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Abstract. We study relationships between separability with other properties in semi-
stratifiable spaces. Especially, we prove the following statements:
(1) If X is a semi-stratifiable space, then X is separable if and only if X is DC(ω1);
(2) If X is a star countable extent semi-stratifiable space and has a dense metrizable

subspace, then X is separable;
(3) Let X be a ω-monolithic star countable extent semi-stratifiable space. If t(X) = ω

and d(X) 6 ω1, then X is hereditarily separable.

Finally, we prove that for any T1-space X, |X| 6 L(X)∆(X), which gives a partial
answer to a question of Basile, Bella, and Ridderbos (2011). As a corollary, we show that
|X| 6 e(X)ω for any semi-stratifiable space X.

Keywords: semi-stratifiable space; separable space; dense subset; feebly compact space;
ω-monolithic space; propertyDC(ω1); star countable extent space; cardinal equality; count-
able chain condition; perfect space; G∗
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1. Introduction

All topological spaces in this paper are assumed to be T1-spaces unless stated

otherwise. The notation of semi-stratifiable spaces was first introduced in [5] by

Creede in 1970.

Definition 1.1. A space X is called semi-stratifiable (see [5]) if there is a func-

tion G which assigns to each n ∈ ω and a closed set H ⊂ X , an open set G(n,H)

containing H such that

(1) H =
⋂

n

G(n,H);

(2) H ⊂ K ⇒ G(n,H) ⊂ G(n,K).
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It is well known that the class of semi-stratifiable spaces can be characterized by

a g-function.

Lemma 1.2 ([5]). A topological space (X, τ) is semi-stratifiable if there exists a

function g : ω ×X → τ such that:

(1) {x} =
⋂

n∈ω

g(n, x) for any x ∈ X ;

(2) if x ∈ g(n, xn) for each n, then xn → x.

This class of spaces lies between the class of semi-metric spaces and the class of

spaces in which closed sets are Gδ (i.e. perfect spaces). It turns out that a T1-space

is semi-metric if and only if it is first countable and semi-stratifiable. A completely

regular space is a Moore space if and only if it is a semi-stratifiable p-space.

In this paper, we study the relationships between separability with other properties

in semi-stratifiable spaces. In Section 3, we prove the following statements:

(1) If X is a semi-stratifiable space, then X is separable if and only if X is DC(ω1)

(see Theorem 3.6);

(2) If X is a star countable extent semi-stratifiable space and has a dense metriz-

able subspace, then X is separable (see Theorem 3.12);

(3) Let X be a ω-monolithic star countable extent semi-stratifiable space. If

t(X) = ω and d(X) 6 ω1, then X is hereditarily separable (see Theorem 3.17).

In Section 4, we prove that for any T1-spaceX , |X | 6 L(X)∆(X) (see Theorem 4.2),

which gives a partial answer to a question of [4]. As a corollary, we show that

|X | 6 e(X)ω for any semi-stratifiable space X (see Corollary 4.5).

2. Notation and terminology

The cardinality of a set A is denoted by |A|. Let ω denote the first infinite cardinal

and ω1 the first uncountable cardinal. We also write 2ω for the cardinality of the

continuum. As usual, a cardinal is the initial ordinal and an ordinal is the set of

smaller ordinals.

If X is a space and U is a family of subsets of X , then the star of a subset A ⊂ X

with respect to U is the set

St(A,U) =
⋃

{U ∈ U : U ∩ A 6= ∅}.

Definition 2.1 ([14]). Let P be a topological property. A space X is said to be

star P if for any open cover U of X there is a subset A ⊂ X with property P such

that St(A,U) = X . The set A will be called a star kernel of the cover U .

114



Therefore, a space X is said to be star countable extent (SCE) (see [12]) if for

any open cover U of X there is a subspace A ⊂ X of countable extent such that

St(A,U) = X . We have the well-known implications:

separable⇒ star countable⇒ star Lindelöf⇒ SCE.

In general, none of the implications can be reversed (see [2], [12]).

Definition 2.2 ([10]). We say that a space X has property DC(ω1) if it has a

dense subspace every uncountable subset of which has a limit point in X .

Definition 2.3. The density of a space X is defined as the smallest cardinal

number of the form |A|, where A is a dense subset of X ; this cardinal number is

denoted by d(X).

Definition 2.4. We say that X has countable tightness if for any x ∈ Ā for any

A of X there exists a countable subset A0 of A such that x ∈ A0; it is denoted by

t(X) = ω.

Definition 2.5 ([9]). The extent of a topological space X , denoted by e(X), is

the supremum of the cardinalities of closed discrete subsets of X .

Definition 2.6. The Lindelöf number is defined in the following way: L(X) =

min{τ : for any open cover γ there exists a subcover γ′ such that |γ′| 6 τ}.

Definition 2.7 ([18]). We say that a space X has a Gδ-diagonal if there is a

countable family {Un : n ∈ ω} of open neighbourhoods of the diagonal ∆X in the

square X ×X such that ∆X =
⋂

{Un : n ∈ ω}.

Definition 2.8 ([3]). A space X has a strong rank 1-diagonal or G∗

δ-diagonal if

there exists a sequence {Un : n ∈ ω} of open covers of X such that for each x ∈ X ,

{x} =
⋂

{St(x,Un) : n ∈ ω}.

Definition 2.9. A topological space X is called perfect if every closed subset

of X is a Gδ-set.

Definition 2.10. A space X is subparacompact if every open cover of X has a

σ-discrete closed refinement.

Definition 2.11 ([15]). A space X has countable chain condition (abbreviated

as CCC) if any disjoint family of open sets in X is countable, that is, the Souslin

number (or cellularity) of X is at most ω.

All notations and terminology not explained in the paper are given in [6].
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3. The separability of semi-stratifiable spaces

With the aid of the following lemma, we can deduce Proposition 3.2.

Lemma 3.1 ([8]). Every semi-stratifiable space is perfect, subparacompact and

has a Gδ-diagonal. Moreover, if the space is regular, then it has a G∗

δ-diagonal.

Proposition 3.2. Every Tychonoff pseudocompact semi-stratifiable space is sep-

arable.

P r o o f. Since every regular semi-stratifiable space has a G∗

δ-diagonal (i.e. strong

rank 1-diagonal) by Lemma 3.1, the conclusion is an easy corollary of [3], Theo-

rem 3.12. �

Theorem 3.3 ([5]). In a semi-stratifiable space X , the following statements are

equivalent:

(1) X is Lindelöf;

(2) X is hereditarily separable;

(3) X has countable extent.

Lemma 3.4 ([5]). A semi-stratifiable space is hereditarily semi-stratifiable.

Lemma 3.5. If X is a perfect space and D is an uncountable discrete subset ofX ,

then there exists an uncountable subset E ⊂ D which is closed and discrete in X .

P r o o f. Let U = {U(d) : d ∈ D} be an uncountable family of open subsets

of X such that U(d) ∩D = {d} for each d ∈ D. Since X is perfect, there are closed

subsets Fn for n ∈ ω such that

⋃

d∈D

Ud =
⋃

n∈ω

Fn.

It is evident that there is an uncountable subset E = D ∩Fn0
⊂ X for some n0 ∈ ω.

Now we show that E is closed and discrete in X . Suppose it is not, then there is an

accumulation point ξ for E. Since Fn0
is closed, we have

ξ ∈ Fn0
⊂

⋃

n∈ω

Fn =
⋃

d∈D

Ud.

Therefore there exists d′ ∈ D such that ξ ∈ U(d′), and hence U(d′) shall contain

infinite points of E, which contradicts with the choice of U . This completes the

proof. �
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Theorem 3.6. If X is a semi-stratifiable space, then X is separable if and only

if X is DC(ω1).

P r o o f. The necessity yields immediately from the definition of DC(ω1). Now

we prove the sufficiency. Assume that Y is the dense subspace of X which witnesses

that X is DC(ω1). We claim that Y is Lindelöf. Suppose it is not. Let U be an open

cover of Y and suppose that U has no countable subcover. Since Y is semi-stratifiable

(and hence subparacompact) by Lemma 3.4, U has a closed refinement F =
∞
⋃

n=1
Fn,

where each Fn is discrete in Y . Since U has no countable subcover, there is an n such

that Fn is uncountable. Let D be a subset of Y consisting of exactly one point of

each nonempty element of Fn. It is evident that D is uncountable and discrete in Y .

Since X is perfect (Lemma 3.1), there exists an uncountable subset E ⊂ D ⊂ Y

which is closed and discrete in X by Lemma 3.5, which contradicts the hypothesis

on Y . It follows from Theorem 3.3 that Y is hereditarily separable, so X is separable

since Y is dense in X . �

Corollary 3.7. Every DC(ω1) Moore space is separable.

P r o o f. Immediately follows from the fact that a Moore space is always semi-

stratifiable (see [8], page 484). �

Corollary 3.8. If a semi-stratifiable space X has a dense subspace of countable

extent, then X is separable.

P r o o f. Let Y be a dense subspace ofX of countable extent, then every uncount-

able subset of Y has an accumulation point in Y . It remains to apply Theorem 3.6.

(Note that Corollary 3.8 also follows directly from Theorem 3.3 and Lemma 3.4.) �

Corollary 3.9. Each semi-stratifiable space with a dense Lindelöf subspace is

separable.

Corollary 3.10. Each semi-stratifiable space with a dense σ-compact subspace

is separable.

Lemma 3.11 ([12]). Let X be a semi-stratifiable space. The following statements

are equivalent:

(1) X is star countable;

(2) X is star Lindelöf;

(3) X is SCE.
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Theorem 3.12. Let X be a SCE semi-stratifiable space. If X has a dense metriz-

able subspace, then X is separable.

P r o o f. We claim that X is CCC. Suppose it is not. LetW = {Uα : α < ω1} be

an uncountable pairwise disjoint family of nonempty open sets ofX . For each α < ω1,

pick a point xα ∈ Uα and let D = {xα : α < ω1}. It follows from Lemma 3.5 that

there exists an uncountable subset E ⊂ D which is closed and discrete in X , since X

is perfect (see Lemma 3.1). Let U = {Uα : xα ∈ E}∪{X \E}. Clearly, U is an open

cover for which there is no countable subset A of X such that St(A,U) = X . This

shows that X is not star countable, and therefore X is not SCE (see Lemma 3.11). A

contradiction. Let Y be the dense metrizable subspace of X . Since X is CCC, Y is

also CCC. Therefore Y and X are separable. �

Corollary 3.13. If X is a SCE semi-stratifiable space and has a dense paracom-

pact subspace, then X is separable.

P r o o f. Let Y be a dense paracompact subspace of X . Using the proof of

Theorem 3.12, it can be shown that Y is CCC. Since every CCC paracompact space

is Lindelöf, X has a dense Lindelöf subspace Y . Therefore, by Corollary 3.9, X is

separable. �

Corollary 3.14. If X is a SCE semi-stratifiable space and has a dense subspace

of isolated points, then X is separable.

P r o o f. Note that every discrete space is metrizable. �

Corollary 3.15. If X is a SCE semi-stratifiable space and has a dense GO-

subspace, then X is separable.

P r o o f. Note that the property of being semi-stratifiable is equivalent to being

metrizable for any GO-space. �

Corollary 3.16. If X is a Čech-complete, SCE semi-stratifiable space, then X is

separable.

P r o o f. Since X is Čech-complete, X contains a dense paracompact Čech-

complete subspace Y (see [13]). Hence, Y is metrizable (see [6]). Therefore, by

Theorem 3.12, X and Y are separable. (Since Y is paracompact, we also can get to

the conclusion by Corollary 3.13.) �

For any infinite cardinal κ, a space is called κ-monolithic if nw(Ā) 6 κ for any set

A ⊂ X with |A| 6 κ.
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Theorem 3.17. Let X be a ω-monolithic, SCE and semi-stratifiable space.

Then X is hereditarily separable if X satisfies one of the following conditions:

(1) X is first countable;

(2) |X | 6 ω1;

(3) t(X) = ω and d(X) 6 ω1.

P r o o f. (1) It was established in [17] that the extent of a ω-monolithic star

countable W -space (see [17], Definition 1.8) is countable, so we have e(X) = ω since

every first countable space is a W -space. Hence, by Theorem 3.3, X is hereditarily

separable.

(2) It follows from Proposition 1.16 in [1] that if X is a star countable ω-monolithic

space with |X | = ω1, then e(X) 6 ω, so X has countable extent. Hence, by Theo-

rem 3.3, X is hereditarily separable.

(3) Since d(X) 6 ω1, there exists a dense subset A of X with |A| 6 ω1. If

|A| < ω1, it is obvious that X is separable. We assume that |A| = ω1. Enumerate A

as {xα : α < ω1} and let Fα = {xβ ∈ A : β < α} for each α < ω1. Then we have an

ω1-sequence F = {Fα : α < ω1} of increasing closed separable subsets of X .

Suppose that there exists a closed and discrete set D ⊂ X with |D| = ω1. By ω-

monolithity ofX , for any subset Fα ⊂ X we have the inequality |Fα∩D| 6 ω < ω1, so

we can construct by induction a set D′ = {dα : α < ω1} ⊂ D and an open expansion

U = {Uα : α < ω1} of D′ such that α 6= β implies dα 6= dβ while Uα ∩ D′ = {dα}

and Uα ∩ Fα = ∅ for every α < ω1.

Now we check that U is point-countable. For any point x ∈ X , x ∈ Ā. Since

t(X) = ω, there exists a countable subset A0 of A such that x ∈ A0, and hence there

exists some Fα such that x ∈ A0 ⊂ Fα. By the construction of F and U , it is not

difficult to see that x ∈ Fβ and Fβ ∩Uβ = ∅ for any β > α, which implies x /∈ Uβ for

any β > α. This shows that U is point-countable.

Let W = {Uα : α < ω1} ∪ {X \D′}. Clearly, W is an open cover of X . Since X

is star countable (see Lemma 3.11), there is a countable subset C of X such that

St(C,W) = X . It is evident that |{Uα ∈ U : Uα ∩ C 6= ∅}| 6 ω, since U is point-

countable. It follows that there exists Uβ ∈ U such that Uβ ∩C = ∅ and hence there

is dβ ∈ D′ such that dβ /∈ St(C,W) = X . A contradiction.

This proves thatX has countable extent. Hence, by Theorem 3.3, X is hereditarily

separable. �
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4. Cardinal equalities

Before giving the main results, let us recall some definitions from [4]. We say that

a space X has a Gκ-diagonal if there is a family {Gα : α < κ} of open sets in X ×X

such that ∆X =
⋂

α<κ

Gα, where ∆X = {(x, x) : x ∈ X}. The diagonal degree of X ,

denoted by ∆(X), is the smallest infinite cardinal κ such that X has a Gκ-diagonal.

Clearly, ∆(X) = ω if and only if X has a Gδ-diagonal.

The following question was posted in [4] by Basile, Bella, and Ridderbos.

Q u e s t i o n 4.1. Does the inequality |X | 6 e(X)∆(X) hold for any T1-space X?

We will give a partial answer to this question by proving the following result.

Theorem 4.2. For any T1-space X , |X | 6 L(X)∆(X).

P r o o f. Since X is T1, ∆X can be written as the intersection of some family of

open sets of X×X , so ∆(X) is well defined. Suppose that ∆(X) = κ and L(X) = τ .

Then X has a Gκ-diagonal, i.e. ∆X =
⋂

{Gα : α < κ}, where each Gα is open in

X × X . So for each α < κ and x ∈ X there exists an open subset Bα(x) of X

containing x, with Bα(x) × Bα(x) ⊂ Gα. For each α < κ let Vα be a subcover of

{Bα(x) : x ∈ X} such that Vα 6 τ and X =
⋃

{U : U ∈ Vα}.

Let x ∈ X . For each α < κ we fix Ux,α ∈ Vα such that x ∈ Ux,α. Note that Ux,α

may not be Bα(x). Now, let y ∈ X \{x}. Then there is α < κ such that (x, y) /∈ Gα.

Therefore y /∈ Ux,α; otherwise (x, y) ∈ Ux,α × Ux,α ⊂ Gα, a contradiction. This

shows that {x} =
⋂

α<κ

Ux,α.

Since each Ux,α could be chosen out of τ many sets, there are τκ such possible

intersections. Therefore we conclude that |X | 6 τκ. �

The referee reminded us that Theorem 4.2 should be compared to Theorem 4.18

of Gotchev (see [7]): If X is a Urysohn space, then |X | 6 aL(X)∆̄(X), where aL(X)

is the almost Lindelöf number and ∆̄(X) is the regular diagonal degree of a Urysohn

space X , i.e. the smallest infinite cardinal κ such that X has a regular Gκ-diagonal,

i.e. there is a family {Gα : α < κ} of open sets in X2 such that ∆X =
⋂

α<κ

Gα. The

referee also pointed out that by applying the method of proof in Theorem 4.2, we

can also prove Gotchev’s result.

For the reader’s convenience, we give its new proof: Suppose ∆̄(X) = κ and

aL(X) = τ . Then X has a regular Gκ-diagonal, i.e. ∆X =
⋂

{Gα : α < κ}, where

each Gα is open in X2. So for each α < κ and x ∈ X there exists an open subset

Bα(x) of X containing x, with Bα(x) × Bα(x) ⊂ Gα. For each α < κ let Vα be

a subcover of {Bα(x) : x ∈ X} such that Vα 6 τ and X =
⋃

{U : U ∈ Vα}. Let

x ∈ X . For each α < κ we fix Ux,α ∈ Vα such that x ∈ Ux,α. Now let y ∈ X \ {x}.
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Then there is α < κ such that (x, y) /∈ Gα. Therefore y /∈ Ux,α; otherwise (x, y) ∈

Ux,α × Ux,α ⊂ Gα, a contradiction. This shows that {x} =
⋂

α<κ

Ux,α. Since each

Ux,α could be chosen out of τ many sets, there are τκ such possible intersections.

Therefore we conclude that |X | 6 τκ. The proof is complete. �

Corollary 4.3. If X is a space with aGδ-diagonal and L(X) 6 2ω, then |X | 6 2ω.

Since e(X) = L(X) for any D-space X , we have the following corollary by Theo-

rem 4.2.

Corollary 4.4. If X is a D-space, then |X | 6 e(X)∆(X).

Since every semi-stratifiable space is a D-space and has a Gδ-diagonal, we have

the following corollary by Theorem 4.2 and Corollary 4.4.

Corollary 4.5. If X is a semi-stratifiable space, then |X | 6 e(X)ω.

Proposition 4.6. If X is a regular semi-stratifiable space, then |X | 6 2d(X).

P r o o f. Since a regular and semi-stratifiable space has a strong rank 1-diagonal

by Lemma 3.1, it follows that s∆(X) = ω (see [4], page 2). It has been established

in [4], Proposition 4.1, that |X | 6 2d(X)s∆(X) for any Hausdorff space X , so we have

|X | 6 2d(X)·ω = 2d(X). �

Corollary 4.7. If X is a regular separable semi-stratifiable space, then |X | 6 2ω.

Note that the regularity is necessary in Corollary 4.7, which can be seen in the

following example.

E x am p l e 4.8 ([11], page 64). Let κω denote the Katětov’s extension of ω with

the discrete topology. Recall that κω = ω∪T , where T is a set of cardinality 22
ω

that

indexes the collection of all free ultrafilters on ω. For t ∈ T let Ut be the ultrafilter

indexed by t; a local base for t is the collection {{t} ∪ U : U ∈ Ut}. The space κω

has the following properties:

(1) κω is Hausdorff and non-regular;

(2) κω is separable;

(3) κω is semi-stratifiable;

(4) κω = 22
ω

.
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P r o o f. Points (1), (2) and (4) are obvious. It suffices to prove that κω is

semi-stratifiable. To see it, define a function g : ω × κω → τ such that

g(n, x) =

{

{x}, x ∈ ω;

{x} ∪ (ω \ n), x ∈ T.

Clearly, {x} =
⋂

n∈ω

g(n, x) holds for any x ∈ κω. Now suppose that x ∈ g(n, xn) for

every n ∈ ω. It is not difficult to see that there exists n0 ∈ ω such that x = xn for

any n > n0 by the definition of g. Hence, we have xn → x. Therefore, by Lemma 1.2,

the space κω is semi-stratifiable. This completes the proof. �

We say that a space X satisfies the discrete countable chain condition (DCCC for

short) if every discrete family of nonempty open subsets of X is countable.

E x am p l e 4.9 ([16], Proposition 3.10). For any cardinal κ there exists a regular

DCCC and semi-stratifiable space whose cardinality is greater than κ.

Proposition 4.10. Let X be a semi-stratifiable space and let g be the function

which witnesses that X is semi-stratifiable. If X =
⋃

{g(n, x) : x ∈ Y } for each

n ∈ ω, then |X | 6 |Y |ω.

P r o o f. To see it, fix any x ∈ X . For each n ∈ ω there exists xn ∈ Y such that

x ∈ g(n, xn) since X =
⋃

{g(n, x) : x ∈ Y }. It follows from Lemma 1.2 that x is the

limit point of the sequence {xn} ⊂ Y . Therefore we have |X | 6 |Y |ω. �

We finish this section with the following questions.

Q u e s t i o n 4.11. Is the cardinality of a regular CCC semi-stratifiable space at

most 2ω?

Q u e s t i o n 4.12. Is the cardinality of a regular SCE and semi-stratifiable space

at most 2ω?

A c k n ow l e d g em e n t. We would like to thank the referee for his or her valu-

able remarks and suggestions which greatly improved the paper.
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