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Abstract. We study a problem of isometric compact 2-step nilmanifolds M/Γ using some
information on their geodesic flows, where M is a simply connected 2-step nilpotent Lie
group with a left invariant metric and Γ is a cocompact discrete subgroup of isometries ofM .
Among various works concerning this problem, we consider the algebraic aspect of it. In
fact, isometry groups of simply connected Riemannian manifolds can be characterized in a
purely algebraic way, namely by normalizers. So, suitable factorization of normalizers and
expression of a vector bundle as an associated fiber bundle to a principal bundle, lead us to
a general framework, namely groupoids. In this way, drawing upon advanced ingredients of
Lie groupoids, normal subgroupoid systems and other notions, not only an answer in some
sense to our rigidity problem has been given, but also the dependence between normalizers,
automorphisms and especially almost inner automorphisms, has been clarified.

Keywords: nilpotent Lie group; isometric nilmanifolds; normalizer; Lie algebroid; normal
subgroupoid system; inner automorphism
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1. Introduction

Rigidity problems of compact nilmanifolds via some information about their

geodesic flows have been studied well for compact surfaces with nonpositive Gaus-

sian curvature (see [5], [6], [21]), and locally symmetric spaces (see [2], [3]). In this

paper, we consider the geodesic conjugacy problem for compact 2-step nilmanifolds,

specifically:

P r o b l e m 1.1 (Rigidity Problem, [8]). Are two compact 2-step nilmanifolds

M/Γ and M ′/Γ′ isometric or not if they have conjugated geodesic flows?
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In the special case when the geodesic conjugacy between their sphere bundles is

the restriction of a symplectic diffeomorphism, this problem has been solved in [12]

and its extension to Poisson structure has been proved in [9].

However, in the general case, most important rigidity theorems are Mostow’s

rigidity theorem about locally symmetric spaces of noncompact type (see [10], [13],

and [14]) for hyperbolic spaces, also its generalization, i.e. Gromow’s rigidity theo-

rem in locally irreducible setting (see [1], [4], and [19]) for hyperbolic setting. All

of these results show that the study of isometric manifolds reduces in some sense to

the study of isomorphisms of isometric groups. The spirit of all these results is the

same: given a sufficiently large class of isometries, the existence of an isomorphism

between these classes implies that two manifolds are isometric and the isometry is

induced by an automorphism (in reality a diffeomorphism). This generic approach

can be found in new works, such as [18].

Inspired by it and after explanation of the rigidity problem in Section 2, we choose

an algebraic approach to study our problem. In fact, the isometry group of a sim-

ply connected Riemannian manifold can be characterized in a purely algebraic way,

namely by normalizers. But any suitable factorization of normalizers can be useful

only for finite or finitely generated groups while we work on isometry groups and

automorphisms of Lie groups. Furthermore, in expression of a vector bundle as an

associated fiber bundle to a principal bundle, the notion of a groupoid automati-

cally appears. These lead us to this general setting, which is studied in Section 2.2.

Passing from the case of actions on groups to actions on vector bundles, the no-

tions of automorphisms and isometries admit straightforward generalizations, which

however, have rarely been spelled out in the literature. Our methodology has been

presented in Section 3, step by step.

Using powerful notions of Lie groupoid theory, we will be able to give an answer

in some sense to our rigidity problem in Problem 4.1, which can be applied to the

analytic results for 2-step nilpotent Lie algebras such as Corollary 4.2. Also, in

Theorem 4.1 and Corollary 4.1, we gain more results, which highlight the dependence

of normalizers on automorphisms induced by them, for Lie groups and their Lie

algebras.

2. Preliminaries

2.1. Explanation of the problem. Let (M/Γ, g) and (M ′/Γ′, g′) be two com-

pact 2-step Riemannian nilmanifolds. (M , M ′ are simply connected 2-step nilpotent

Lie groups and Γ, Γ′ are discrete subgroups of M , M ′, respectively, with Rieman-

nian metrics whose lifts to M , M ′, respectively, are left invariant.) Let M, M′ be

Lie algebras of M , M ′, respectively. Lifting a homeomorphism F : T (M/Γ) \ {0} →
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T (M ′/Γ′)\{0} which intertwines the geodesic flows to the map F̃ : M×(M\{0}) →

M ′ × (M′ \ {0}), as explained in [8], we have:

Theorem 2.1 ([8]). Suppose (M/Γ, g) and (M ′/Γ′, g′) are compact 2-step Rie-

mannian nilmanifolds, and F∗ : Γ → Γ′ is an isomorphism which induces a marking

between their length spectra. Then there exists a Γ-almost inner automorphism Φ

of M and an isometric automorphism Ψ : (M, g) → (M ′, g′) with Ψ(Φ(Γ)) = Γ′ such

that F∗ = Ψ|Φ(Γ) ◦ Φ|Γ.

N o t e 2.1. ϕ ∈ Φ(Γ) is a Γ-almost inner automorphism of M if for every el-

ement γ ∈ Γ there exists an element a ∈ M , possibly depending on γ, such that

ϕ(γ) = a−1
γ γaγ . The set of Γ-almost inner automorphisms is denoted by AIA(Γ)

and similarly, AID(Γ) is its infinitesimal counterpart, namely Γ-almost inner deriva-

tions.

Let Ψ be as in Theorem 2.1. Then it induces an isometry, also denoted by Ψ,

from (M/Φ(Γ), g) to (M ′/Γ′, g′), thus we may replace (M ′/Γ′, g′) by (M/Φ(Γ), g).

Moreover, we replace Ψ−1
∗ ◦ F : T (M/Γ) \ {0} → T (M/Φ(Γ)) \ {0} by F and

Ψ−1
∗ ◦ F̃ : TM \ {0} → TM \ {0} by F̃ . The new F is a geodesic conjugacy from

(M/Γ, g) to (M/Φ(Γ), g) and the new F̃ : TM \ {0} → TM \ {0} is a lift of F which

satisfies F̃ ◦ dLγ = dLΦ(γ) ◦ F̃ for all γ ∈ Γ. So, it intertwines the geodesic flow

of (M, g). Then for Γ as a properly discontinuous group of isometries of M we have

the characterization of the isometry group of M/Γ in a purely algebraic way.

Theorem 2.2 ([20]). Let Γ be a properly discontinuous group of isometries of a

simply connected Riemannian manifold M . Then the group I(M/Γ) of isometries of

M/Γ is isomorphic to N(Γ)/Γ, where N(Γ) is the normalizer of Γ in I(M).

Now, (M/Φ(Γ), g) and (M ′/Γ′, g′) as isometric manifolds have isomorphic isome-

try groups (by the map which takes the isometry α of (M/Φ(Γ), g) to isometry βαβ−1

of (M ′/Γ′, g′), β ∈ I(M ′/Γ′)), and as in the proof of Theorem 2.2 (see [20]), without

details, one time for M ′ and Γ′ and another time for M and Φ(Γ), respectively, we

have

(2.1)
N(Γ′)

Γ′
≃
N(Φ(Γ))

Φ(Γ)
.

N o t e 2.2. If Γ-almost inner automorphisms equal to inner automorphisms, then

M/Φ(Γ) would be isometric to M/Γ, hence

(2.2)
N(Φ(Γ))

Φ(Γ)
≃
N(Γ)

Γ
.

This isometry is induced from the left translations of (M, g). Therefore, it is reason-

able to seek some assumptions which give us equality (2.2).
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Corollary 2.1. The problem of checking, whether two 2-step nilmanifolds with

conjugated geodesic flows are isometric or not, reduces to the examination of auto-

morphisms induced only by a part of their isometry groups, i.e. their normalizers.

2.2. Lie groupoids. In this section, we recall some facts from groupoid theory.

In fact, any suitable factorization of normalizers, that we might need as stated in

Corollary 2.1, can be applied only for finite or finitely generated groups, while we

use groups such as I(M) and AIA(Γ), which are not necessarily finitely generated;

this will be solved by Lie groupoids.

Basic notions of Lie groupoids and Lie algebroids which will be used through this

paper and which we will not describe in details can be found in Chapters 1, 2 and 3

of [17]. However, for the convenience of the reader we give some main concepts of it.

There are relations between some concepts of Lie groupoids and the notions of Lie

groups mentioned up to now:

By Proposition 1.3.5 of [17], there is the mutual correspondence between a prin-

cipal bundle P (M,G, π) and a locally trivial Lie groupoid Ω, namely Lie groupoid

Ω ⇒ M , whose anchor map is a surjective submersion. Proposition 1.3.9 of [17]

says that the associated inner Lie group bundle (Ωm × Ωm
m)/Ωm

m defined by the in-

ner automorphism action of Ωm
m on itself, carries to the inner subgroupoid IΩ of

locally trivial Lie groupoid Ω. Finally, left invariant metrics on nilmanifolds, ad-

joint and exponential formulas which are necessary for us, covered to a generalized

element of Lie groupoid G ⇒ M named as bisection, a smooth map σ : M → G

which is right-inverse to s : G→ M and is such that t ◦ σ : M →M , is a diffeomor-

phism.

Let Ω ⇒ M be locally trivial, and Ω ∗ M̂ → M̂ be an action of Ω on a surjective

submersion q : M̂ → M . Then (M̂, q,M) is a fiber bundle by taking a section atlas

{σi : Ui → Ωm}, m ∈ M and with it defining charts ψi : Ui × M̂m → M̂Ui
, (x, a) 7→

σi(x)a. Now, define Ωm× M̂m → M̂ by (ξ, a) 7→ ξa. In terms of the charts ψi for M̂

and (x, g) 7→ σi(x)g for Ωm, this is Ui×Ωm
m×M̂m → Ui×M̂m, (x, g, a) 7→ (x, ga), and

is then a surjective submersion. Hence (Ωm × M̂m)/Ωm
m → M̂ , ⌊ξ, a⌋ → ξa is a diffeo-

morphism and is equivariant with respect to the isomorphism (Ωm × Ωm)/Ωm
m → Ω,

〈η, ξ〉 7→ ηξ−1 from gauge groupoid of the vertex bundle at m. These structures can

be applied to inner automorphism action Ω ∗ IΩ → IΩ, (ξ, ς) 7→ Iξ(ς) = ξςξ−1. In

this way, for Ω corresponding to a principal bundle P (M,G), inner subgroupoid IΩ

is equivariantly isomorphic to the inner group bundle (P ×G)/G.

Definition 2.1 ([17]). Let Ω ∗ M̂ → M̂ be an action of a locally trivial Lie

groupoid Ω ⇒ M on a surjective submersion (M̂, p,M). Then λ ∈ ΓM̂ is Ω-

deformable if for all x, y ∈ M there exists ξ ∈ Ωy
x such that ξλ(x) = λ(y). If
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λ ∈ ΓM̂ is Ω-deformable, then the stabilizer subgroupoid of Ω at λ is Ω{λ} = {ξ ∈

Ω: ξλ(s(ξ)) = λ(t(ξ))}.

N o t e 2.3. Ω{λ} is closed in Ω since M̂ is Hausdorff. Also, a section λ is Ω-

deformable if and only if its values lie in a single orbit. In this case the stabilizer

subgroupoid is transitive. For example, Baer groupoid, as a refinement of the con-

jugacy relation on subgroups of a group, is a special case of stabilizer subgroupoids

with ξ = gH and x = y.

Now, define f : Ω → M̂×q M̂ by ξ 7→ (λ(t(ξ)), ξλ(s(ξ))). Then Ω{λ} = f−1(∆
M̂
).

From Note 2.3 and since f is transversal to ∆
M̂
in M̂ ×q M̂ , Ω{λ} is a closed

embedded reduction of Ω, namely a wide Lie subgroupoid of Ω such that it is locally

trivial by itself. Also, by the paragraph before Definition 2.1, let the fiber bundle

M̂ = (Ωm × (Ωm
m/Υ

m
m))/Ωm

m, where Υ is a reduction of Ω for which the vertex groups

are embedded subgroups of the vertex groups of Ω. Now, let Ω ∗ M̂ → M̂ be the

associated action ξ⌊η, gΥm
m⌋ = ⌊ξη, gΥm

m⌋. Then λ with λ(x) = ⌊ζ,Υm
m⌋ for x ∈ M

and ζ ∈ Υx
m is a well-defined smooth Ω-deformable section of M̂ , and Ω{λ} = Υ.

N o t e 2.4. The above mutual structure gives a classification of those closed em-

bedded reductions of a locally trivial Lie groupoid which have a specified vertex

group at a chosen point of the base.

3. Proposed methodology

In this section, we apply the ingredients from Lie groupoid theory to our rigidity

problem and some questions around it, step by step.

Step 3.1.

Definition 3.1 ([17]). A normal subgroupoid system in G ⇒ M is a triple

ℵ = (N,R, θ), where N is a closed, embedded, wide Lie subgroupoid of G, R is a

closed, embedded, wide Lie subgroupoid of the pair groupoid M ×M , and θ is an

action of R on the map s : G . .
.
N → M , of the set of right cosets of N as g ranges

through G to M , such that the following conditions hold:

(N1) Consider (n,m) ∈ R and Ng ∈ G . .
.
N with s(Ng) = m. Then writing

θ(n,m)(Ng) = Nh, we have (t(h), t(g)) ∈ R.

(N2) For any (n,m) ∈ R we have θ(n,m)(N1m) = N1n.

(N3) Consider (n,m) ∈ R and Ng ∈ G . .
.
N with s(Ng) = m, and h ∈ G with

s(h) = t(g). Then if θ(n,m)(Ng) = Ng1 and θ(t(g1), t(g))(Nh) = Nh1, we

have θ(n,m)(Nhg) = Nh1g1.
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By applying (N1) of Definition 3.1 to τ ∈ N , as θ(n,m)(Ng) = Nτ = N , we

see that (t(τ), s(τ)) ∈ R, so by properties (N2) and (N3), if Ng ∈ G . .
.
N with

s(Ng) = s(τ), then (by applying (N3) toNg andNτ−1), θ(t(τ), s(τ))(Ng) = Ngτ−1.

In particular, if τ is an element of inner subgroupoid IN , g ∈ G and gτg−1 is defined,

then gτg−1 ∈ N (since θ(t(τ), s(τ))(Ngτg−1) = Ngτg−1τ−1 = Nτ−1). Also, if ℵ is

uniform, namely the anchor of G, restricted to N → R, is a surjective submersion,

then ℵ is entirely determined by N , since θ(t(τ), s(τ))(Ng) = Ngτ−1 for τ ∈ N with

s(g) = s(τ); this identifies θ. Also, N identifies R as the image of its anchor and

both ℵ and G/ℵ are entirely determined by N .

Step 3.2. There is a bijective correspondence between normal subgroupoid systems

of G and fibrations F : G→ G′, f : M →M ′. Also, from Theorem 2.4.16 of [17], ℵ is

uniform if and only if the fibration (F, f) is uniform (i.e. both f and F� : G→ f�G′

are surjective submersions).

Step 3.3. Now, by backtrack search in (N3), we can say that the normalizer

NG(U) of a subgroup U of a finite generating group G induces automorphisms of U

(by conjugating), and the kernel of this action is the centralizer CG(U). Thus, we

can consider the quotient NG(U)/CG(U) as a subgroup of Aut(U). Then for finitely

generated subgroup U 6 G we have following Lemma 3.1, which has been proved

in [16] by another approach.

Lemma 3.1 ([16]). For α ∈ Aut(U), U = 〈u1, . . . , um〉 we have that α is induced

by NG(U) if and only if there exists

(1) g1 ∈ G such that uα1 = ug11 ,

(2) g2 ∈ CG(u
g1
1 ) such that uα2 = (ug12 )g2 ,

...

(m) gm ∈ CG(u
g1
1 , u

g1g2
2 , . . . , u

g1g2...gm−1

m−1 ) such that uαm = (u
g1g2...gm−1

m )gm .

In this case the element x = g1g2 . . . gm is an element that induces α. Any other

element inducing the same automorphism will differ from x only by an element

of CG(U).

Step 3.4. Now we can use the uniqueness of identifying the centralizers as the

stabilizer of conjugacy action as in Definition 2.1 and the concepts mentioned after

Note 2.3, and automorphisms induced by this conjugation. Then the similarity

between them and normal subgroupoid systems justifies Proposition 2.1.6 of [17]

and in a special case of fibrations results in the following classification, which has

been obtained in [17] for another setting.
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Theorem 3.1 ([17]). Let F : G→ G′, f : M →M ′ be a fibration of Lie groupoids

with normal subgroupoid system ℵ = (N,R(f), θ). Suppose that Φ: G → H is any

morphism of Lie groupoids over a smooth map ϕ : M → P such that:

(i) for all n ∈ N , Φ(n) is an identity of H ;

(ii) ϕ × ϕ maps R(f) = {(n,m) ∈ M ×M : f(n) = f(m)} into the diagonal of

P × P ;

(iii) if Φ̄ is an induced map G . .
.
N → H , then Φ̄(θ(n,m)(Ng)) = Φ̄(Ng) for all

(n,m) ∈ R(f) and Ng ∈ G . .
.
N with s(g) = m.

Then there is a unique morphism of Lie groupoids Ψ: G′ → H over ψ : M ′ → P

such that Ψ ◦F = Φ and ψ ◦ f = ϕ. In particular, if (Φ, ϕ) is a fibration and ℵ is its

normal subgroupoid system, then (Ψ, ψ) is an isomorphism of Lie groupoids.

4. Applications of proposed methodology

Now, we come back to 2-step nilmanifolds mentioned in Section 2.2.

From Corollary 2 on page 33 of [22], discrete subgroup Γ of nilpotent Lie groupM

is finitely generated and Lemma 3.1 is applicable to it, especially for properly

discontinuous subgroup Γ = 〈γ1, . . . , γn〉 of G = I(M), NG(Γ) = 〈CG(Γ), gα〉;

α(〈γ1, . . . , γn〉) = gα(〈γ1, . . . , γn〉)g
−1
α , where gα is a composition of particular

isometries as in Lemma 3.1.

Also, from Theorem 2.3 of [13], AIA(M) is a connected, simply connected nilpo-

tent Lie group of Step 3.1 (i.e. abelian). Then, from Corollary 1 on page 34 of [22],

any automorphism of Γ extends to a unique automorphism of M .

Theorem 4.1. Extended element α ∈ Aut(Γ) induced by NG(Γ), G = I(M) as

in Lemma 3.1, to α̃ ∈ Aut(AIA(Γ)) is induced by conjugation in I(M).

P r o o f. The first approach: Let the principal bundle P (M,G, π) = Ωm(M,

Ωm
m, π), Ω = Aut(AIA(Γ)) and let α̃(α, id) be an automorphism. Thus π ◦ α̃ =

α ◦ π and α̃(ug) = α̃(u)g for all u ∈ Ωm, g ∈ Ωm
m, which are sufficient for our

nilpotent Lie groups because of left invariant metrics. Form ∈M choose u ∈ π−1(m)

and write σ(m) = 〈α̃(u), u〉. This σ is a bisection of (Ωm × Ωm)/Ωm
m and Iσ is

〈v, u〉 7→ 〈α̃(v), α̃(u)〉, which from Section 2.2 is the automorphism corresponding to

α̃ : Ωm → Ωm.

Conversely, consider the locally trivial Lie groupoid Ω on M , and an inner auto-

morphism Iσ : Ω → Ω over t ◦ σ : M → M . At each m ∈ M there is the vertex

principal bundle Ωm(M,Ωm
m). Fix m0 ∈ M and write m1 = t(σ(m0)). Then Iσ re-

stricts to Ωm0
→ Ωm1

. However, we can identify Ωm0
and Ωm1

by right translation

155



by the single element σ(m0)
−1, without reference to the rest of σ. If we do this, then

the restriction of Iσ is identified with the restriction of Lσ.

Automorphisms of principal bundles of the form α̃(α, id) thus are either inner

automorphisms or left translations, namely gauge transformations. Those for which

f = id correspond to those bisections of (Ωm × Ωm)/Ωm
m which take values in the

inner group bundle (Ωm × Ωm
m)/Ωm

m which carries to inner subgroupoid IΩ of Ω as

in Section 2.2.

The second approach: Inspired by Section 4 of [16] in relation to equidistribut-

ing automorphism and point stabilizer notions and the structure of the proof of

Lemma 3.1, our theorem will also be proved in the following way.

By notations in the previous section, there is a transitive action of Ω = α̃−1(∆
M̂
),

M̂ = AIA(Γ) with a cyclic point stabilizer, namely inner subgroupoid system and

since Ω/IΩ is isomorphic to the image of (t, s) in M ×M , it is uniform. Then the

corresponding uniform fibration, as in Step 3.4, maps a point stabilizer to a point

stabilizer and the other properties of fibrations of Theorem 3.1 have been satisfied

by it. Therefore, it is induced by conjugation in I(M). Finally, from Note 2.4, this

selection is sufficient for us, too. �

Corollary 4.1. Positive answer to the rigidity problem (problem mentioned in

the Introduction) results in a bijective correspondence between the cosets {gα}α and

{g′β}β of Theorem 4.1, where {g′β}β are cosets of CG(AIA(Γ)) in NG(AIA(Γ)) as in

Theorem 4.1.

P r o o f. At first, we study the structure of the proof of Theorem 2.2. Let Γ be

a properly discontinuous group of I(M). For ϕ ∈ N(Γ) we have ϕΓp = Γϕp for all

p ∈ M . Then there is a unique function ϕ′ : M/Γ → M/Γ such that ϕ′ ◦ h = h ◦ ϕ,

where h : M →M/Γ is the natural projection.

Local cross sections show that ϕ′ is smooth and is a diffeomorphism with inversion

(ϕ−1)′. Since h is a local isometry, ϕ′ is an isometry. We can show that the map

ϕ→ ϕ′ is a homomorphism onto I(M) and its kernel equals to Γ.

Now, for isomorphisms l : I(M/Φ(Γ)) → N(Φ(Γ))/Φ(Γ) and κ : I(M/Γ) →

N(Γ)/Γ we can say:

(1) l−1 affects the element which comes from one conjugacy.

(2) The similar relation is true for κ.

(3) The function τ : I(M/Φ(Γ)) → I(M/Γ) assigns to every element of I(M/Φ(Γ))

its conjugacy by an element of I(M/Γ).

(4) {gα}α (or {g′β}β) are cosets of CG(Γ) (or CG(AIA(Γ))) in NG(Γ) (or

NG(AIA(Γ))), and therefore gα = CG(Γ)·a (or g
′
α = CG(Φ(Γ))·a

′), where a ∈ NG(Γ)

(or a′ ∈ NG(AIA(Γ))).
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(5) l, τ and κ assigns centralizers to the corresponding centralizers.

(6) Finally, CG(Φ(γ)) = CG(aγγa
−1
γ ) = aγCG(γ)a

−1
γ for all γ ∈ Γ and for all

Φ ∈ AIA(Γ) and therefore CG(AIA(Γ)) = AIA(CG(Γ)).

Now, from these 6 steps and from Note 2.2 we obtain the desired bijective corre-

spondence by passing of the following diagram:

I
( M

Φ(Γ)

)

��

// I
(M
Γ

)

��
N(Φ(Γ))

Φ(Γ)

OO

// N(Γ)

Γ

OO

Figure 4.1.

P r o b l e m 4.1. Are the two compact 2-step nilmanifolds M/Γ and M ′/Γ′ iso-

metric or not if they have conjugated geodesic flows?

A n s w e r . We try to give a partial answer. In fact, from Sections 2 and 3 which

are depicted in Figure 4.1, we want to determine whether two quotients N(Γ)/Γ and

N(Φ(Γ))/Φ(Γ) are equal or not if two corresponding nilmanifolds have conjugated

geodesic flows. For this we use the Lie groupoid framework explained before. For

ξ : TxM → TyM , s(ξ) is x and t(ξ) is y; the object inclusion map is x→ 1x = idTxM ,

and the partial multiplication is the composition of maps. The inverse of ξ ∈ Υ(TM)

is its inverse as a map. The smooth structure on Υ(TM) is induced from that of

TM as follows:

Let {ψi : Ui × TmM → TUi
} be an atlas for TM . For each i and j, define ψj

i :

Uj × GL(TmM) × Ui → Υ(T )
Uj

Ui
, (y,A, x) 7→ ψj,y ◦ A ◦ ψ−1

i,x . Now, from the charts

ψ′
i : Ui×Hom1(TmM,TmM) → Hom1(TM, TM)Ui

defined by ψ′
i(x, f)(ϕ) = ϕ◦ψ−1

i,x ,

where ϕ ∈ Hom1(TM, TM)x, and in a similar manner for n > 1, we have the

smoothness of the action

(4.1) Υ(TM) ∗Homn(TM ;TM) → Homn(TM ;TM); ξϕ = ϕ ◦ (ξ−1)n.

Now for Riemannian structure 〈·, ·〉 in TM , regarded as a section of Hom2(TM ;

M×R), 〈·, ·〉 is Υ(TM)-deformable with respect to action (4.1), since any two vector

spaces of the same dimension with any positive-definite inner products are isometric.

Thus, we have that the stabilizer subgroupoid of 〈·, ·〉 is locally trivial Lie groupoid

on M . In fact, a section of this subgroupoid is the same as a moving frame of TM

and the local triviality from it is equivalent to the existence of moving frames in TM .

In particular, by applying this structure to Lie groupoid Inn(Γ) and then to AIA(Γ),
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as we have explained above, the quotients in relation as stabilizers of these groupoids

are reductions of Aut(M). Therefore the equality in relation (2.1), and therefore a

positive answer to the rigidity problem, is guaranteed if the two reductions are equal

up to the conjugacy relation induced by IΩ from Section 2.2. The structure of the

proof is described in Figure 4.2.

(M
Γ
, g
)
,
(M ′

Γ′
, g′

)
are compact Riemannian 2-step nilmanifolds
with conjugated geodesic flows.

��( M

Φ(Γ)
, g
)
,
(M ′

Γ′
, g′

)
are compact Riemannian 2-step nilmanifolds
with conjugated geodesic flows.

��( M

Φ(Γ)
, g
)
,
(M ′

Γ′
, g′

)
are isometric manifolds.

��

I
( M

Φ(Γ)

)
∼= I

(M ′

Γ′

)
⇐⇒

N(Φ(Γ))

Γ
∼=
N(Γ′)

Γ′
.

��

Reduced main problem:
N(Φ(Γ))

Γ
∼=
N(Γ)

Γ
.

The reductions
N(Φ(Γ))

Γ
and

N(Γ)

Γ
are equal.

KS

Figure 4.2.

Corollary 4.2 ([11]). LetM be a 2-step nilpotent Lie algebra with an inner prod-

uct 〈·, ·〉 and ϕ be an almost inner derivation of continuous type onM, i.e. ϕ(x) =

[σ(x), x] with σ continuous on M \ {0}. Let z ∈ Z(M) and y ∈ ker(J(z)). Then

〈ϕ(x), z〉 = 〈[σ(y), x], z〉 for all x ∈ M, where J(z) : V → V ; V = M \ Z(M),

z ∈ Z(M) is a skew symmetric linear transformation defined by J(z)x = (ad(x))∗z

for x ∈ V .

In particular, if the center ofM properly contains the derived algebra, then every

almost inner derivation of continuous type onM is inner.
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P r o o f. In fact, the equality 〈[σ(x), x], z〉 = 〈[σ(y), x], z〉; 〈[y, x], z〉 = 0 must be

proved.

But the continuity of σ implies that the above equality holds for y + tx, t ∈ R

or as Lie groupoid notions, for the second reference point in etσ(x) = π−1(m) of

a principal bundle P (M,G, π) = Ωm(M,Ωm
m, π) corresponding to locally trivial Lie

groupoid Ω = AIA(Γ). But from Section 2.2, we reach to a groupoid morphism

RΦ−1(m)(idM , IΦ(m)) for Φ ∈ AIA(Γ) (equivalently for ϕ ∈ AID(Γ)) which corre-

sponds to the identity automorphism of the corresponding gauge groupoid.

In this way, using the above answer, we achieve the equality of two corresponding

reductions up to conjugacy relation mentioned there. This shows the independence

of σ on the choice of the points contained in ker(J(z)) as in the above equality or

in Lie algebroid letters, two elements σ(x) and σ(y) in their corresponding gauge

algebroids are an identity derivation. �

5. Conclusions

In this paper, a rigidity problem of two compact 2-step nilmanifolds M/Γ and

M ′/Γ′ with conjugated flows was studied. A novel methodology was presented to

answer this problem by developing a reformulation based on Lie groupoids and Lie

algebroids. For this purpose, we applied algebraic notions of the factorization of the

isometry groups of the simply connected Riemannian manifolds whose corresponding

normalizers can be factorized by ingredients of Lie groupoids. The machinery of Lie

groupoid theory was applied to provide a systematic method to answer in some sense

our rigidity problem.

The main advantage of the proposed methodology is that it can be applied to

general rigidity problems of compact 2-step nilmanifolds with analytic conditions

for their almost inner automorphisms. Also, it provides the exact relation between

the normalizers and the automorphisms induced by them, for Lie groups and their

Lie algebras. Also, positive answer to the rigidity problem results in a bijective

correspondence between the cosets of centralizers in normalizers.
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