisfying

xy + yx = zz and min{x, y, z} > 1.

Although our proof is computer-dependent, it is based on a different idea than

that suggested by Du. The volume of computations required by our approach is

diminished by an elementary observation recorded as Lemma 2.3 below, which allows

a relatively fast sieving of integers restricted as in Theorem 1.2. In Section 2 we

gather all the knowledge needed in the proof. Section 3 contains the description of

the algorithm employed for searching possible solutions to (1.1).

2. Preliminary results

In the rest of the paper, (x, y, z) is a solution of the title equation with x 6 y

and z even. Then it is known from [8] that the entries x, y, z are pairwise coprime

integers greater than 1. In fact, as shown in [2], [8], one has

(2.1) 3 < x < z < y.

These restrictions can be strengthened in various ways. The next lemma shows

that x and z cannot be very close to each other.

Lemma 2.1.

(i) If z 6 x+ 9, then y 6 2z − x− 2.

(ii) x 6 z − 5.

P r o o f. (i) From (1.1) one gets y < z ln z/ lnx. We claim that for z 6 x + 9 it

also holds

(2.2)
z ln z

lnx
< 2z − x.

Keeping in mind the information on the parities of x, y and z, part (i) follows.
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In order to prove (2.2), define a function f : [5, 480000] → R depending on a pa-

rameter d ∈ [1, 9] by f(t) = (t+ d) ln(t+ d)− (t+ 2d) ln t. From

f ′(t) = ln(t+ d)− ln t−
2d

t
<

d

t
−

2d

t
< 0

one obtains f(t) 6 f(5) = (d + 5) ln(d + 5) − (2d + 5) ln 5 for all t ∈ [5, 480000].

An elementary study of the auxiliary function g : [1, 9] → R defined by formula

g(d) = (d+5) ln(d+5)− (2d+5) ln5 shows that g takes only negative values. Hence,

f(t) < 0 for all t ∈ [5, 480000], so (2.2) holds.

(ii) We establish the second part by reduction to absurd. If x = z−1, then from (i)

one gets y < z+1, in contradiction with (2.1). Suppose now that equation (1.1) has

a solution of the form (x, y, z) = (z − 3, y, z) for some even integer z > 6 and odd

integer y. From (i) one obtains y < z + 3, so

(2.3) (z − 3)z+1 + (z + 1)z−3 = zz.

As gcd(z, z − 3) = 1, one has z coprime to 3. Since z is even, the right-hand side

of (2.3) is congruent to 1 modulo 3 while its left-hand side is a multiple of 3 when

z ≡ 1 (mod 3) and congruent to 2 modulo 3 when z ≡ 2 (mod 3). �

The result just proved can be employed to derive an absolute lower bound for z.

Lemma 2.2. Let (x, y, z) be a solution to (1.1). Then z > 18 if z is divisible

by 3 and z > 30 otherwise.

P r o o f. If z is divisible by 3, then Lemma 2.1 together with (2.1) show, on

the one hand, that z > 12 in any solution to (1.1) and, on the other hand, that

x ∈ {5, 7} when z = 12. For x = 7 and z = 12, Lemma 2.1 yields y 6 15, so y = 13

is the only possibility not eliminated by restrictions in force. However, the equality

713 + 137 = 1212 is impossible modulo 7. Similarly, for x = 5 and z = 12 one arrives

at one of the equalities 513 + 135 = 1212, 517 +175 = 1212, either of which is seen to

be false modulo 5. Instead, one can invoke the result from [2].

Suppose now that z is not divisible by 3. In order to establish that any hypo-

thetical such solution satisfies z > 30, one can proceed similarly to what has been

done to eliminate the possibilities z = 6, z = 12. Now there are more candidates

to examine. As the details are more intricate and no new ideas in comparison to

the case 3 | z are involved, we omit detailed exposition. Alternatively, for each z

in {14, 16, 20, 22, 26, 28} and for each odd x greater than 3 and less than z − 3 one

can list the odd integers y greater than z and smaller than z ln z/ lnx such that

gcd(x, y, z) = 1. It suffices to let a computer verify that equation (1.1) holds for

none of the resulting triples. �
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In order to reduce the volume of explicit computations, we slightly improve on

Du’s bound by noticing that

36.1

8(log 2)4
< 19.5486 and 0.4 + log(2 log 2) < 0.7267.

Using these values instead of 19.554 and 0.7271 appearing in equation (2.9) from [3],

one obtains

(2.4) z < 19.5486(logx)(log y)
(

0.7267 + log
( x

log x
+

y

log y

))2

.

Proceeding as explained in [3], one readily gets

y 6 474421.

Further improvements are given by the next elementary observation, based on

Chinese Remainder Theorem.

Lemma 2.3. If 3 | z, then x+ y ≡ 0 (mod 24), otherwise x+ y ≡ 16 (mod 24).

P r o o f. Since xy is odd, the left-hand side of the equation of interest satisfies

xy + yx ≡ x + y (mod 8). The right-hand side is congruent to 0 modulo 8 because

z is even and greater than 3.

Using again the fact that both x and y are odd, it readily results that xy+yx ≡ x+y

(mod 3). This congruence is then compared to zz (mod 3), which is either 0 or 1,

depending on whether 3 divides z or not. �

3. Proof of Theorem 1.3

Our proof relies on a script implementing in the computer algebra system

PARI/GP [5] the results mentioned in Section 2.

First we give the details of the search for solutions (x, y, z) with 6 | z and z > 18.

Put M = 64, M1 = 68, M2 = 612. We let an integer variable x take a value coprime

with 24 and less than UB := 474500. Another integer variable y takes a value greater

than the current value stored in x yet smaller than UB, and subject to restriction

given by Lemma 2.3. We check whether

xy + yx ≡ 0 (mod M), xy + yx ≡ 0 (mod M1), xy + yx ≡ 0 (mod M2),

in this order holds.
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Any pair (x, y) failing any of these congruences can be safely ignored as it cannot

be prolongated to a solution (x, y, z) to (1.1). The surviving pairs are checked against

the necessary condition gcd(x, y) = 1. If this holds, then we compute the expression

on the right-hand side of (2.4), calling ZZ the resulting value. If the current values

in variables x and ZZ satisfy x < ZZ, there is some hope to find a solution, so

we print/save the pair (x, y). Next we increase y by 24 if the updated value is still

smaller than UB, or increase x by 24 as long as this operation is compatible with

the restrictions in force.

This sieving is rather efficient: all pairs have been examined and rejected by the

final version of our script in about 390 minutes of computing time on a rather old

desktop.

We proceed in a similar way for searching solutions (x, y, z) in which z is coprime

to 3. As Lemma 2.2 shows that in any such solution one has z > 30, the choice of

moduliM = 210,M1 = 220,M2 = 230 is legitimate. There are three surviving pairs:

(x, y) = (24795, 273229) for x ≡ 3 (mod 24),

(x, y) = (10215, 73897) for x ≡ 15 (mod 24),

(x, y) = (24763, 199725) for x ≡ 19 (mod 24).

Elimination of these candidates could be done by choosing either a larger mod-

ulus M2 or a very small one P with the property that xy + yx (mod P ) is

a quadratic non-residue. For instance, the last of the pairs mentioned above satisfies

24763199725 + 19972524763 ≡ 3 (mod 5). Since 3 is quadratic non-residue modulo 5,

equation (1.1) has no solutions of the type (24763, 199725, z). The same modulus

can serve to eliminate the second candidate pair, while (24795, 273229) is rejected

with P = 23, for example.

All five tests implemented in the final version of the script have contributed to

the reported outcome. For instance, for x ≡ 7 (mod 24) and x < 60000, 3 ∤ z, there

were found 366910 pairs (x, y) with xy + yx divisible by 210, out of which 407 pairs

generated an expression divisible by 220, and for a sole pair, the left-hand side of the

title equation is congruent to 0 modulo 230. The surviving pair has coprime entries

which do not pass the test based on (2.4). For x ≡ 19 (mod 24) and x < 60000,

3 ∤ z, there are two pairs satisfying the three congruence tests and the entries of one

of them are not coprime.

We close by noting that the approach employed in this proof can be adapted to

the study of other exponential Diophantine equations. But this remains for future

work.
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