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Abstract. A subset S of vertices in a graph G is an open packing set if no pair of vertices
of S has a common neighbor in G. An open packing set which is not a proper subset of
any open packing set is called a maximal open packing set. The maximum cardinality of an
open packing set is called the open packing number and is denoted by ̺o(G). A subset S
in a graph G with no isolated vertex is called a total dominating set if any vertex of G is
adjacent to some vertex of S. The total domination number of G, denoted by γt(G), is the
minimum cardinality of a total dominating set of G. We characterize graphs of order n and
minimium degree at least two with ̺o(G) = γt(G) = 12n.
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1. Introduction

In this paper, we follow the notations of [3], [7]. Specifically, let G = (V,E) be

a graph with vertex set V of order n and edge set E. The open neighborhood of

a vertex v ∈ V is N(v) = {u ∈ V : uv ∈ E} and the closed neighborhood of v

is N [v] = N(v) ∪ {v}. The degree of v is deg(v) = |N(v)|. The maximum and

minimum degrees in G are denoted by ∆(G) and δ(G), respectively. A vertex of

degree one in a tree is called a leaf and its unique neighbor is called a support vertex.

A pendant edge in a graph is an edge incident with a leaf. The corona graph cor(H)

of a graph H is a graph obtained from H by adding a leaf to every vertex of H .

A matching in a graph G is a set of edges no pair of which has a common vertex.

For a subset S of vertices of G, the subgraph induced by S is denoted by G[S]. A

subset S of vertices of a graph G is a dominating set of G if every vertex x ∈ V − S

is adjacent to a vertex of S. The domination number of G, denoted by γ(G), is the

minimum cardinality of a dominating set of G. A dominating set S of a graph G is
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called a total dominating set if G[S] has no isolated vertices. The total domination

number of G, denoted by γt(G), is the minimum cardinality of a total dominating set

of G. A graph G is total domination partitionable if its vertex set can be partitioned

into two total domination sets. For a comprehensive study of domination and total

domination see [7], [10].

A packing of a graph G is a set of vertices whose closed neighborhoods are pairwise

disjoint. The packing number of G, denoted by ̺(G), is the maximum cardinality

among all packings of G. For reference on the packing number of a graph, see for

example [2], [4], [11], [15]. A set S of vertices of a graph G is an open packing of G

if the open neighborhoods of the vertices of S are pairwise disjoint in G. The open

packing number of G, denoted by ̺o(G), is the maximum cardinality among all open

packings of G. The open packing number of a graph has been studied in [13], [8],

[9], [14], for example.

A subset S of vertices of G is an efficient open dominating set if |N(v) ∩ S| = 1

for every vertex v ∈ V (G). An efficient open domination graph is a graph with an

efficient open dominating set. The study of efficient open domination graphs has

begun by Cockayene et al. [6] and further studied in, for example, [12]. Note that

the efficient open domination graphs are graphs G with ̺o(G) = γt(G).

Recently, Hamid and Saravanakumar in [13] continued the study of open packing

in graphs, and presented several important results on the open packing number of

a graph. They posed the characterization of graphs of order n with δ(G) > 2 for

which ̺o(G) + γt(G) = n as an open problem. We give a characterization of graphs

of order n with minimum degree at least two for which ̺o(G) = γt(G) = 1

2
n. We

make use of the following.

Theorem 1 ([13]). If G is a connected graph of order n > 2, then ̺o(G) 6

n/δ(G).

Theorem 2 ([5]). If G is a graph without isolated vertices of order n > 3, then

γt(G) 6 2

3
n.

Theorem 3 ([1]). If G is a graph of order n with δ(G) > 3, then γt(G) 6 1

2
n.

2. Main result

We begin with the following.

Lemma 4. Let G be a connected graph of order n with δ(G) > 2, and ̺o(G) +

γt(G) = n, and let S be a ̺o(G)-set. Then:

(1) δ(G) = 2;
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(2) |S| 6 |V (G)− S|;

(3) Any non-support vertex of G[V (G)−S] is adjacent to precisely one vertex of S.

P r o o f. Let G be a connected graph of order n with δ(G) > 2 and ̺o(G) +

γt(G) = n. We consider each claim seprately:

(1) By Theorems 1 and 2, 2

3
n > γt(G) = n − ̺o(G) > n − n/δ(G), and we

obtain that 2 6 δ(G) 6 3. If δ(G) = 3, then by Theorems 1 and 3, 1

2
n > γt(G) =

n − ̺o(G) > n − n/δ(G), and we obtain that δ(G) = 2, a contradiction. Thus

δ(G) = 2.

(2) Let S be a ̺o(G)-set. Then clearly V (G)−S is a γt(G)-set, since δ(G) = 2 and

any component of G[S] is K2 or K1. Since no pair of vertices of S have a common

neighbor in V (G) − S, we have |S| 6 |V (G)− S|.

(3) If there is a non-support vertex x of G[V (G) − S] that is not adjacent to a

vertex of S, then (V (G) − S)− {x} is a total dominating set for G, a contradiction

with ̺o(G) + γt(G) = n. Since S is an open packing set, x is adjacent to precisely

one vertex of S. �

It is known that ̺o(G) 6 γt(G) for any graph G with no isolated vertex (see [12],

Lemma 5). Let H1 be the class of all graphs G such that G is obtained from a

corona cor(H), where H is a graph of even order and with no isolated vertex, by

adding a perfect matching between the leaves of cor(H). Figure 1 shows a graph in

the family H1. It is easy to see that any graph in the family H1 is total domination

partitionable.

Figure 1. A graph in H1.

Theorem 5. If G is a connected graph of order n with δ(G) > 2, then ̺o(G) =

γt(G) = 1

2
n if and only if G ∈ H1.

P r o o f. Let G be a connected graph of order n with δ(G) > 2 and ̺o(G) =

γt(G) = 1

2
n. By Lemma 4, δ(G) = 2. Let S be a ̺o(G)-set. Clearly V (G)−S is a total

dominating set for G, and so γt(G) 6 n−̺o(G). Now, n = ̺o(G)+γt(G) 6 ̺o(G)+

|V (G) − S| = n, and thus |V (G) − S| = γt(G). It is evident that any component

of G[S] is K1 or K2. Since |S| = |V (G) − S|, any vertex of V (G) − S is adjacent

to precisely one vertex of S. Thus, any component of G[S] is K2. Furthermore,

deg(x) = 2 for any vertex x ∈ S. Let G′ be obtained from G by removing all edges

of G[S]. Then clearly G′ = cor(G[V (G)− S]). Since V (G)− S is a total dominating

set of G, G[V (G) − S] has no isolated vertex. Consequently, G ∈ H1.
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Conversely, assume that G ∈ H1. Thus G is obtained from a corona cor(H),

where H is a graph of even order and with no isolated vertex, by adding a perfect

matching M between the leaves of cor(H). Clearly V (H) is a total dominating

set for G, and thus γt(G) 6 |V (H)|. Let S be a total dominating set in G. For

any edge xy ∈ G[S], |S ∩ (N [x] ∪ N [y])| > 2. Thus |S| > |V (H)|. Consequently,

|V (H)| = γt(G). On the other hand, the vertices of the perfect matching M form an

open packing for G, and so ̺o(G) > |V (H)|. Since ̺o(G) 6 γt(G), we obtain that

̺o(G) = |V (H)|, as desired. �
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