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Abstract. We introduce the cardinal invariant θ-aL′(X), related to θ-aL(X), and show

that if X is Urysohn, then |X| 6 2θ-aL
′(X)χ(X). As θ-aL′(X) 6 aL(X), this represents an

improvement of the Bella-Cammaroto inequality.
We also introduce the classes of firmly Urysohn spaces, related to Urysohn spaces,

strongly semiregular spaces, related to semiregular spaces, and weakly H-closed spaces,
related to H-closed spaces.
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1. Introduction

We follow the notation from [8] and [9]. Recall that a space X is Urysohn if for

every two distinct points x, y ∈ X there are open sets U and V such that x ∈ U ,

y ∈ V and U ∩ V = ∅.

Many researchers have worked on the cardinality of Urysohn and H-closed spaces,

in particular considering cardinal invariants defined by using the θ-closure operator

defined below (see, for instance, [1], [2], [4], [5], [6], [7], [10], [11]).

For a space X , we denote by χ(X) (ψ(X), πχ(X), c(X), t(X)) the character (re-

spectively, pseudocharacter, π-character, celluarity, tightness), see [8].

The θ-closure of a set A in a space X is the set clθ(A) = {x ∈ X : for every

neighborhood U ∋ x, U ∩ A 6= ∅}; A is said to be θ-closed if A = clθ(A), see [13].

The authors wish to thank Jack Porter for his helpful comments and suggestions in
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The complement of a θ-closed set is called a θ-open set. Considering the fact that the

θ-closure operator is not in general idempotent, Bella and Cammaroto defined in [4]

the θ-closed hull of a subset A of a space X , denoted by [A]θ, that is the smallest

θ-closed subset of X containing A.

The γ-closure (see [2]) of the set A in a space X is the set clγ(A) = {x : for every

open neighborhood of X , clθ(U) ∩ A 6= ∅}. A is said to be γ-closed if A = clγ(A).

The γ-closure operator is not in general idempotent.

If X is a Urysohn space, the θ-pseudocharacter of a point x in X (see [2]) is

ψθ(x,X) = min{|U| : U is a family of open neighborhoods of x and {x} is the in-

tersection of the θ-closures of the closures of U}; the θ-pseudocharacter of X is

ψθ(X) = sup{ψθ(x,X) : x ∈ X}.

The almost Lindelöf degree of a subset Y of a space X is aL(Y,X) = min{k :

for every cover V of Y consisting of open subsets of X , there exists V ′ ⊆ V such

that |V ′| 6 k and
⋃
{V : V ∈ V ′} = Y }. The function aL(X,X) is called the

almost Lindelöf degree of X and denoted by aL(X) (see [14] and [9]). The almost

Lindelöf degree of X with respect to closed subsets is aLC(X) = min{k : for every

closed set Y ⊂ X and every cover V of Y consisting of open subsets of X , there

exists V ′ ⊆ V such that |V ′| 6 k and
⋃
{V : V ∈ V ′} = Y }. The almost Lindelöf

degree of X with respect to θ-closed subsets is aLθ(X) = min{k : for every θ-closed

set Y ⊂ X and every cover V of Y consisting of open subsets of X , there exists

V ′ ⊆ V such that |V ′| 6 k and
⋃
{V : V ∈ V ′} = Y }. We have that the almost

Lindelöf degree is hereditary with respect to θ-closed sets, so we have that aL(X) =

aLθ(X).

A space X is called H-closed if it has finite almost Lindelöf degree.

Let (X, τ) = X be a topological space. We say that a subset A of X is reg-

ular open (regular closed) if A = int(A) (A = int(A)). The family B = {U :

U is regular open in X} is a base for X . Space X equipped with the topology gen-

erated by the base B is called the semiregularization of X and is denoted by Xs. If

X = Xs, then X is called semiregular.

For a subset A of a space X we will denote by [A]6λ the family of all subsets of A

of cardinality 6 λ.

In Section 2 we introduce the notions of weakly H-closed spaces, strongly semireg-

ular spaces and firmly Urysohn spaces and we prove that if X is a H-closed, strongly

semiregular, firmly Urysohn space, then X is compact.

In Section 3 we construct two new cardinal invariants denoted by θ-aL′(X), re-

lated to the θ-almost Lindelöf degree, and by tc̃(X), related to tightness, using an

operator denoted by c̃(·) (for this new operator we have that if X is a space and

A ⊂ X , then clθ(A) ⊆ c̃(A) ⊆ clγ(A)). We prove some results concerning weakly

H-closed spaces and, in particular, we prove that if X is a Urysohn space, then
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|X | 6 2θ-aL
′(X)tc̃(X)ψθ(X), which represents an improvement of the Bella-Cammaroto

inequality (see [4]).

2. Weakly H-closed spaces and strong semiregular spaces

In [2] the cardinal invariant θ-aL(X) was introduced, known as the θ-almost Lin-

delöf degree of the space X .

Definition 2.1. The θ-almost Lindelöf degree of a subset Y of a space X is

θ-aL(Y,X) = min{k : for every cover V of Y consisting of open subsets of X , there

exists V ′ ⊆ V such that |V ′| 6 k and
⋃
{clθ(V ) : V ∈ V ′} = Y }.

The function θ-aL(X,X) is the θ-almost Lindelöf degree of the space X and it is

denoted by θ-aL(X).

We have that θ-aL(X) 6 aL(X) for every space X , and using a slight modification

of Example 2.3 in [3] we prove that the previous inequality can be strict.

We say that a space is weakly H-closed if it has finite θ-almost Lindelöf degree.

We obviously have that an H-closed space is weakly H-closed but the converse is

not true as the following example shows:

E x am p l e 2.1. We consider Bing’s tripod space B. Let B be the set {(x, y) ∈

Q2 : y > 0} with the topology generated by the neighborhood base V(x,y) =

{Nε(x, y) : ε > 0}, where Nε(x, y) = {(x, y)} ∪
(
x − 1√

3
y − ε, x − 1√

3
y + ε

)
× {0} ∪(

x + 1√
3
y − ε, x + 1√

3
y + ε

)
× {0}. It is easily seen that X is not Urysohn and not

H-closed but considering the fact that the θ-closure of the closure of every open set

is the whole space we certainly have that X is weakly H-closed.

We also introduce a new cardinal function related to the weakly Lindelöf degree

called the θ-weakly Lindelöf degree.

Definition 2.2. Let X be a topological space and Y a subset of X , the θ-weakly

Lindelöf degree of Y with respect to X , denoted by θ-wL(Y,X), is

θ-wL(Y,X) = min
{
k : for every open cover U of Y by open subsets of X

there exists V ∈ [U ]6k such that Y = clθ

(⋃
V
)}
.

Definition 2.3. Let X be a topological space, the θ-weakly Lindelöf degree of X ,

denoted by θ-wL(X), is θ-wL(X,X).

Now we prove that for a θ-open subset U of a space X , θ-wL(U,X) 6 θ-wL(X).

Proposition 2.1. If U is a θ-open subset of a space X , then θ-wL(U,X) 6

θ-wL(X).
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P r o o f. Let k = θ-wL(X), U ⊆ X θ-open and U a cover of U by sets open in X .

Then U∪{X\U} is an open cover ofX and since k = θ-wL(X) there exists V ∈ [U ]6k

such that X = clθ(X \ U) ∪ clθ(
⋃
V). We want to prove that U ∩ clθ(X \ U) = ∅.

Suppose that there exists x ∈ U ∩ clθ(X \ U). Point x is in U which is θ-open, so

there exists an open set W such that x ∈ W ⊆ W ⊆ U . Then W ∩ X \ U 6= ∅,

so U ∩ X \ int(U) 6= ∅, a contradiction. So U is contained in clθ(
⋃
V) and thus

U ⊆ clθ(
⋃
V), therefore θ-wL(U,X) 6 k. �

Corollary 2.1. If X is weakly H-closed and U is θ-open in X , then for every

open cover U of U there exist a finite subfamily V such that U ⊆
⋃
V ∈V

clθ(V ).

Definition 2.4. We say that a space X is strongly semiregular if the family

B = {X \ U : U is a θ-open subset of X} is a base for X .

It could be seen that B satisfies the requirements to be a base for some topol-

ogy. X equipped with the topology generated by the base B is called the strong

semiregularization of X and is denoted by Xss.

It is natural to investigate the relation between the strong semiregularization Xss

and the semiregularization Xs of the space X .

Considering the fact that a θ-open set is open, the closure of an open set is regular

closed and that the complement of a regular closed set is regular open, we have

Proposition 2.2. A strongly semiregular space is semiregular.

The converse of the above statement is not true.

E x am p l e 2.2. Let Bs be the semiregularization of the space B of Example 2.1.

We have that if U is a θ-open subset of B, then Bs \ U is nowhere dense and so it

has empty interior, hence the space is not strongly semiregular.

We can also observe that for a Hausdorff space X , it may happen that Xss is not

Hausdorff even though Xs is Hausdorff.

E x am p l e 2.3. Bss has the indiscrete topology whereas Bs is Hausdorff.

We now give the definition of a new axiom of separation.

Definition 2.5. A topological space X is firmly Urysohn if for every x, y ∈ X

with x 6= y, there exist two open subsets U , V of X such that x ∈ U , y ∈ V and

U ∩ clθ(V ) = ∅.

We know that a firmly Urysohn space is Urysohn but we ask:
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Qu e s t i o n 2.1. Does there exist a Urysohn not firmly Urysohn space?

We investigate the θ-closed subsets of a firmly Urysohn, weakly H-closed space

and we prove:

Proposition 2.3. If X is firmly Urysohn and weakly H-closed and U is a θ-open

subset of X , then H = U is θ-closed.

P r o o f. Fix x 6∈ H . For each y ∈ H , there are open sets Uy and Vy such that

x ∈ Uy, y ∈ Vy, and clθ(Uy) ∩ clθ(Vy) = ∅. By Corollary 2.1, for the open cover

{Vy : y ∈ H} of H , there is a finite subset F ⊆ H such that H ⊆
⋃
y∈F

clθ(Vy). Let

U =
⋂
y∈F

Uy. Then U ∩
⋂
y∈F

clθ(Vy) = ∅. Thus, H is θ-closed. �

We also investigate the relation between θ-open sets and regular spaces and we

prove:

Proposition 2.4. X has a base of θ-open sets if and only if X is regular.

P r o o f. Suppose that X has a base consisting of θ-open sets. Let U be an open

subset ofX and x ∈ U , then there exists a θ-open subset V ofX such that x ∈ V ⊆ U

and x /∈ X − V . Subset V is θ-closed, so there exists an open subset W of X such

that x ∈ W and W ∩ (X − V ) = ∅. This means x ∈ W ⊆ W ⊆ V ⊆ U if and only

if X is a regular space. �

Using the previous property, we find a connection with compact spaces. We recall

an important result:

Lemma 2.1 ([12]). A spaceX is H-closed and regular if and only ifX is compact.

If X is regular, then the θ-closure equals the closure and for this reason we can say

that in a regular space the almost Lindelöf degree and the θ-almost Lindelöf degree

coincide.

From Corollary 4.8(k) in [12], we prove:

Theorem 2.1. If X is a firmly Urysohn, weakly H-closed and strongly semireg-

ular space, then it is compact.

P r o o f. Suppose that X is firmly Urysohn, weakly H-closed and strongly

semiregular. We want to show that such a space X is regular because in a reg-

ular space we have that the closure and θ-closure are equal to each other and for this

reason we have that the weakly H-closedness is equivalent to the H-closedness and

we can apply Lemma 2.1. If X is strongly semiregular, then it has a base consisting

of complements of closures of θ-open subsets of X which, by Proposition 2.3, are

θ-open. So X has a base consisting of θ-open sets and for this reason it is regular. �
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We can observe that having a base consisting of complements of closures of θ-open

sets is equivalent to having a base consisting of interiors of θ-closed sets.

We know that the character of a space is greater than or equal to the character

of its semiregularization. We have the same result when considering the strongly

semiregularization of the space X .

Proposition 2.5. If X is a space and Xss is the strong semiregularization of X ,

then χ(Xss) 6 χ(X).

P r o o f. Let x ∈ X and let Bx be an open neighborhood system of x such that

|Bx| 6 χ(X). It suffices to show that {int([U ]θ) : U ∈ Bx} is an open neighborhood

system for x in Xss. Let A be a θ-closed set such that x ∈ int(A). There is

U ∈ Bx such that U ⊆ int(A) ⊆ A. Thus, x ∈ U ⊆ [U ]θ ⊆ A, and it follows that

x ∈ int([U ]θ) ⊆ int(A). �

3. Construction of the cardinal function θ-aL′(·)

and of the operator c̃(·)

In this section we modify a filter construction given in [7]. In that paper an

operator ĉ was constructed. Here we construct a related operator c̃.

Let X be a topological space, x ∈ X and Fx the collection of all finite intersec-

tions C of regular closed sets such that x ∈ C. It is easy to prove that Fx is a filter

base which can be extended to a filter Cx that is maximal in the collection of all

finite intersections of regular closed sets, partially ordered by inclusion.

The maximal filter Cx has the following properties:

Proposition 3.1. Let X be a topological space and x ∈ X . Every regular closed

subset of X which meets every element of Cx is an element of Cx.

P r o o f. Let U be an open subset ofX and x ∈ X . U is regular closed. Suppose U

meets every element of Cx. Then {U} ∪ Cx is a filter base that contains Cx which

can be extended to a maximal filter M. As Cx is maximal, we have C = M and

U ∈ Cx. �

Proposition 3.2. Let X be a Urysohn space, then for every x, y ∈ X with x 6= y

we have that Cx 6= Cy.

P r o o f. Let x, y ∈ X with x 6= y. Since X is a Urysohn space, there exist two

open subsets U , V of X such that x ∈ U , y ∈ V and U ∩V = ∅. We have that U ∈ Cx
and V ∈ Cy. If Cx = Cy, then V ∈ Cx and U ∩ V = ∅ ∈ Cx, a contradiction. �
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We now define new operators using the maximal filter Cx.

Definition 3.1. For a space X and an open subset U of X , define:

‹U = {x ∈ X : U ∈ Cx}.

In the following propositions we give several properties of ‹U .

Proposition 3.3. Let X be a space and U an open subset of X . Then U ⊆ ‹U ⊆

clθ(U).

P r o o f. If x ∈ U , then U ∈ Cx and x ∈ ‹U . Let V be an open subset of X such

that x ∈ V . By Proposition 3.1, V ∩ U 6= ∅, hence x ∈ clθ(U). �

Qu e s t i o n 3.1. If X is a space, does there exist an open subset U of X such

that U ( ‹U ( clθ(U)?

Proposition 3.4. If X is a topological space and V, W are open subsets of X ,

then ‹V ∪ W̃ = ‡V ∪W . In particular this operator distributes over finite unions.

P r o o f. ‹V ∪ W̃ = {x ∈ X : V ∈ Cx} ∪ {x ∈ X : W ∈ Cx} = {x ∈ X : V ∪W =

V ∪W ∈ Cx} = ‡V ∪W . �

The analogue of the following proposition in the case of Hausdorff spaces is con-

tained in the proof of Proposition 4.1 in [7].

Proposition 3.5. X is a Urysohn space if and only if for every x, y ∈ X with

x 6= y there exist open subsets U , V of X such that ‹U ∩ ‹V = ∅.

P r o o f. Suppose that for every x, y ∈ X with x 6= y there exist open subsets U , V

of X such that ‹U ∩ ‹V = ∅. We have that U ⊆ ‹U and V ⊆ ‹V , so U ∩ V = ∅. This

means that X is a Urysohn space.

Conversely, suppose X is Urysohn, then for every x, y ∈ X with x 6= y there exist

open subsets U , V of X such that U ∩ V = ∅. We want to show that ‹U ∩‹V = ∅. In

order to have a contradiction, suppose there exists z ∈ ‹U ∩ ‹V . From the definition

of ‹U and ‹V , we have U, V ∈ Cz. Cz is a filter, therefore U ∩ V = ∅ ∈ Cz, a

contradiction. �

For a space X and a subset A of X we define a new operator called the c̃-closure

in this way:

Definition 3.2. Let X be a space and A a subset of X ,

c̃(A) = {x ∈ X : ‹U ∩A 6= ∅ for every open subset U of X containing x}.

We say that A ⊆ X is c̃-closed if A = c̃(A).
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We have the following propositions.

Proposition 3.6. If X is a space and A is a subset of X , then we have clθ(A) ⊆

c̃(A) ⊆ clγ(A).

P r o o f. If x ∈ clθ(A), then for every open subset V of X such that x ∈ V ,

V ∩ A 6= ∅. Therefore ‹V ∩ A 6= ∅ and x ∈ c̃(A).

If x ∈ c̃(A), then for every open subset U of X such that x ∈ U we have that
‹U ∩A 6= ∅ and by Proposition 3.3 we have ‹U ⊆ clθ(U). Thus for every open subset U

of X such that x ∈ U we have that clθ(U) ∩ A 6= ∅, so x ∈ clγ(A). �

Qu e s t i o n 3.2. If X is a space, does there exist A ⊆ X such that clθ(A) (

c̃(A) ( clγ(A)?

Proposition 3.7. If X is a space and U is an open subset of X , then clθ(U) ⊆

c̃(‹U).

P r o o f. If U is an open subset ofX , by definitions we have clθ(U) ⊆ c̃(U) ⊆ c̃(‹U).

�

Qu e s t i o n 3.3. If X is a space, does there exist an open subset U of X such

that clθ(U) ( c̃(‹U)?

We investigate the relation between Urysohn spaces and the operator c̃(·) and we

prove the following:

Proposition 3.8. If X is a Urysohn space, then for all x, y ∈ X with x 6= y there

exists an open subset U of X such that x ∈ U and y /∈ c̃(‹U).

P r o o f. Let x, y ∈ X with x 6= y. X is a Urysohn space, so that by Proposi-

tion 3.5 there exist open subsets U , V of X such that x ∈ U , y ∈ V and ‹V ∩ ‹U = ∅.

We have that c̃(‹U) = {z ∈ X : W̃ ∩‹U 6= ∅ for every open subset U of X} and y ∈ V

but ‹V ∩ ‹U = ∅, so y /∈ c̃(‹U). �

For a space X we define a new cardinal invariant tc̃(X) related to the tight-

ness t(X).

Definition 3.3. For a space X , the c̃-tightness of a point x ∈ X , denoted by

tc̃(x,X), is

tc̃(x,X) = min{k : for every A ⊆ X, if x ∈ c̃(A),

there exists B ∈ [A]6ksuch that x ∈ c̃(B)}.

The c̃-tightness of the space X , denoted by tc̃(X), is

tc̃(X) = sup
x∈X

tc̃(x,X).
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A natural question is:

Q u e s t i o n 3.4. Are tc̃(X) and t(X) incomparable?

With the following proposition we prove that tc̃(X) is bounded above by the

character.

Proposition 3.9. If X is a space, then tc̃(X) 6 χ(X).

P r o o f. Let x ∈ X , A ⊆ X such that x ∈ c̃(A) and let Vx be a neighborhood

system of x in X with |Vx| 6 χ(x,X). Because x ∈ c̃(A), for every V ∈ Vx we have

that ‹V ∩ A 6= ∅. Let y‹V ∈ ‹V ∩ A for every V ∈ Vx. We put B = {y‹V : V ∈ Vx}, so

B ⊆ A, x ∈ c̃(B) and |B| 6 χ(x,X). This proves that tc̃(x,X) 6 χ(x,X). �

Using the c̃-tightness and the θ-pseudocharacter we find a bound for the cardinality

of the c̃-closure of a subset A of a space X .

Proposition 3.10. Let X be a Urysohn space such that tc̃(X)ψθ(X) 6 k. Then

for every A ⊆ X we have that |c̃(A)| 6 |A|k.

P r o o f. Let x ∈ c̃(A). Since ψθ(X) 6 k, by Proposition 3.8 there exists a family

{Uα(x)}α<k of neighborhoods of x such that {x} =
⋂
α<k

clθ(Uα(x)) =
⋂
α<k

c̃(‡Uα(x)).

We want to prove that x ∈ c̃(‡Uα(x)∩A) for all α < k. Let U be an open neighborhood

of x and α < k. Since x ∈ c̃(A), we have that ∅ 6= ‰�U ∩ Uα(x) ∩ A ⊆ ‹U ∩‡Uα(x) ∩ A.

This shows that x ∈ c̃(‡Uα(x)∩A). Since tc̃(X) 6 k, there exists Aα ⊂‡Uα(x)∩A such

that |Aα| 6 k and x ∈ c̃(Aα) ⊆ c̃(‡Uα(x)). Then {x} =
⋂
α<k

c̃(Aα) and {Aα}α<k ∈

[[A]6k]6k, so |c̃(A)| 6 |[[A]6k]6k| = |A|k. �

We now give another version of the Lindelöf and of the θ-almost Lindelöf degree

using these new operators.

Definition 3.4. Let X be a topological space and Y a subset of X . We define

L̃(Y,X) by

L̃(Y,X) = min
{
k : for every cover U of Y by sets open in X

there exists V ∈ [U ]6ksuch that X =
⋃

Ṽ
}
.

We put L̃(X,X) = L̃(X).

We show now that if A is c̃-closed, then L̃(A,X) 6 L̃(X).

Proposition 3.11. If A is a c̃-closed subset of X , then L̃(A,X) 6 L̃(X).
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P r o o f. Suppose that L̃(X) 6 k and let C be a c̃-closed subset of X . For every

x ∈ X \ C there exists an open subset Ux of X such that Ũx ⊆ X \ C. Let U be an

open cover of C, then V = U ∪{Ux : x ∈ X \C} is an open cover of X . As L̃(X) 6 k,

there exists V ′ ∈ [V ]6k such that X =
⋃ ‹V ′. Thus there exists V ′′ ∈ [U ]6k such that

C ⊆
⋃
Ṽ ′′. This proves that L̃(C,X) 6 k. �

Definition 3.5. For a spaceX , the θ-almost Lindelöf degree ofX with respect to

ĉ-closed subsets (= sup{θ-aL(C,X) : C is ĉ-closed}) is denoted as θ-aL′(X) (instead

of θ-aLĉ(X)).

Note that θ-aL(X) 6 θ-aL′(X) 6 L̃(X).

Q u e s t i o n 3.5. Does there exist a space X such that θ-aL(X) < θ-aL′(X) <

L̃(X)?

Now we prove our main result that is a new cardinal bound for Urysohn spaces.

To prove this result we use Theorem 3.1 in [9].

Theorem 3.1 (Hodel). Let X be a set, k an infinite cardinal, f : P(X) → P(X)

an operator on X , and for each x ∈ X let {V (α, x) : α < k} be a collection of subsets

of X . Assume

(T) (tightness condition) if x ∈ f(H), then there exists A ⊆ H with |A| 6 k such

that x ∈ f(A);

(C) (cardinality condition) if A ⊆ X with |A| 6 k, then |f(A)| 6 2k;

(C-S) (cover-separation condition) if H 6= ∅, f(H) ⊆ H and q /∈ H , then there exists

A ⊆ H with |A| 6 k and a function f : A → k such that H ⊆
⋃
x∈A

V (f(x), x)

and q /∈
⋃
x∈A

V (f(x), x).

Then |X | 6 2k.

To prove the next theorem we use Theorem 3.1 and the operator c̃(·).

Theorem 3.2. If X is a Urysohn space, then |X | 6 2θ-aL
′(X)tc̃(X)ψθ(X).

P r o o f. Let k = θ-aL′(X)tc̃(X)ψθ(X). As ψθ(X) 6 k for every x ∈ X there

exists a family Wx = {W (α, x) : α < k} of open subsets of X containing x such that

{x} =
⋂

W∈Wx

clθ(W ).

For every x ∈ X and α < k, we put V (α, x) = clθ(W (α, x)) and prove the three

conditions of Theorem 3.1.

For H ⊆ X , define f(H) = c̃(H).

⊲ Condition (T) is true because tc̃ 6 k.

⊲ Condition (C) is true by Proposition 3.10.
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⊲ We prove condition (C-S). Let ∅ 6= H ⊆ X satisfy c̃(H) ⊆ H . We have that

H ⊆ c̃(H) so H = c̃(H) and H is c̃-closed. Suppose q /∈ H . For every a ∈ H there

exists αa < k such that q /∈ clθ(W (αa, a)) = V (αa, a). Let f : H → X such that

f(a) = αa. The set {W (f(a), a) : a ∈ H} is an open cover of H and since H is

c̃-closed and θ-aL′(X) 6 k, there exists A ∈ [H ]6k such that H ⊆
⋃
a∈A

V (f(a), a)

and q /∈
⋃
a∈A

V (f(a), a). This proves condition (C-S).

Applying Theorem 3.1 we have that |X | 6 2k = 2θ-aL
′(X)tc̃(X)ψθ(X). �

We can observe that every c̃-closed set is also θ-closed. We also know that the

almost Lindelöf degree is hereditary with respect to θ-closed sets, so for every spaceX

we have

θ-aL′(X) 6 θ-aLθ(X) 6 aLθ(X) = aL(X).

Furthermore, we know that ψθ(X) 6 χ(X) and by Proposition 3.9 we have that

tc̃(X) 6 χ(X).

From these facts we obtain the following:

Corollary 3.1 ([4]). If X is a Urysohn space, then |X | 6 2aL(X)χ(X).
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