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Abstract. We study lower estimates for integral fuctionals for which the structure of the
integrand is defined by a graph, in particular, by a bipartite graph. Functionals of such
kind appear in statistical mechanics and quantum chemistry in the context of Mayer’s
transformation and Mayer’s cluster integrals. Integral functionals generated by graphs play
an important role in the theory of graph limits. Specific kind of functionals generated by
bipartite graphs are at the center of the famous and much studied Sidorenko’s conjecture,
where a certain lower bound is conjectured to hold for every bipartite graph. In the present
paper we work with functionals more general and lower bounds significantly sharper than
those in Sidorenko’s conjecture. In his 1991 seminal paper, Sidorenko proved such sharper
bounds for several classes of bipartite graphs. To obtain his result he used a certain way
of “gluing” graphs. We prove his inequality for a new class of bipartite graphs by defining
a different type of gluing.

Keywords: integral inequality; bipartite graph; graph homomorphism; Sidorenko’s con-
jecture
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1. Introduction

Let G be a bipartite graph, G = (V1(G), V2(G), E(G)), where V1(G), V2(G) is

the bipartition of the vertex set, V1(G) 6= ∅, V2(G) 6= ∅, and E(G) is the edge set

of G. We denote v1(G) = |V1(G)|, v2(G) = |V2(G)|, e(G) = |E(G)|. We denote

the sets of vertices of G by V1(G) = {u1, u2, . . . , um}, V2(G) = {w1, w2, . . . , wn}. If

{ul, wj} ∈ E(G), we write ulwj ∈ E(G). Further, for any positive integer k we adopt

the common notation [k] = {1, . . . , k}.

We shall work in the Lebesgue measure space ([0, 1], L, µ) on [0, 1] and its powers.

Throughout this paper we understand the product of measure spaces to be the com-

pletion of the tensor product (see [2], [14]). Thus, ([0, 1]p,Lp, µp)⊗([0, 1]q,Lq, µq) =
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([0, 1]p+q,Lp+q, µp+q). Denote by K([0, 1]2), K([0, 1]) the sets of measurable,

bounded, nonnegative, real-valued functions on [0, 1]2 and [0, 1], respectively. A given

bipartite graph G in a natural way gives rise to two integral functionals:

(1.1)

∫

[0,1]m+n

∏

ulwj∈E(G)

h(xl, yj) dµ
m+n

and

(1.2)

∫

[0,1]m+n

∏

ulwj∈E(G)

h(xl, yj)

m∏

l=1

fl(xl)

n∏

j=1

gj(yj) dµ
m+n,

where h ∈ K([0, 1]2), fl, gj ∈ K([0, 1]) for l ∈ [m], j ∈ [n]. Note that we distinguish

between graph vertices ul, wj and the corresponding variables of integration xl, yj ,

l ∈ [m], j ∈ [n].

Throughout this paper we shall call functions f1, . . . , fm, g1, . . . , gn vertex func-

tions and terms f1(x1), . . . , fm(xm), g1(y1), . . . , gn(yn) vertex terms. We shall call

h(xl, yj) edge terms.

Integrals of the form (1.1) and (1.2) appear in combinatorics, among others in the

context of graph limits. If h takes values in [0, 1], that is, h is a so-called graphon,

integrals of the form (1.1) can be interpreted in terms of limiting homomorphism

densities.

Intergrals (1.1) and (1.2) appear in statistical mechanics and quantum chemistry

in the context of Mayer’s theory of cluster expansions (see [1], [7], [10], [13]).

In this paper we study integral inequalities involving (1.1) and (1.2) and the as-

sociated bipartite graphs. In particular, we focus on bipartite graphs satisfying

Sidorenko’s F -condition; that is, graphs G that belong to the class F defined be-

low. The class F was introduced by Sidorenko in [15]. The definition of F as well

as propositions and theorems that follow involve multiple integration with respect

to variables corresponding to the vertices in each of the two parts of a bipartite

graph G = ({u1, . . . , um}, {w1, . . . , wn}, E(G)). In order to make the presentation

clearer, we shall use two copies of ([0, 1], L, µ), denoted by Ω = ([0, 1],L, µx) and

Λ = ([0, 1],L, µy), where Ω is associated with vertex functions and variables corre-

sponding to the part {u1, . . . , um}, Λ is associated with {w1, . . . , wn}. As Ω and Λ

are copies of ([0, 1],L, µ), K(Ω) = K([0, 1]) = K(Λ).

Denote by F the class of bipartite graphs G = ({u1, . . . , um}, {w1, . . . , wn}, E(G))

which satisfy the following conditions (A) and (B):

(A) e(G) > m, e(G) > n.
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(B) For any h ∈ K([0, 1]2) and any functions f, f1, . . . , fm ∈ K(Ω), g, g1, . . . , gn ∈

K(Λ) we have

(1.3)

(∫ ∏

ulwj∈E(G)

h(xl, yj)

m∏

l=1

fl(xl)

n∏

j=1

gj(yj) dµ
m
x dµn

y

)(∫
f(x) dµx

)e(G)−m

×

(∫
g(y) dµy

)e(G)−n

>

(∫
h(x, y)

(
f(x)e(G)−mg(y)e(G)−n

m∏

l=1

fl(x)

n∏

j=1

gj(y)

)1/e(G)

dµx dµy

)e(G)

.

Integrals in (1.3) are over [0, 1]m+n = Ωm⊗Λn, Ω, Λ,Ω⊗Λ = [0, 1]2, respectively.

If G ∈ F , we say G satisfies Sidorenko’s F -condition. We shall focus on the

class F but for convenience, we define two larger classes F1 and F2. The class F1 is

the class of all bipartite graphs G = ({u1, . . . , um}, {w1, . . . , wn}, E(G)) that satisfy

the following condition:

(B1) For every h ∈ K([0, 1]2):

(1.4)

∫

[0,1]m+n

∏

ulwj∈E(G)

h(xl, yj) dµ
m+n >

(∫

[0,1]2
h(x, y) dµ2

)e(G)

.

The class F2 is the class of all bipartite graphs G for which the following

condition holds:

(B2) Inequality (1.4) is satisfied for every symmetric function h ∈ K([0, 1]2).

In [15], Sidorenko conjectured that every bipartite graph G belongs to F1. In

the current literature the term “Sidorenko’s conjecture” is understood to mean that

every bipartite graph G belongs to F2. The conjecture has been proved to hold in

many special cases (see [3], [4], [5], [6], [8], [9], [11], [15], [16], [17]) but it remains

open in general.

The general case notwithstanding, whenever one can prove that a given bipar-

tite graph G belongs to F or to F1 or to F2, one obtains a lower bound for the

corresponding integral functional generated by G.

The relationship between condition (B1) and condition (B2) is obvious. The re-

lationship between condition (B) and condition (B1) seems obvious: if we take all

functions f, f1, . . . fm, g, g1, . . . , gn in (B) to be constantly 1, inequality (1.3) becomes

inequality (1.4). It may appear that condition (B) is stronger than condition (B1)

only because it allows for vertex functions fl, gj . It is not so. It is important to

realize (see Proposition 1.1 below) that for a bipartite graph G satisfying (A), con-

dition (B) of Sidorenko’s F -condition is stronger than conditions (B1) and (B2) not
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only because it allows for vertex functions fl, gj but also because it provides a sharper

lower bound for ∫ ∏

ulwj∈E(G)

h(xl, yj) dµ
m+n

even if vertex functions are absent. In fact, (B) gives a lower bound that is always

strictly greater than the bound

(∫
h(x, y) dµ2

)e(G)

in (B1) and (B2), except for the trivial cases. To prove that, we use Proposition 1.1.

Proposition 1.1. Let G = ({u1, . . . , um}, {w1, . . . , wn}, E(G)) be a bipartite

graph that satisfies (A). Then (B) is equivalent to each of conditions (C1) and (C2):

(C1) For any h ∈ K([0, 1]2) and any functions f1, . . . , fm ∈ K(Ω), g, g1, . . . , gn ∈

K(Λ),

(∫ ∏

ulwj∈E(G)

h(xl, yj)

m∏

l=1

fl(xl)

n∏

j=1

gj(yj) dµ
m
x dµn

y

)(∫
g(y) dµy

)e(G)−n

(1.5)

>

(∫ (∫
h(x, y)

(
g(y)e(G)−n

n∏

j=1

gj(y)

)1/e(G)

dµy

)e(G)/m

×

( m∏

l=1

fl(x)

)1/m

dµx

)m

.

(C2) For any h ∈ K([0, 1]2) and any functions f, f1, . . . , fm ∈ K(Ω), g1, . . . , gn ∈

K(Λ),

(∫ ∏

ulwj∈E(G)

h(xl, yj)
m∏

l=1

fl(xl)
n∏

j=1

gj(yj) dµ
m
x dµn

y

)(∫
f(x) dµx

)e(G)−m

(1.6)

>

(∫ (∫
h(x, y)

(
f(x)e(G)−m

m∏

l=1

fl(x)

)1/e(G)

dµx

)e(G)/n

×

( n∏

j=1

gj(y)

)1/n

dµy

)n

.

We shall prove Proposition 1.1 in Section 5. Here we want to demonstrate that

conditions (C1) and (C2) which hold for any bipartite graph G ∈ F give two lower

bounds for ∫ ∏

ulwj∈E(G)

h(xl, yj) dµ
m+n
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and each of the bounds is essentially sharper than

(∫
h(x, y) dµ2

)e(G)

.

Let G ∈ F , G = ({u1, . . . , um}, {w1, . . . , wn}, E(G)). Let h ∈ K([0, 1]2) be given.

Then G satisfies (C1) and (C2). Choosing f, f1, . . . , fm, g, g1, . . . , gn in (C1) and (C2)

constantly equal to 1 we obtain that G satisfies the following two inequalities:

(1.7)

∫ ∏

ulwj∈E(G)

h(xl, yj) dµ
m+n >

(∫ (∫
h(x, y) dµy

)e(G)/m

dµx

)m

and

(1.8)

∫ ∏

ulwj∈E(G)

h(xl, yj) dµ
m+n >

(∫ (∫
h(x, y) dµx

)e(G)/n

dµy

)n

.

Since e(G) > m, e(G) > n, Jensen’s inequality and (1.7) gives

(1.9)

(∫ (∫
h(x, y) dµy

)e(G)/m

dµx

)m

>

(∫
h(x, y) dµ2

)e(G)

,

and if e(G) > m, equality in the latter inequality holds if and only if the function

ϕ(x) =

∫
h(x, y) dµy

is constant a.e. in [0, 1]. Similarly, if e(G) > n, we have

(∫ (∫
h(x, y) dµx

)e(G)/n

dµy

)n

>

(∫
h(x, y) dµ2

)e(G)

unless

ψ(y) =

∫
h(x, y) dµx

is constant a.e. in [0, 1].

The lower bounds for integral functionals corresponding to bipartite graphs G

in F , F1, or F2 can be used to obtain lower estimates for Mayer’s integrals and

in the variety of combinatorial contexts. In [15], Sidorenko shows how to relate

condition (B) for graphs G ∈ F to Mayer’s integrals. He derives a lower bound for

the chromatic polynomial for G ∈ F and gives a lower bound on the number of

colorings for G ∈ F with a given number of colors.
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Sidorenko’s conjecture, namely, thatG ∈ F2 for every bipartite graphG, has a par-

ticularly attractive connection to homomorphism densities and it has an equivalent

combinatorial formulation. Let G = (V (G), E(G)), H = (V (H), E(H)) be arbitrary

graphs with sets of vertices V (G) and V (H), and edge sets E(G) and E(H), respec-

tively. A mapping ϕ : V (G) → V (H) is a homomorphism if {u, v} ∈ E(G) implies

{ϕ(u), ϕ(v)} ∈ E(H). Let hom(G,H) be the number of homomorphisms from G

to H . Then “homomorphism density” defined as

t(G,H) =
hom(G,H)

v(H)v(G)

represents the probability that a randomly chosen mapping ϕ : V (G) → V (H) is

a homomorphism. Sidorenko’s conjecture is known to be equivalent (see [12]) to the

following statement. Let a bipartite graph G be given. Then for every graph H ,

(1.10) t(G,H) > t(K2, H)e(G),

where K2 is the graph consisting of a single edge.

It is worth mentioning that even if the goal is to prove G ∈ F2 for a given graph G,

auxiliary graphs that belong to F might be crucial. Sidorenko’s proof that G ∈ F ,

or even that G ∈ F2, for a bipartite graph G with one side of cardinality not greater

than 3 would not go through without auxiliary graphs that belong to F and not just

to F2 or F1.

In [15], Sidorenko proved that G ∈ F if G is a tree, a complete bipartite graph, or

an even cycle. He proved that G ∈ F if G satisfies (A) and v1(G) 6 3 or v2(G) 6 3.

He stated but did not present a proof of the same result with 3 replaced by 4; that

is, for a bipartite graph with one of the parts containing not more than 4 vertices.

In his proofs, Sidorenko used a “gluing” technique, a “vertex gluing”, to obtain

new graphs in F by gluing copies of graphs that are known to be in F . In this

paper, we introduce a different gluing scheme, gluing along a matching. We use that

gluing scheme which again allows us to prove that G ∈ F if G can be obtained from

elements of F by gluing along a matching.

The paper is organized as follows. In Section 2, we define gluing along a matching

and state our main theorem, Theorem 2.1. In Section 3, we give examples of graphs

that can be proved to belong to F via gluing along a matching. The proof of

Theorem 2.1 is given in Section 4. Section 5 contains a proof of Proposition 1.1 and

final remarks.
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2. Gluing copies of a bipartite graph along a matching

and the main theorem

We begin by defining gluing along matchings for bipartite graphs. Let m, n, s be

integers such that s > 1, s 6 m, s 6 n. Let G1 = ({u11, . . . , u
1
s, . . . , u

1
m}, {w1

1, . . . ,

w1
s , . . . , w

1
n}, E(G1)) be a bipartite graph such that

(2.1) u1jw
1
j ∈ E(G1) for j ∈ [s], u1lw

1
j 6∈ E(G1) if l, j ∈ [s], l 6= j.

That is, the induced subgraph of G1 on the set of vertices {u11, . . . , u
1
s}∪{w

1
1, . . . , w

1
s}

is a matching with edges {u11w
1
1 , . . . , u

1
sw

1
s}. Let k > 2 be an integer. Consider k

labeled copies of G1:

G1, G2, . . . , Gk,

the graph G1 itself being the first of them, such that for each i = 1, . . . , k:

Gi = ({ui1, . . . , u
i
s, . . . u

i
m}, {wi

1, . . . , w
i
s, . . . , w

i
n}, E(Gi)),

where

uilw
i
j ∈ E(Gi) if and only if u1lw

1
j ∈ E(G1), l ∈ [m], j ∈ [n].

In each copy Gi, i = 1, . . . , k, we identify vertices ui1, . . . , u
i
s with u

1
1, . . . , u

1
s, respec-

tively, and we identify vertices wi
1, . . . , w

i
s with w

1
1 , . . ., w

1
s , respectively. Because of

its special role in this construction, we will call G1 the base graph. For simplicity of

presentation, after identifying “gluing” the vertices, we relabel u11, . . . , u
1
s, w

1
1 , . . . , w

1
s

as u1, . . . , us, w1, . . . , ws. Hence, for i = 1, . . . , k

V1(Gi) = {u1, . . . , us, u
i
s+1, . . . , u

i
m},(2.2)

V2(Gi) = {w1, . . . , ws, w
i
s+1, . . . , w

i
m},

E(Gi) = {upwp : p ∈ [s]} ∪ {upw
i
j : p ∈ [s], j ∈ {s+ 1, . . . , n}, upw

1
j ∈ E(G1)}

∪ {uilwp : p ∈ [s], l ∈ {s+ 1, . . . ,m}, u1lwp ∈ E(G1)}

∪ {uilw
i
j : l ∈ {s+ 1, . . . ,m}, j ∈ {s+ 1, . . . , n}, u1lw

1
j ∈ E(G1)}.

Unless s = m = n, Gi, i ∈ [k], are distinct labeled graphs isomorphic to G1. The

“glued” copies G1, G2, . . . , Gk define a new graph G
′:

G′ = (V1(G
′), V2(G

′), E(G′)),
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where

V1(G
′) = {u1, . . . , us} ∪

k⋃

i=1

{uis+1, . . . , u
i
m},(2.3)

V2(G
′) = {w1, . . . , ws} ∪

k⋃

i=1

{wi
s+1, . . . , w

i
n},

E(G′) =

k⋃

i=1

E(Gi).

We say that G′ is obtained by gluing along a (induced) matching of s edges in k copies

G1, . . . , Gk of G1 and write G
′ = G1 +G2 + . . .+Gk. If the base graph G1 satisfy-

ing (2.1) for a given s is clear from the context, we say simply that G′ is obtained

by gluing k copies G1, . . . , Gk.

The main result of the present paper is the following theorem.

Theorem 2.1. Let k, m, n, s be integers such that k > 2, s > 1, s 6 m, s 6 n.

Let G1 = ({u11, . . . , u
1
s, . . . , u

1
m}, {w1

1, . . . , w
1
s , . . . , w

1
n}, E(G1)) be a bipartite graph

that satisfies conditions (2.1). Let G′ = G1 +G2 + . . .+Gk be the graph obtained

by gluing k copies of G1 as defined above. Assume G1 ∈ F . Then G′ ∈ F .

In his paper [15], Sidorenko defines a different kind of gluing copies of a bipartite

graph G1 ∈ F . He chooses special vertices in the left and the right part of G1 in such

a way that no two special vertices are adjacent. He takes k copies G1, . . . , Gk and

identifies the special vertices in each copy with their counterparts in G1. Sidorenko

proves that if G1 ∈ F , the graph obtained by such gluing k copies is again in F . His

gluing process is very different than ours: he disallows edges where we require them.

In the next section, we give several examples of graphs for which we prove the

Sidorenko F -condition by gluing along a matching.

3. Examples

In this section, we present several examples that illustrate Theorem 2.1. Most of

the graphs we consider below are Cartesian products of an edge K2 and a bipartite

graph. Kim, Lee, Lee [8] proved that the Cartesian product of a tree T and a bipartite

graph H satisfies Sidorenko’s conjecture provided H satisfies Sidorenko’s conjecture.

Our examples show slightly stronger results for the Cartesian products considered.

There has been recent work regarding connections between Cartesian products and

validity of Sidorenko’s conjecture using methods different from ours in [4], [5] and [9].

In Example 3.1, we show that Sidorenko’s F -condition holds for the Cartesian

products of K2 and C2τ , τ > 2. Since the 3-dimensional hypercube Q3 is isomorphic
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to the Cartesian product of K2 and C4, Example 3.1 establishes the validity of

Sidorenko’s F -condition for Q3. In Example 3.2, we show Sidorenko’s F -condition

for the Cartesian product of K2 and the star Sn+1, n > 1. Example 3.3 shows

Theorem 2.1 applied to the case of gluing three edges.

To introduce our first example, let us start with a definition. Let s > 1 be

an integer. We define a bipartite graph Js = (V (Js), E(Js)) as follows: V (Js) =

{(i, j) : i = 0, 1, . . . , s, j = 0, 1} and two vertices (i1, j1) and (i2, j2) are joined by an

edge if j1 = j2 and i2 = i1 + 1, i = 0, . . . , s − 1, or i1 = i2 and j1 6= j2. We can

informally think about Js as s copies of C4 consecutively glued together by edges.

Let us recall the Caley graph of the abelian group Zt × Z2, t > 2 an integer.

Let S = {(±1, 0), (0,±1)} be a symmetric subset of Zt × Z2. The Cayley graph

G = Cay(Zt × Z2, S) of the abelian group Zt × Z2 relative to S has Zt × Z2 as

vertices and two vertices v, u ∈ Zt × Z2 form an edge if and only if v − u ∈ S.

Example 3.1. Let τ > 2 be an integer. We claim the Cayley graph G =

Cay(Z2τ × Z2, S) ∈ F . Note that this Cayley graph is isomorphic to the Cartesian

product of K2 and C2τ .

Let τ > 2. Sidorenko [15] proved that C4 ∈ F . Using Theorem 2.1 for two copies of

C4 glued by a single edge, we conclude J2 ∈ F . Further, again by Theorem 2.1 for two

copies of J2 glued by a single edge incident to vertices of degree 2, we conclude J4 ∈ F .

Inductively, J2ν ∈ F , ν = 1, 2, . . .. Note that C4 is isomorphic to the graph J1.

Next consider two copies of J2τ−1 and denote them by J1
2τ−1 , J2

2τ−1 . We label

vertices of those copies as V (J1
2τ−1) = {(i, j)1 : i = 0, 1, . . . , 2τ−1, j = 0, 1} and

V (J2
2τ−1) = {(i, j)2 : i = 0, 1, . . . , 2τ−1, j = 0, 1}. We glue J1

2τ−1 and J2
2τ−1 by glu-

ing two edges: the edge joining vertices (0, 0)1 and (0, 1)1 with the edge joining

vertices (0, 0)2 and (0, 1)2, and the edge joining vertices (2τ−1, 0)1 and (2τ−1, 1)1

with the edge joining vertices (2τ−1, 0)2 and (2τ−1, 1)2. The resulting graph is

G = Cay(Z2τ × Z2, S). Since J2τ−1 ∈ F , we conclude the Cayley graph G =

Cay(Z2τ × Z2, S) ∈ F .

Since all even cycles belong to F (see [15]), we can repeat similar constructions as

in Example 3.1 for other even cycles in place of C4.

The Cayley graph Cay(Z4 × Z2, S) defined above is isomorphic to Q3. Hence,

Q3 ∈ F . In other words, we proved that Q3 satisfies Sidorenko’s F -condition. The

Sidorenko’s conjecture for Q3 was first proved by Hatami in [6].

Before we state Example 3.2, we define for any positive integer n the star Sn+1

to be the bipartite graph on n+ 1 vertices with one vertex of degree n on one side

of the bipartition of the vertex set of Sn+1 and the remaining n vertices of degree 1

on the other side of the bipartition. The book graph Bn is defined as the Cartesian

product of K2 and the star Sn+1.
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Example 3.2. Let n > 1. We will show that the book graph Bn ∈ F , that is,

Bn satisfies Sidorenko’s F -condition.

To see Bn ∈ F , we need to realize that Bn consists of n copies of C4 glued by

a single edge, the ‘spine’ edge. Note that C4 ∈ F by Sidorenko [15]. We consider

n copies of C4 and choose a single edge in each copy of C4. Gluing those copies of C4

along that single edge, Theorem 2.1 implies that Bn ∈ F .

We can repeat similar gluing as in Example 3.2 for other even cycles. More

precisely, let k > 2. Consider k copies of a fixed even cycle C and glue those copies

along a single ‘spine’ edge. Theorem 2.1 implies that the resulting graph is in F .

Note that the resulting graph is a Cartesian product of K2 with C only if C = C4.

To demonstrate the strength of Theorem 2.1, let us present one additional example

related to the Cartesian product of K2 and a single graph. In that example we will

use gluing along three edges.

Example 3.3. Let H be the bipartite graph obtained by joining two copies of

the cycle C4 at a common vertex. We will show that the Cartesian product of K2

and H belongs to F .

Let us consider two copies of J4 defined above. Consider the three pairs of edges

in these copies of J4 corresponding to the three edges with end vertices (0, 0) and

(0, 1), (2, 0) and (2, 1), (4, 0) and (4, 1). If we glue the two copies of J4 along the

three pairs of edges corresponding to the edges listed above which form an induced

matching, we obtain a graph isomorphic to the Cartesian product of K2 and H . By

Theorem 2.1, the Cartesian product of K2 and H belongs to F .

4. Proof of Theorem 2.1

Take k, m, n, s, Gi, i = 1, . . . , k, G′ as in Theorem 2.1. Assume that the base

graph G1 ∈ F . To simplify notation, we will denote the base graph by G or by G1

whenever convenient:

G = G1 = ({u1, . . . , us, u
1
s+1, . . . , u

1
m}, {w1, . . . , ws, w

1
s+1, . . . , w

1
n}, E(G1)).

To prove Theorem 2.1, we have to show that G′ ∈ F ; that is, G′ satisfies (A) and (B).

To show (A) note that by the definition of G′ and by condition (2.1), we have

v1(G
′) = kv1(G)− s(k − 1), v2(G

′) = kv2(G)− s(k − 1),(4.1)

e(G′) = ke(G)− s(k − 1).

Since G satisfies (A), e(G) > v1(G), e(G) > v2(G) which combined with (4.1) implies

e(G′) > v1(G
′), e(G′) > v2(G

′). Hence, G′ satisfies (A).
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We need to show that G′ satisfies (B). Denote m′ = v1(G
′), n′ = v2(G

′). Take

h ∈ K([0, 1]2) and arbitrary vertex functions corresponding to vertices of G′:

f1, . . . , fs, f
i
s+1, . . . , f

i
m′ ∈ K(Ω), g1, . . . , gs, g

i
s+1, . . . , g

i
n′ ∈ K(Λ), i = 1, . . . , k.

To simplify presentation, we shall prove (B) in two steps.

Step 1: In this step we will make an additional assumption

(4.2) f(x) = 1 a.e. in [0, 1], g(y) = 1 a.e. in [0, 1].

We have to prove inequality (1.3) for G′. The integrand of the left-hand side

of (1.3) will be easier to work with if for i = 1, . . . , k we introduce Pi to be the

product of all edge terms corresponding to edges in Gi, except for h(xl, yl), l ∈ [s],

times the product of all vertex functions corresponding to vertices in Gi except for

f1(x1), . . . , fs(xs), g1(y1), . . ., gs(ys). Hence, for i = 1, . . . , k

Pi =
∏

ui
lw

i
j∈E(Gi)

s+16l6m
s+16j6n

h(xil , y
i
j)

∏

ulw
i
j∈E(Gi)

l∈[s]
s+16j6n

h(xl, y
i
j)

∏

ui
lwj∈E(Gi)
s+16l6m

j∈[s]

h(xil , yj)(4.3)

×
m∏

l=s+1

f i
l (x

i
l)

n∏

j=s+1

gij(y
i
j).

Let P̃i, i = 1, . . . , k, be the same as Pi except that all variables {xis+1, . . . , x
i
m},

{yis+1, . . . , y
i
n} are replaced by their counterparts corresponding to G1: {x

1
s+1, . . . ,

x1m}, {y1s+1, . . . , y
1
n}. Thus, by (4.3) and (2.2)

P̃i =
∏

ui
lw

i
j∈E(Gi)

l,j>s+1

h(x1l , y
1
j )

∏

ulw
i
j∈E(Gi)

l∈[s]
j>s+1

h(xl, y
1
j )

∏

ui
lwj∈E(Gi)
l>s+1
j∈[s]

h(x1l , yj)(4.4)

×
m∏

l=s+1

f i
l (x

1
l )

n∏

j=s+1

gij(y
1
j ).

Denote the geometric mean of P̃1, . . . , P̃k by P :

(4.5) P = (P̃1 . . . P̃k)
1/k.

Next, denote by C(x), D(y) the products of vertex functions corresponding to all ver-

tices on the left-hand side and all vertices on the right-hand side in G′, respectively,

with all variables corresponding to the left-hand and the right-hand side vertices

replaced by x and y, respectively. That is

(4.6) C(x) =

( k∏

i=1

m∏

l=s+1

f i
l (x)

) s∏

p=1

fp(x), D(y) =

( k∏

i=1

n∏

j=s+1

gij(y)

) s∏

p=1

gp(y).
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By (4.3) and (4.6), to prove (B) for G′ when (4.2) holds, it suffices to show

∫ ( s∏

p=1

h(xp, yp)fp(xp)gp(yp)

)
P1P2 . . . Pk dµ

m′

x dµn′

y(4.7)

>

(∫
h(x, y)C(x)1/e(G

′)D(y)1/e(G
′) dµx dµy

)e(G′)

.

Observe that the integrand on the left-hand side depends on m′ + n′ variables

{x1, . . . , xs} ∪
k⋃

i=1

{xis+1, . . . , x
i
m} ∪ {y1, . . . , ys} ∪

k⋃

i=1

{yis+1, . . . , y
i
n}.

Notice next that for a given i, the only factor in the integrand that depends on

xis+1, . . . , x
i
m, y

i
s+1, . . . , y

i
n is Pi. We apply the Fubini theorem to the left-hand side

of (4.7) by integrating first with respect to
( k∏
i=1

m∏
l=s+1

dxil

)( k∏
i=1

n∏
j=s+1

dyij

)
. We obtain

(4.8)

LHS of (4.7) =

∫ s∏

p=1

h(xp, yp)fp(xp)gp(yp)

×
k∏

i=1

(∫
Pi dx

i
s+1 . . . dx

i
m dyis+1 . . . dy

i
n

)
dx1 . . . dxs dy1 . . . dys.

Because of the length of our formulas, we will use the notation “LHS of (4.7)” to

mean “the left-hand side of formula (4.7)”. Denote for i = 1, . . . , k:

Bi(x1, . . . , xs, y1, . . . , ys) =

∫
Pi dx

i
s+1 . . . dx

i
m dyis+1 . . . dy

i
n.

By the Fubini theorem, each Bi is defined a.e. in [0, 1]2s, measurable, integrable

(as all our functions are bounded), nonnegative. By changing the dummy variables

of integration in the definition of Bi to x
1
s+1, . . . , x

1
m, y

1
s+1, . . . , y

1
n we obtain for

i = 1, . . . , k:

(4.9) Bi =

∫
P̃i dx

1
s+1 . . . dx

1
m dy1s+1 . . . dy

1
n

for almost all (x1, . . . , xs, y1, . . . , ys) ∈ [0, 1]2s. By (4.9) and (4.8), we get

(4.10) LHS of (4.7) =

∫ s∏

p=1

h(xp, yp)fp(xp)gp(yp)

k∏

i=1

Bi dx1 . . . dxs dy1 . . . dys.
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We will use the following lemma:

Lemma 4.1. With Bi, P̃i, i = 1, . . . , k, defined as above, we have

k∏

i=1

Bi >

(∫
(P̃1 . . . P̃k)

1/k dx1s+1 . . . dx
1
m dy1s+1 . . . dy

1
n

)k

(4.11)

=

(∫
P dx1s+1 . . . dx

1
m dy1s+1 . . . dy

1
n

)k

for almost all (x1, . . . , xs, y1, . . . ys) ∈ [0, 1]2s.

P r o o f. The equality in (4.11) follows simply from the definition of P . The

inequality in (4.11) is equivalent to

k∏

i=1

B
1/k
i >

∫
(P̃1 . . . P̃k)

1/k dx1s+1 . . . dx
1
m dy1s+1 . . . dy

1
n

a.e. in [0, 1]2s, which in turn is equivalent to

k∏

i=1

(∫
P̃i dx

1
s+1 . . . dx

1
m dy1s+1 . . . dy

1
n

)1/k

(4.12)

>

∫
(P̃1 . . . P̃k)

1/k dx1s+1 . . . dx
1
m dy1s+1 . . . dy

1
n

a.e. in [0, 1]2s.

We prove (4.12) using the generalized Hölder inequality. We can apply the in-

equality to the left-hand side of (4.12) as 1/k + . . .+ 1/k︸ ︷︷ ︸
k times

= 1. We obtain

k∏

i=1

(∫
P̃i dx

1
s+1 . . . d

1
m dy1s+1 . . . dy

1
n

)1/k

=

k∏

i=1

(∫ (
P̃

1/k
i

)k
dx1s+1 . . . dx

1
m dy1s+1 . . . dy

1
n

)1/k

>

∫ k∏

i=1

(P̃i)
1/k dx1s+1 . . . dx

1
m dy1s+1 . . . dy

1
n,

which gives (4.12). Hence, the lemma is proved. �
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The lemma implies that (4.7) holds if the following inequality is satisfied:

∫ s∏

p=1

h(xp, yp)fp(xp)gp(yp)(4.13)

×

(∫
P dx1s+1 . . . dx

1
m dy1s+1 . . . dy

1
n

)k

dx1 . . . dxs dy1 . . . dys

>

(∫
h(x, y)C(x)1/e(G

′)D(y)1/e(G
′) dxdy

)e(G′)

.

If the integral on the right-hand side of (4.13) is equal to 0, (4.13) holds. Assume

the integral is not 0. By (4.1), e(G′) = ke(G)− s(k− 1). Hence, (4.13) is equivalent

to the following inequality:

(4.14)

(∫ s∏

p=1

h(xp, yp)fp(xp)gp(yp)

×

(∫
P dx1s+1 . . . dx

1
m dy1s+1 . . . dy

1
n

)k

dx1 . . . dxs dy1 . . . dys

)1/k

×

((∫
h(x, y)C(x)1/e(G

′)D(y)1/e(G
′) dxdy

)s)(k−1)/k

>

(∫
h(x, y)C(x)1/e(G

′)D(y)1/e(G
′) dxdy

)e(G)

.

Observe that
(∫

h(x, y)C(x)1/e(G
′)D(y)1/e(G

′) dxdy

)s

=

s∏

p=1

∫
h(xp, yp)C(xp)

1/e(G′)D(yp)
1/e(G′) dxp dyp

=

∫ s∏

p=1

h(xp, yp)C(xp)
1/e(G′)D(yp)

1/e(G′) dx1 . . . dxs dy1 . . . dys.

Substituting the latter integral into the left-hand side of (4.14) and applying Hölder’s

inequality with exponents 1/k, (k − 1)/k gives

LHS of (4.14)(4.15)

>

∫ ( s∏

p=1

h(xp, yp)fp(xp)gp(yp)

)1/k ∫
P dx1s+1 . . . dx

1
m dy1s+1 . . . dy

1
n

×

( s∏

p=1

h(xp, yp)C(xp)
1/e(G′)D(yp)

1/e(G′)
)(k−1)/k

dx1 . . . dxs dy1 . . . dys.
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Hence, to prove (4.14) it suffices to show that

(4.16) RHS of (4.15) > RHS of (4.14).

Denote by HG the product of all edge functions corresponding to edges in G. By

definition (4.4), (4.5) of P ,

P

s∏

p=1

h(xp, yp) = HG

k∏

i=1

m∏

l=s+1

f i
l (x

1
l )

1/k
k∏

i=1

n∏

j=s+1

gij(y
1
j )

1/k.

Hence,

(4.17)

RHS of (4.15) =

∫
HG

s∏

p=1

fp(xp)
1/kgp(yp)

1/kC(xp)
(k−1)/ke(G′)D(yp)

(k−1)/ke(G′)

×
k∏

i=1

m∏

l=s+1

f i
l (x

1
l )

1/k
k∏

i=1

n∏

j=s+1

gij(y
1
j )

1/k dµm
x dµn

y .

Set

γ =
k − 1

ke(G′)
.

Equality (4.17) can be rewritten as

RHS of (4.15) =

∫
HG

s∏

p=1

f̃p(xp)

m∏

l=s+1

f̃l(x
1
l )

s∏

p=1

g̃p(yp)

n∏

j=s+1

g̃j(y
1
j ) dµ

m
x dµn

y ,(4.18)

where by (4.17), (4.6), f̃1, . . . , f̃m, g̃1, . . . , g̃n are as follows. For every fixed l∗, j∗ ∈

{1, . . . , s}

(4.19) f̃l∗(xl∗) = fl∗(xl∗)
1/kC(xl∗)

γ = fl∗(xl∗)
1/k

s∏

p=1

fp(xl∗)
γ

k∏

i=1

m∏

l=s+1

f i
l (xl∗)

γ ,

g̃j∗(yj∗) = gj∗(yj∗)
1/kD(yj∗)

γ = gj∗(yj∗)
1/k

s∏

p=1

gp(yj∗)
γ

k∏

i=1

n∏

j=s+1

gij(yj∗)
γ .

For every l∗ ∈ {s+ 1, . . . ,m}, j∗ ∈ {s+ 1, . . . , n}

(4.20) f̃l∗(x
1
l∗) =

k∏

i=1

f i
l∗(x

1
l∗)

1/k, g̃j∗(y
1
j∗) =

k∏

i=1

gij∗(y
1
j∗)

1/k.

585



Since G = G1 ∈ F , G satisfies (B). We obtain

∫
HG

s∏

p=1

f̃p(xp)

m∏

l=s+1

f̃l(x
1
l )

s∏

p=1

g̃p(yp)

n∏

j=s+1

g̃j(y
1
j ) dµ

m
x dµn

y(4.21)

>

(∫
h(x, y)

m∏

l=1

f̃l(x)
1/e(G)

n∏

j=1

g̃j(y)
1/e(G) dµx dµy

)e(G)

.

By (4.21), (4.18), to prove (4.14) it suffices to show that

RHS of (4.21) > RHS of (4.14).

In fact, we have RHS of (4.21) = RHS of (4.14).

To prove this equality, it suffices to show

(4.22)

( m∏

l=1

f̃l(x)

)1/e(G)

= C(x)1/e(G
′),

( n∏

j=1

g̃j(y)

)1/e(G)

= D(y)1/e(G
′),

or equivalently

m∏

l=1

f̃l(x) = C(x)e(G)/e(G′),

n∏

j=1

g̃j(y) = D(y)e(G)/e(G′).

By (4.19), (4.22), (4.6) and simple arithmetic applied to exponents we obtain

m∏

l=1

f̃l(x) = C(x)sγ+(1/k),

n∏

j=1

g̃j(y) = D(y)sγ+(1/k).

To finish the proof of (4.22), it suffices to show that

sγ +
1

k
=

e(G)

e(G′)
,

which follows easily from the definition of γ and (4.1). Hence, (4.14) is proved and

so is (4.7). The proof of Step 1 is complete.

Step 2 : In this step, f and g are arbitrary, f ∈ K(Ω), g ∈ K(Λ). We will use the

same notation as in Step 1. To prove (B) for G′, we have to show that

∫ ( s∏

p=1

h(xp, yp)fp(xp)gp(yp)

)
P1P2 . . . Pk dµ

m′

x dµn′

y(4.23)

×

(∫
f dµx

)e(G′)−m′(∫
g dµy

)e(G′)−n′

>

(∫
h(x, y)f(x)(e(G

′)−m′)/e(G′)g(y)(e(G
′)−n′)/e(G′)

× C(x)1/e(G
′)D(y)1/e(G

′) dµx dµy

)e(G′)

.
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Note that by (4.1)

e(G′)−m′ = k(e(G)−m), e(G′)− n′ = k(e(G)− n),(4.24)

e(G′) = ke(G)− s(k − 1).

Denote

(4.25) α =
k(e(G)−m)

ke(G)− s(k − 1)
, β =

k(e(G) − n)

ke(G)− s(k − 1)
.

If the integral on the right-hand side of (4.23) vanishes, (4.23) is satisfied. Assume

the integral is positive. In that case, by Lemma 4.1, (4.24), (4.25), inequality (4.23)

holds provided the following inequality is satisfied:

(∫ s∏

p=1

h(xp, yp)fp(xp)gp(yp)

(∫
P dx1s+1 . . . dx

1
m dy1s+1 . . . dy

1
n

)k

(4.26)

× dx1 . . . dxs dy1 . . . dys

)(∫
f dµx

)k(e(G)−m)(∫
g dµy

)k(e(G)−n)

>

(∫
h(x, y)f(x)αg(y)βC(x)1/e(G

′)D(y)1/e(G
′) dµx dµy

)ke(G)−s(k−1)

.

Inequality (4.26) is equivalent to

(∫ s∏

p=1

h(xp, yp)f(xp)g(yp)

(∫
P dx1s+1 . . . dx

1
m dy1s+1 . . . dy

1
m

)k

(4.27)

× dx1 . . . dxs dy1 . . . dys

)1/k(∫
f dµx

)e(G)−m(∫
g dµy

)e(G)−n

×

((∫
h(x, y)f(x)αg(y)βC(x)1/e(G

′)D(y)1/e(G
′) dµx dµy

)s)(k−1)/k

>

(∫
h(x, y)f(x)αg(y)βC(x)1/e(G

′)D(y)1/e(G
′) dµx dµy

)e(G)

.

As in Step 1, we notice

(∫
h(x, y)f(x)αg(y)βC(x)1/e(G

′)D(y)1/e(G
′) dµx dµy

)s

(4.28)

=

∫ s∏

p=1

h(xp, yp)f(xp)
αg(yp)

βC(xp)
1/e(G′)D(yp)

1/e(G′)

× dx1 . . . dxs dy1 . . . dys.
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We apply Hölder’s inequality with the exponents (k − 1)/k, 1/k to the first and the

last factor of the left-hand side of (4.27). We obtain that (4.27) holds provided the

following inequality is satisfied:

∫ ( s∏

p=1

h(xp, yp)fp(xp)
1/kgp(yp)

1/kC(xp)
γD(xp)

γ(4.29)

× f(xp)
α(k−1)/kg(yp)

β(k−1)/k

)
P dµm

x dµn
y

×

(∫
f dµx

)e(G)−m(∫
g dµy

)e(G)−n

>

(∫
h(x, y)f(x)αg(y)βC(x)1/e(G

′)D(y)1/e(G
′) dµx dµy

)e(G)

.

Reasoning as in Step 1, we deduce that the left-hand side of (4.29) can be rewritten as

LHS of (4.29) =

∫
HG

s∏

p=1

˜̃fp(xp)
m∏

l=s+1

˜̃f l(x
1
l )

s∏

p=1

˜̃gp(yp)(4.30)

×
n∏

j=s+1

˜̃gj(y1j ) dµm
x dµn

y

(∫
f dµx

)e(G)−m(∫
g dµy

)e(G)−n

,

where

˜̃
f l(xl) = f̃l(xl)f(xl)

α(k−1)/k, ˜̃gj(yj) = g̃j(yj)g(yj)
β(k−1)/k, l, j ∈ [s],(4.31)

˜̃
f l(x

1
l ) = f̃l(x

1
l ), l = s+ 1, . . . ,m,

˜̃gj(yj) = g̃j(y
1
j ), j = s+ 1, . . . , n.

Since G satisfies (B), we have by (4.30)

LHS of (4.29) >

(∫
h(x, y)f(x)(e(G)−m)/e(G)g(y)(e(G)−n)/e(G)(4.32)

×
m∏

l=1

˜̃f l(x)
1/e(G)

n∏

j=1

˜̃gj(y)1/e(G) dµx dµy

)e(G)

.

To prove (4.29) it suffices to show that

(4.33)

RHS of (4.32) =

(∫
h(x, y)f(x)αg(y)βC(x)1/e(G

′)D(y)1/e(G
′) dµx dµy

)e(G)

.
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By (4.31) and (4.22), we have

m∏

l=1

˜̃
f l(x)

1/e(G) =

m∏

l=1

f̃l(x)
1/e(G)

s∏

l=1

f(x)α(k−1)/ke(G) = C(x)1/e(G
′)f(x)sα(k−1)/ke(G) ,

n∏

j=1

˜̃gj(y)1/e(G) =

n∏

j=1

g̃j(y)
1/e(G)

s∏

j=1

g(y)β(k−1)/ke(G) = D(y)1/e(G
′)g(y)sβ(k−1)/ke(G).

It remains to show that

e(G)−m

e(G)
+
sα(k − 1)

ke(G)
= α,

e(G)− n

e(G)
+
sβ(k − 1)

ke(G)
= β,

which follows easily from (4.25). Therefore (4.29) holds, which implies that G′ satis-

fies (B). Hence G′ ∈ F . The proof of Theorem 2.1 is complete.

5. Final remarks

Theorem 2.1 states that the way of “gluing” that we defined in Section 2 preserves

Sidorenko’s F -condition. It is natural to ask if our way of gluing preserves the

Fi-condition; that is, the membership in the class Fi for i = 1, 2.

Theorem 5.1. Let i ∈ {1, 2} be fixed. Let k, m, n, s be integers such that k > 2,

s > 1, s 6 m, s 6 n. Let G1 = ({u11, . . . , u
1
s, . . . , u

1
m}, w1

1 , . . . , w
1
s , . . . , w

1
n}, E(G1))

be a bipartite graph that satisfies conditions (2.1). Let G′ = G1 + G2 + . . . + Gk

be the graph obtained by gluing k copies of G1 as defined in Section 2. Assume

G1 ∈ Fi. Then G
′ ∈ Fi.

P r o o f. Let h ∈ K([0, 1]2) be fixed. As before we denote for simplicity G = G1.

Denote by HG, HG′ the products of all edge functions corresponding to h and the

edges in G,G′, respectively. Assume that G ∈ F1. (The proof for G ∈ F2 is the

same.) That is, assume

(5.1)

∫
HG dµm

x dµn
y >

(∫
h(x, y) dµx dµy

)e(G)

.

We need to prove that

(5.2)

∫
HG′ dµm′

x dµn′

y >

(∫
h(x, y) dµxdµy

)e(G′)

.

Without any loss of generality, we may assume that G has no isolated vertices.

Indeed, HG, HG′ depend only on the edges of G and G′ and are blind to isolated

vertices.
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Hence, assume G has no isolated vertices and therefore G satisfies (A). Now we

can in essence repeat the proof of Theorem 2.1, Step 1, in the case when all functions

f, f1, . . . , fm′ , g, g1, . . . , gn′ are all equal constantly to 1. The only place in Theo-

rem 2.1, Step 1, where we need that G satisfies Sidorenko’s F -condition is (4.21). In

our case, though, (4.21) reduces to our weaker assumption (5.1) as by (4.19), (4.20),

f̃1, . . . , f̃m, g̃1, . . . , g̃n are all constantly equal to 1. Hence, we obtain (4.7) which in

our case coincides with (5.2). The proof of Theorem 5.1 is complete. �

A brief sketch of the proof of Proposition 1.1 is in Sidorenko [15]. For completeness

of the presentation, we give a more detailed proof below.

P r o o f of Proposition 1.1. Let G = ({u1, . . . , um}, {w1, . . . , wn}, E(G)) be a bi-

partite graph which satisfies (A). We shall prove that (B) is equivalent to (C1). The

case of (B) equivalent to (C2) is symmetric.

Assume G satisfies (B). For any h ∈ K([0, 1]2), f1, . . . , fm ∈ K(Ω), g, g1, . . . , gn ∈

K(Λ) choose f as

(5.3) f(x) =

(∫
h(x, y)

(
g(y)e(G)−n

n∏

j=1

gj(y)

)1/e(G)

dµy

)e(G)/m( m∏

l=1

fl(x)

)1/m

.

We easily calculate that for such f we have

(5.4) RHS of (1.3) =

(∫
f(x) dµx

)e(G)

, RHS of (1.5) =

(∫
f(x) dµx

)m

.

We assume
∫
f(x) dµx > 0. Otherwise (1.5) holds. Divide both sides of (1.3) by

(∫
f(x) dµx

)e(G)−m
. We obtain (1.5). Since h, f1, . . . , fm, g, g1, . . . , gn were arbi-

trary, (C1) holds. Hence (B) implies (C1).

To prove the converse implication, assume G satisfies (C1). Choose any h ∈

K([0, 1]2), f, f1, . . . , fm ∈ K(Ω), g, g1, . . . , gn ∈ K(Λ). To prove (B) it suffices to

show that

(∫ (∫
h(x, y)

(
g(y)e(G)−n

n∏

j=1

gj(y)

)1/e(G)

dµy

)e(G)/m

(5.5)

×

( m∏

l=1

fl(x)

)1/m

dµx

)m(∫
f(x) dµx

)e(G)−m

>

(∫
h(x, y)

(
f(x)e(G)−mg(y)e(G)−n

m∏

l=1

fl(x)

n∏

j=1

gj(y)

)1/e(G)

dµx dµy

)e(G)

.
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Inequality (5.5) is equivalent to

(∫ (∫
h(x, y)

(
g(y)e(G)−n

n∏

j=1

gj(y)

m∏

l=1

fl(x)

)1/e(G)

dµy

)e(G)/m

dµx

)m/e(G)

(5.6)

×

(∫
f(x) dµx

)(e(G)−m)/e(G)

>

(∫
h(x, y)

(
f(x)e(G)−mg(y)e(G)−n

m∏

l=1

fl(x)

n∏

j=1

gj(y)

)1/e(G)

dµx dµy

)
.

Note that condition (A) gives e(G) > m, e(G) > n. Hence, we can assume e(G) > 0

as well as e(G)−m > 0. If e(G)−m = 0, (5.6) holds trivially. Assume e(G)−m > 0

and apply Hölder’s inequality to the left-hand side of (5.6) with exponents m/e(G),

(e(G)−m)/e(G). We obtain

LHS of (5.6) >

∫ (∫
h(x, y)

(
g(y)e(G)−n

n∏

j=1

gj(y)

m∏

l=1

fl(x)

)1/e(G)

dµy

)

× f(x)(e(G)−m)/e(G) dµx = RHS of (5.6).

Hence, (5.6) and (5.5) hold and (B) is proved. The proof of Proposition 1.1 is

complete. �

The last remark concerns measure spaces Ω and Λ and their products. We assumed

for simplicity Ω = Λ = ([0, 1],L, µ) and used ⊗ as the product. All proofs in this

paper adapt with minor changes to the case where Ω, Λ are arbitrary probability

spaces and the product ⊗ is replaced by the tensor product ⊗. Of course, when we

talk about the class F2 where h is symmetric, we have to assume Ω = Λ.
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