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a-modules and generalized submodules
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Abstract. A QTAG-module M is an a-module, where « i
if M/Hg(M) is totally projective for every ordinal 8 <
paper a-modules are studied with the help of a-pure
submodules, and a-large submodules. It is found t
is an a-injective. For any ordinal w < a < w
submodule L of an wi-module M is summabled

that an a-large
is summable.

1 Introduction and Preliming

he lattice of its submodule is totally
it has finite composition length,
t x € M is uniform, if zR is a non-
d for any R-module M with a unique
ecomposition length.

ralizations of abelian groups. The results for
or modules after imposing some conditions on

it is called a uniserial mod
zero uniform (hence unis

Key words: a-modules, a-pure submodules, a-basic submodules, a-large submodules.
Affiliation:
Rafiquddin — Department of Applied Mathematics, Faculty of Engineering and
Technology, Aligarh Muslim University, Aligarh-202002, India
E-mail: rafiqamt786@rediffmail.com
Ayazul Hasan — College of Applied Industrial Technology, Jazan University, Jazan-
P.O. Box 2097, Kingdom of Saudi Arabia
E-mail: ayaz.maths@gmail.com, ayazulh@jazanu.edu.sa
Mohammad Fareed Ahmad — Department of Applied Mathematics, Faculty of
Engineering and Technology, Aligarh Muslim University, Aligarh-202002, India
E-mail: fareed3745@gmail.com



14 Rafiquddin, A. Hasan, M.F. Ahmad

extended to a homomorphism g: U — V, provided the composition length
dU/W) < d(V/f(W)).

Later on Benabdallah, Singh, Khan etc. contributed a lot to the study of TAG-
-modules [2], [17]. In 1987 Singh made an improvement and studied the modules
satisfying only the condition 1 and called them QTAG-modules. The study of
QTAG-modules and their structure began with work of Singh in [16]. This work,
executed by many authors, clearly parallels the earlier work on torsio ian

terizing different submodules of QTAG-modules. Yet there is
Throughout this paper, all the rings are associative wi

modules M are unital QTAG-modules. For a uniform ele e(x) =
d(zR) and

R
Hy(z) = sup{d(Z—R> ‘ yeM, x

are the exponent and height of = in M, respe
of M generated by the elements of height at HF(M) is the submodule
of M generated by the elements of k. Let us denote by M?,
the submodule of M, containing el infinite height. The module M is
h-divisible if M = M* = (N2, ule M is h-reduced if it does not
contain any h-divisible sub r words, it is free from the elements of
infinite height. The mod e bounded, if there exists an integer n
such that Hy(z) <n element x € M.

The sum of all si les of M is called the socle of M, denoted by
Soc(M) and a s (M) is called a subsocle of M. The cardinality
of the minima et of M is denoted by g(M). For all ordinals «, fps(«)

is the o'l i i and it is equal to g(Soc(Ha(M))/ Soc(Ha_H(M))).
is h-pure in M if NN Hy, (M) = Hy(N), for every integer
«, a submodule N C M is an a-high submodule of M if N
e submodules of M that intersect H, (M) trivially.

induced by height in M is defined by v(z) = Hps(z), the height of  in M, for all
z € Nand N = K @ L is a valuated direct sum if v(k + ¢) = min{v(k),v(¢)} for
all ke K and ¢ € L [5].

A submodule B C M is a basic submodule [9] of M, if B is h-pure in M,
B = ®B;, where each B; is the direct sum of uniserial modules of length i and
M/ B is h-divisible. A fully invariant submodule L C M is large [1],if L+ B = M,
for every basic submodule B in M.

Imitating [11], the submodules Hy(M),k > 0 form a neighborhood system
of zero, thus a topology known as h-topology arises. Closed modules are also
closed with respect to this topology. Thus, the closure of N C M is defined as
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N = p—o(N + Hy(M)). Therefore the submodule N C M is closed with respect
to h-topology if N = N.

An h-reduced QTAG-module M is summable [14] if Soc(M) = Pj_,, S, where
Sp is the set of all elements of Hg(M) which are not in Hg41 (M), where « is the
length of M. Moreover, M is called totally projective [10], if

H (Ext(M/ Ha (M), M')) = 0

for all ordinal @ and QTAG-modules M'.

It is interesting to note that almost all the results which hold for
are also valid for QTAG-modules [13]. Our notations and ter
agree with those in [3] and [4].

2 «a-modules and a-basic submodules

Mehdi et al. [12] defined a-modules and introduc
modules. The same type of study was contin
have been obtained in terms of generalized
the similar study of a-modules that depend
basic submodules, projectivity and injectivi
for the convenience of the readers, w

Definition 1. Let o denote the class o
is totally projective for all ordi <
a-modules.

modules M such that M/Hg(M)
limit ordinal. These modules are called

To develop the s
following.

to prove some results, and we start with the

on to show that N+ Hg(M)/Hg(M) is isotype in M/Hg(M) for
d therefore, N + Hg(M)/Hg(M) = N/Hg(N) is totally projective
< a. O

As generalized the notion of a basic submodule in [12], by defining B to be an
a-basic submodule of an a-module M if B is totally projective of length at most «,
B is a-pure submodule of M, and M/B is h-divisible.

In order to establish the existence of a-basic submodules we require the follow-
ing notion for technical convenience.

Definition 2. Let « be a limit ordinal and M a QTAG-module. An a-high tower
of M is a well-ordered ascending chain {Mpg}g<, of submodules of M such that,
for each 8, Mg is a f-high submodule of M.
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Now we need to prove the following lemma.

Lemma 1. Let a be a limit ordinal and {Ms}s<q an a-high tower of a QTAG-
-module M. If each Mg is summable, then N = |J,_, Mp is summable.

Proof. As « is a limit ordinal, we may choose a strictly increasing sequence 51 <

f2 <--» < By < ... of ordinals having « as its limit. Then N = J,,, Mg, . Set
Ty = Soc(Mpg,) and, for n > 1, let T), be such that

Soc(Hpg, (M)) = T,, © Soc(Hp, ,, (M))
with T,, € Mg, ,,. Then we have a direct-sum decomposition N) = n

which is normal in the sense that

provided t; € T; for i = 1,...,n. Now each M, i e, summable, and of
countable length. Therefore, each subsocle of
In particular, each T, is a summable subs
Soc(N) = D,, ., T is normal, it follows tha
Since each M3y is isotype, N is itself an isoty
N is summable.

e of M. Since the decomposition
¢(V) is a,summable subsocle of M.

bm e of M and consequently
O

We continue the study with the fo

ollary.

Corollary 1. Let o be a li
module M, where eac.

al and {Mgs}s<q an a-high tower of a QTAG-
projective, then N = (Js_,, Mp is totally

at most .
summabl a 1 implies that IV is totally projective. O

be a QTAG-module. Then M contains an a-basic submodule
is an a-module.

Proof. is an a-pure submodule of M and if M/B is h-divisible, then it follows
that M/Hg(M) = B/Hg(B) for all < a. Consequently, only a-modules can have
a-basic submodules (see [12]). Suppose now that M is an a-module and select an
a-high tower {Mp}g<n. Now

Mg = Mg+ Hg(M)/Hg(M),

and since Mp is isotype in M, Mg + Hg(M)/Hg(M) is isotype in M/Hg(M). By
Corollary 1, B=J B<a Mg is totally projective. It is easily seen that

Soc(M) C Soc(B) + Hp(M)
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for each 8 < «, and therefore B is a-pure in M. Moreover, BN Hy(M) = H,(B)
and
Soc(M) C Soc(B) + Hp(M)

for 8 < w imply that M/B is h-divisible. Thus, B is the required a-basic submodule
of M. O

Lemma 2. Suppose N is an isotype submodule of a QTAG-module M and that
{Ns}g<a Is an a-high tower of N, then there exists an a-high tower of
M such that, for each 3, N3 C Mg and Ng = N N Mg.

Proof. Let us first note that Ng = N N My is a consequence of
Ng € Mg implies Ng € N N Mg and

(NﬂMg)ﬁHg(N) :(NﬂMﬁ)ﬂHﬂ

The maximality of a S-high submodule then yield; ity. Assume now that
8 < « and that for each v < 8 we have a -hj -, of M such that
N, C M, and M, C M, for all n < . In oxder to be able to choose the desired
Mg, it suffices to show that

(N3+UM =0.
¥<B

Suppose z + y € Soc(Hg(M) 5 and y € M, for some v < 5. Then

H(z') = -H(y) M, = Hi(M)N N, = Hi(N,),

+y—z€e H,(M)NM,=0 and z+y=z€N.
N M, = N, C Ng and, consequently,
x+y e NgNHg(M)=NsgNHg(N)=0
as desired. ]

Lemma 3. Let M be a totally projective QTAG-module such that M = Uﬁ<a Mg
where {Mpg}g<q is an a-high tower. If N is an a-pure submodule of M such that
for each B, N N Mg is a B-high submodule of N, then N is a direct summand of
M.

Proof. We need only show that M/N is totally projective having length at most a.
Since N N Mg is (8 + 1)-pure in N and N is a-pure in M, N N Mgz is (8 + 1)-pure
in M and, a fortiori, (8 + 1)-pure in Mg. Since Mp is totally projective, Mg is
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B-projective. Therefore, there is direct decomposition Mg = (N N Mg) & Kz for
each 8 < a. Now

M/N = | ) Mg+ N/N and Mg+ N/N = Ms/(Ms N\ N) = Kg
B<a

is totally projective for each 5. By Corollary 1, it is enough to show that Mz+N/N
is a S-high submodule of M/N whenever w < § < . Since N is a-pure in M, we
have

Soc(Hg(M/N)) = Soc(Hg(M)) + N/N

for 5 < « and it then easily follows that
Soc(M/N) = Soc(Mg + N/N) & Soc(Hg(M,

Because of this direct decomposition, it is enough to s tha /N is an
h-pure submodule of M /N for 5 > w.
Now

Soc(Mp + N) = Soc(Ks &
= Soc(KB)
= Soc(Kp)
= Soc(M,

Soc(Hp(N))

If > w and if z € Soc(Mp + N), the rite = y + z where y € Soc(Mp)
and z € Soc(Hg(N)) C H, ite height in M, then this height is just
the height of y in M (= and thus just the height of z =y + 2
s infinite height in M, then y has infinite
nite height in Mg + N, it follows that Mg+ N
s Mg+ N/N is h-pure in M/N. O

a-pure submodule of an a-module M such that N is

NNMg for each 8. Let B = Uﬂ<a Mg. By the proof of Theorem 1,
-basic submodule of M. But {Mg}g<, is also an a-high tower of B, and
by Lemma 3 we have the required direct decomposition B = N & K. O

Now we prove the following result.

Theorem 2. If N is an a-pure submodule of an a-module M, then M/N is an
a-module.

Proof. Let B be an a-basic submodule of N and choose K such that B @ K is an
a-basic submodule of M. Now if € Soc(N N K), we can write for each § < a,
x = yg + 28, where yg € Soc(N) and z3 € Hg(N). Thus

—ys+x € Hg(B® K) = Hg(B) ® Hg(K)
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and

ze (| Hs(K) = Ho(K) = 0.
B<a

We then have a direct decomposition N @& K. If Hi(a') € N @ K, then Hy(d') =
y+ Hi(V) +c, where d(25) = d($4) =1, y€ B,be N and c € K. Since

Hi(M)N(B®K)=H(B®K),

we conclude that
Hi(M)N(NoK)=H(N®K).

Now
Soc(M) C Soc(B @ K) + Hzg(M) C Soc(N & K)

for all 8 < a, and therefore N ® K is an a-pure su le of sequently,
N @ K/N is a-pure in M/N. Also
N @ K/N =

and

/(B & K)]

ule of M/N and we conclude
O

(M/N)/(N © K/N) = (M/B &)

is h-divisible. We have constructed a
that M/N is indeed an a-module.

As a consequence of the
of a familiar property of

, we have the following striking analog

e of an a-module M. Then N is an a-pure sub-
M)/Hg(M) is a direct summand of M /Hg(M)

Corollary 2. Let N e a submo
module of M if if N+ Hg
for all § < a.

Proof. N, )/Hg(M) being a direct summand of M/Hg(M) implies that
M)4®6-pure in M/Hg(M), which is equivalent to N being S-pure
it ordinal, NV is a-pure in M if and only if N is S-pure in M

yy assume that N is a-pure in M. Then M/N is an a-module and
for 8 < a,

(M/N)/Hg(M/N) = (M/N)/(Hg(M) + N/N)
= (M/Hp(M))/(N + Hg(M)/Hp(M))

is totally projective of length at most 3. Since N + Hg(M)/Hg(M) is B-pure in
M/Hg(M), N + Hg(M)/Hg(M) is a direct summand of M/Hg(M). O

Proposition 3. If N is an a-pure submodule of an a-module M, and if Hz(N) is
a direct summand of Hg(M) for some 8 < «, then N is a direct summand of M.

Proof. Assuming the conditions of the Theorem 2, we have for some § < a:
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(i) (M/N)/Hg(M/N) is totally projective;
(ii) N'NHp(M) = Hg(N);
(iif) N+ Hg(M)/Hg(M) is a direct summand of M/Hg(M); and
(iv) Hp(M) = Hpg(N) ® K.
It follows that M = N & L where L O K.

As a corollary, we have the following generalization of the well-kne
bounded A-pure submodules are direct summands.

Corollary 3. If N is an a-pure submodule of an a-module M
some (8 < «, then N is a direct summand of M.

As defined in [10], a QTAG-module M is fully t
uniform elements x, y € M, Hy(z;) < Hpu(y;)
exists an endomorphism of M that maps x ont ) =d ( ) 1.
ully transmve (see
he fact that modules of length < «

ents of infinite height in

The next corollary tells us that a-modul
[6]). This, of course, is merely a reflection
behave in the a context exactly as modules
the classical situations.

Proof. Let S be a finite s
a-pure submodule T
direct sum of mod

ssume that T has length . Then T is a
ss than . Consequently, T' is contained in a

0

H, (Ext(M, M')) =0

ules M’, that is, there exists a submodule N bounded by « such that
to projective, and an a-module M is an a-injective if

H, (Ext(M’',M)) =0

for all a-modules M’, that is, it is a direct summand of every a-module in which
it occurs as an a-pure submodule.

To characterize the a-injective modules we must generalize the notion of a closed
module. Mimicking [12], for any QTAG-module M, the submodules {Hy (M)},
k=0,1,2,...,00 from a neighborhood system of zero, giving rise to h-topology. If
k is replaced by an arbitrary limit ordinal less than or equal to «, then h-topology
may be extended to a-topology, and all the definitions and results which hold for
h-topology may be extended for a-topology. In a-topology, for any submodule NV
of M, the closure of N as (5_, (N + Hg(M)) denoted by N.
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Definition 3. We call a QTAG-module an a-closed module if it is the maximal
closed submodule of its closure in the a-topology.

With the help of the above discussion, we are able to infer the following.
Proposition 4. Let M be an a-closed a-module. Then M is an a-injective.

Proof. We first show that H, (Ext(T, M)) = 0 for all a-modules T". Assum

zg R

where d(IBR) =n and Hn(l'/ﬁ) = Hn(zlﬁ)a 25 R

a:;sR
zg € Hg(M). Then Tg = x3 — 23 has an exp
But {zs : 8 < a} is a chain in M with ele
and, therefore, converges to some = €

) = n for some

We conclude that M’ =
Now let M’ be an i

of the above sequence vanishes since M’/B is isomorphic to a
T and the right-hand term vanishes since B is an a-pro-

g

n now show that there are enough a-injective modules and that an a-in-
dule is the sum of an a-closed module and an h-divisible module.

Theorem 3. Let M be an a-module. Then M is an a-pure submodule of an -
injective module and M is an a-injective module if and only if M is the direct sum
of an h-divisible module and an a-closed a-module.

Proof. It is evident from Proposition 4 that the direct sum of an h-divisible mod-
ule and an a-closed a-module is necessarily an a-injective. Next, we need the
observation that every a-module M of length at most a can be imbedded as an
a-pure submodule of an a-closed module Ty () such that Ths (o) /M is h-divisible.
Indeed, Ty («) may be taken as the maximal closed submodule of the closure of M
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in the a-topology. It follows, by the same reasoning as in the proof of Theorem 1,
that

Tan(a)/Hg(Tu (o)) = M/Hg(M)

for all 8 < «, and therefore that Ty («) is an a-module.

Now let M be an arbitrary a-module. Let D be a minimal h-divisible module
containing H,(M). Take P to be the amalgamated sum of M and D over H,(M).
Then P = M' ® D where M’ = M/H,(M) and M’ N M is an a-high le
of M. Also, P/M is h-divisible and

Soc(P) C Soc(M) + Hg(P)

for all 5 < a. It follows that M is an a-pure submodule
of a-purity, M is an a-pure in the a-injective T ()

he sitivity

we have it imbedded,
M is an a-injective,
th P/M and P/P
are h-divisible. But then Q C D, and sinc C H,(M), we conclude that

Finally, assume that M is itself an a-injective
as above, as an a-pure submodule of P = Ty (

Q=0and M =Ty (a)® D. O
Now we are in a position to prov ing result.

Theorem 4. If M and M’ sed odules with the same Ulm invariants,

then M = M'.

Proof. Take B an ic submodules of M and M’, respectively. It is

easily seen that have the same Ulm invariants as M and M'. Therefore,

there is an i i B onto B’. Since B is an a-pure submodule of M,

# 0. Then z has some height § < a and we can write x = y+z where
z € Hgy1(M). But then z has height 5 and f(y) = f'(y) = —f'(2) has
height at least 8 + 1. This, however, is a contradiction, since f is an isomorphism
of B onto B’ and B’ is an isotype submodule of M’. We conclude that Kerf’ = 0.
Then

f((M)/B" = f'(M)/f'(B) = M/B

is h-divisible. Hence f’(M)/B’ is a direct summand of M’/B’, and since B’ is an
a-pure submodule of M, it follows that f'(M) is an a-pure submodule of M’. Since
f/(M) =2 M is an a-injective, we have a direct decomposition M’ = f'(M)) @ L
where L = M'/f'(M) is h-divisible. But M’ is h-reduced and therefore L = 0 and
f/(M) = M, that is, f’ is an isomorphism of M onto M. O
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3 «-large submodules of summable modules

If F is a fully invariant submodule of the a-module M, then F is called an «o-large
submodule of M if M = B + F for all a-basic submodules B of M. This gen-
eralization of the concept of large submodule is studied in [12]. It is well-known
that Hg(M) is always an a-large submodule of M provided that 8 < « as well as
Hg(M) C L whenever L is an a-large submodule in M.

Likewise, It was proved that an h-reduced QTAG-module M of leng
contains a proper a-basic submodule B if and only if M is an a-module
cofinal with w. Since wy, the first uncountable limit ordinal, is not
some additional clarifications are necessary. In fact, B is an wi-basi

th > «

when L = M and either L = 1 or L # 1 and it can take differ
L = Hg(M) where 8 < length of M < w;.

In [12] it was seen that the properties of a-large s
preserved in general by these of the QTAG-modu
the direct sum of countably generated modules.
totally projective modules.

is is not the case for

Theorem 5 ([6], [12]). Let L be an a-large submodulgyof the QTAG-module M.
Then L is totally projective if and on a. rojective.

n the above assertion to a class
evident that direct sum of countably
e. In [8] it was constructed a summable
m_of“countably generated modules. So, the
eme for a-large submodules of summable

The main goal of this section is
of modules, called summable
generated modules are thems
wi-module need not be 4
investigation of the di

Now we have e machinery necessary to prove the following.

Theorem 6 ppose tha is an wi-module with an a-large submodule L for
i h that w < a < wy. Then M is summable if and only if L is

irtue of [12] there is a countable limit ordinal 7 < « such that
). Moreover, L/H, (L) = L/H,(M) is an a-large submodule of

fore, orem 5 applies to deduce that L/H, (L) is totally projective, in fact, a
direct sum of uniserial modules. That is why, some high submodule N of L is a
direct sum of countably generated modules. Indeed, what suffices to show is that
N/H,(N) is a direct sum uniserial modules because H,(N) is bounded. In order
to do that, we observe that

(N + Hy(L))/Heo(L) € L/Hy(L)

is also a direct sum of uniserial modules as a submodule. But N is isotype in L,
whence
(N + Hw(L))/Hw(L) = N/(N N Hw(L)) = N/Hw(L)
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which substantiates our claim. On the other hand, M being summable yields that
H,(L) = H.(M) is summable, and we are done.

“ <« 7. Same as above, H.(M) = H,,(L) for some countable limit ordinal 7 < «.
But L being summable implies that H,(L) = H,(M) is summable. Likewise,
M/H, (M) is totally projective of countable length, hence a direct sum of countably
generated modules. Let N be a 7-high submodule of M. Since H.(N) is high
in H;(M) one may write H.(M) = H.(N) @ T for some submodule 7', whence
H. (M) =T. Moreover,

Soc(M) = Soc(N) @ Soc(H,(M)) = Soc(N) @& Soc(T) §

In fact

+H,(M)+M=N&oTo+M

because H. H,(K)@® T, and by induction the desired decomposition now
follows.
It € Soc(T) then

Hy(y + 2) = min{Hun (y), Hu(2)}

sinc

Hy(y) <a<Hpy(z) oo H(M)=H,(N)eT

when Hys(y) > a. Therefore, H, (M) is summable if and only if T" has this property.
Next, observe that

N = N/{0} = N/H,(N) = N/(N 0 H,(M)) = (N + H,(M))/H, (M),

where the last quotient is obviously isotype in M/H, (M), and thus it is a direct
sum of countably generated modules as well. It follows that IV is a direct sum of
countably generated modules. Furthermore, both 7" and N are summable. But
Soc(M) = Soc(N) @ Soc(T) is a valuated direct sum and from this, our assertion
follows directly by the definition of summability. O
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We close the paper with a problem as follows:

Problem 1. Does it follow that if both Hg(M) and M/Hg(M) are o-summable
modules (see [14]) for some ordinal 8, then M is o-summable?

For summable modules we refer to [7]. Notice also that it can be obtained some
results in this aspect under certain limitations on 8 which depends on n < w.
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