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Abstract. A directed Cayley graph C(Γ, X) is specified by a group Γ and an identity-free
generating set X for this group. Vertices of C(Γ, X) are elements of Γ and there is a directed
edge from the vertex u to the vertex v in C(Γ, X) if and only if there is a generator x ∈ X

such that ux = v. We study graphs C(Γ, X) for the direct product Zm × Zn of two cyclic
groups Zm and Zn, and the generating set X = {(0, 1), (1, 0), (2, 0), . . . , (p, 0)}. We present
resolving sets which yield upper bounds on the metric dimension of these graphs for p = 2
and 3.
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1. Introduction

Let G be a directed graph with vertex set V (G). The distance d(u, v) from a vertex

u ∈ V (G) to a vertex v ∈ V (G) is the length of a shortest directed path from u to v.

A vertex w resolves two vertices u and v if d(u,w) 6= d(v, w). For an ordered set

of vertices W = {w1, w2, . . . , wz}, the representation of distances of v with respect

to W is the ordered z-tuple

r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wz)).

A set W ⊂ V (G) is a resolving set of G if every two distinct vertices of G have

different representations of distances with respect to W (if every two vertices of G

are resolved by a vertex inW ). The metric dimension ofG is the number of vertices in
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a smallest resolving set and it is denoted by dim(G). The ith coordinate in r(v|W ) is 0

if and only if v = wi. Thus, in order to prove thatW is a resolving set of G, it suffices

to show that r(u|W ) 6= r(v|W ) for every two different vertices u, v ∈ V (G) \W .

A directed Cayley graph C(Γ, X) is specified by a group Γ and an identity-free

generating set X for this group. Vertices of C(Γ, X) are elements of Γ and there is

a directed edge from the vertex u to the vertex v in C(Γ, X) if and only if there is

a generator x ∈ X such that ux = v.

The concept of metric dimension was introduced by Slater in [11] and investigated

independently by Harary and Melter in [4]. Slater referred to a metric dimension

of a graph as its location number and motivated the study of this invariant by its

application to the placement of minimum number of loran/sonar detecting devices

in a network so that the position of each vertex in the network can be uniquely

represented in terms of its distances to the devices in the set.

The metric dimension has extensive applications in robotics, since this invariant

can represent the minimum number of landmarks, which uniquely determine the posi-

tion of a robot moving in a graph space, see [8]. Other applications are for example in

pharmaceutical chemistry, see [2], pattern recognition and image processing, see [9].

Finding the metric dimension of a graph is an NP-hard problem. The metric

dimension of various families of graphs has been studied for four decades. In [2] it

was proved that a connected graph G has dim(G) = 1 if and only if G is a path.

Cycles have metric dimension 2. Oellermann, Pawluck and Stokke in [10] presented

results on the metric dimension of directed Cayley graphs for the direct product

of 3 cyclic groups. Fehr, Gosselin and Oellermann in [3] studied the metric dimension

of the directed Cayley graph of dihedral groups with a minimum set of generators

and they established upper and lower bounds on the metric dimension for directed

Cayley graphs whose vertices are elements of the direct product of t cyclic groups for

t > 2. They also found the exact values of the metric dimension of directed Cayley

graphs for the direct product Zm × Zn of two cyclic groups of orders m and n, and

the generating set X = {(0, 1), (1, 0)}. We generalize this problem and study the

generating sets X = {(0, 1), (1, 0), (2, 0), . . . , (p, 0)} for p = 2 and 3.

Let us note that the metric dimension of undirected Cayley graphs of cyclic groups

with small number of generators was considered in [6] and [7]. Barycentric subdivi-

sion of undirected Cayley graphs was studied in [1] and [5].

2. Directed Cayley graphs with 3 generators

In this section we study directed Cayley graphs C(Γ, X) for the group Γ = Zm×Zn

and the generating set X = {(0, 1), (1, 0), (2, 0)}. Let us note that the graph C(Γ, X)

is isomorphic to the graph C(Γ,−X), where −X = {(0,−1), (−1, 0), (−2, 0)}.
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We present Theorems 2.1 and 2.2 for the graph C(Γ,−X), because it is easier

to express distances from vertices in a graph to vertices in chosen resolving sets

when considering C(Γ,−X). Let V (C(Γ,−X)) = {vi,j : i = 0, 1, . . . ,m − 1; j =

0, 1, . . . , n−1}. Then the graphC(Γ,−X) contains directed edges vi,jvi,j−1, vi,jvi−1,j

and vi,jvi−2,j , where i = 0, 1, . . . ,m − 1 and j = 0, 1, . . . , n − 1. The distance from

vertex vi,j to vertex vz,l in C(Γ,−X) is

d(vi,j , vz,l) =
⌈ i− z

2

⌉

+ j − l if i > z, j > l,(2.1)

d(vi,j , vz,l) =
⌈ i− z

2

⌉

+ n+ (j − l) if i > z, j < l,(2.2)

d(vi,j , vz,l) =
⌈m+ (i− z)

2

⌉

+ j − l if i < z, j > l,(2.3)

d(vi,j , vz,l) =
⌈m+ (i− z)

2

⌉

+ n+ (j − l) if i < z, j < l.(2.4)

Theorem 2.1. Let Γ = Zm ×Zn and X = {(0, 1), (1, 0), (2, 0)}, where n > 2 and

m > 4. Then

dim(C(Γ,−X)) 6
⌊m

2

⌋

+ 1.

P r o o f. Let m = 2p+ ε, where p > 2 and ε = 0 or 1. We show that

W = {v0,0, v2,0, . . . , v2(p−1),0, vm−1,0}

is a resolving set of the graph C(Γ,−X), where Γ = Zm × Zn and

X = {(0, 1), (1, 0), (2, 0)}.

Note that |W | = p + 1 = ⌊m/2⌋ + 1. Let us present all vertices having the same

distance to v0,0 ∈ W . For r = 0, 1, 2, . . . ,m− 1, by (2.1),

d(vr,k−⌈r/2⌉, v0,0) =
⌈r

2

⌉

+ k −
⌈r

2

⌉

= k,

where 0 6 k−⌈r/2⌉ 6 n−1. This implies that the only vertices having the distance k

to v0,0 are the vertices v0,k, v1,k−1, v2,k−1, v3,k−2, . . . , v2(p−1),k−(p−1), v2p−1,k−p (and

v2p,k−p if ε = 1), where the second indices must be at least 0 and at most n− 1. We

show that these vertices are resolved by W .

For v2,0 ∈ W and r = 2, 3, . . . ,m− 1, by (2.1) we have

d(vr,k−⌈r/2⌉, v2,0) =
⌈r − 2

2

⌉

+ k −
⌈r

2

⌉

= k − 1.
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For r = 0 and r = 1, by (2.4) we obtain d(v0,k, v2,0) = ⌈(m− 2)/2⌉+k = k−1+⌈m/2⌉

and d(v1,k−1, v2,0) = ⌈(m− 1)/2⌉+ k − 1 = k − 1 + ⌈(m− 1)/2⌉.

In general, for vi,0 ∈ W , where i = 2, 4, . . . , 2(p−1), and for r = i, i+1, . . . ,m−1,

by (2.1) we have

d(vr,k−⌈r/2⌉, vi,0) =
⌈r − i

2

⌉

+ k −
⌈r

2

⌉

= k −
i

2
.

For r = 0, 1, . . . , i− 1, by (2.4) we obtain

d(vr,k−⌈r/2⌉, vi,0) =
⌈m+ r − i

2

⌉

+ k −
⌈ r

2

⌉

= k −
i

2
+
⌈m+ r

2

⌉

−
⌈ r

2

⌉

> k −
i

2
,

where 0 6 k − ⌈r/2⌉ 6 n− 1.

This implies that if ε = 0, the only vertices which can have the same representa-

tions with respect to W ′ = {v0,0, v2,0, . . . , v2(p−1),0} ⊂ W are the vertices vi,k−i/2,

vi+1,k−i/2−1 for i = 0, 2, 4, . . . , 2(p− 1), which are the pairs

(v0,k, v1,k−1), (v2,k−1, v3,k−2), . . . , (v2(p−1),k−(p−1), v2p−1,k−p).

If ε = 1, the representation of the vertices v2(p−1),k−(p−1), v2p−1,k−p with respect

to W ′ is the same as the representation of v2p,k−p (which is (k, k− 1, . . . , k− p+1)).

Let us note that if ε = 1, the pairs

(v0,k, v1,k−1), (v2,k−1, v3,k−2), . . . , (v2(p−2),k−(p−2), v2p−3,k−(p−1))

are resolved by W ′, but we present the proof which applies for both cases, ε = 0 and

ε = 1.

We use vm−1,0 ∈ W to resolve the vertices vi,k−i/2 and vi+1,k−i/2−1 for i =

0, 2, 4, . . . , 2(p − 1) (if ε = 1 and i = 2(p − 1), we also need to resolve 3 vertices

v2(p−1),k−(p−1), v2p−1,k−p, v2p,k−p).

For i = 0, 2, 4, . . . , 2(p− 1), by (2.4) we obtain

d(vi,k−i/2, vm−1,0) =
⌈m+ i− (m− 1)

2

⌉

+ k −
i

2
= k + 1,

d(vi+1,k−i/2−1, vm−1,0) =
⌈m+ i+ 1− (m− 1)

2

⌉

+ k −
i

2
− 1 = k,

and for v2p+ε−1,k−p = vm−1,k−⌈(m−1)/2⌉, by (2.1),

d(vm−1,k−⌈(m−1)/2⌉, vm−1,0) = k −
⌈m− 1

2

⌉

= k − p.

All vertices of C(Γ,−X) are resolved by W , hence dim(C(Γ,−X)) 6 |W | =

⌊m/2⌋+ 1. �
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Theorem 2.2. Let Γ = Zm ×Zn and X = {(0, 1), (1, 0), (2, 0)}, where n > 3 and

m > 2n+ 2. Then dim(C(Γ,−X)) 6 n.

P r o o f. Let us show that

W = {v0,0, v0,1, v0,2, . . . , v0,n−2, v1,n−1}

is a resolving set of the graph C(Γ,−X). We present all vertices having the same

distance to v0,0 ∈ W . For r = 0, 1, 2, . . . , n− 1, by (2.1), we have

d(v2k−2r,r , v0,0) =
⌈2k − 2r

2

⌉

+ r = k,

d(v2k−2r−1,r , v0,0) =
⌈2k − 2r − 1

2

⌉

+ r = k,

where 2k − 2r − 1, 2k − 2r ∈ {0, 1, . . . ,m − 1}. This implies that the only vertices

having the distance k to v0,0 are the vertices

v2k,0, v2k−1,0, v2k−2,1, v2k−3,1, . . . , v2k−2(n−1),n−1, v2k−2(n−1)−1,n−1,

where the first indices are at least 0 and at most m− 1. We show that these vertices

are resolved by W .

For v0,1 ∈ W and r = 1, 2, . . . , n− 1, by (2.1) we have

d(v2k−2r,r , v0,1) = d(v2k−2r−1,r , v0,1) = (k − r) + r − 1 = k − 1

(note that 2k − 2r − 1, 2k − 2r ∈ {0, 1, . . . ,m− 1}). For r = 0, by (2.2) we obtain

d(v2k,0, v0,1) = d(v2k−1,0, v0,1) = k + n− 1.

In general, for v0,i ∈ W , where i = 1, 2, . . . , n − 2, and for r = i, i+ 1, . . . , n− 1,

by (2.1) we have

d(v2k−2r,r , v0,i) =
⌈2k − 2r

2

⌉

+ r − i = k − i,

d(v2k−2r−1,r, v0,i) =
⌈2k − 2r − 1

2

⌉

+ r − i = k − i.

For r = 0, 1, . . . , i− 1, by (2.2) we obtain

d(v2k−2r,r , v0,i) =
⌈2k − 2r

2

⌉

+ n+ r − i = k + n− i,

d(v2k−2r−1,r , v0,i) =
⌈2k − 2r − 1

2

⌉

+ n+ r − i = k + n− i,

where 2k − 2r − 1, 2k − 2r ∈ {0, 1, . . . ,m− 1}.
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Let W ′ = {v0,0, v0,1, v0,2, . . . , v0,n−2} ⊂ W . It follows that

r(v2k,0|W
′) = r(v2k−1,0|W

′) = (k, k + n− 1, k + n− 2, . . . , k + 2),

r(v2k−2,1|W
′) = r(v2k−3,1|W

′) = (k, k − 1, k + n− 2, . . . , k + 2),

...

r(v2k−2(n−3),n−3|W
′) =

r(v2k−2(n−3)−1,n−3|W
′) = (k, k − 1, k − 2, . . . , k − n+ 3, k + 2),

which means that the vertices v2k−2r,r and v2k−2r−1,r have the same representa-

tions with respect to W ′ for r = 0, 1, . . . , n − 3. The representation of the vertices

v2k−2(n−2),n−2, v2k−2(n−2)−1,n−2, v2k−2(n−1),n−1 and v2k−2(n−1)−1,n−1 with respect

to W ′ is (k, k − 1, k − 2, . . . , k − n+ 2).

For v1,n−1 ∈ W and r = 0, 1, . . . , n− 3, by (2.2) we obtain

d(v2k−2r,r , v1,n−1) =
⌈2k − 2r − 1

2

⌉

+ n+ r − (n− 1) = k + 1,

d(v2k−2r−1,r , v1,n−1) =
⌈2k − 2r − 1− 1

2

⌉

+ n+ r − (n− 1) = k,

where 2k − 2r − 1, 2k − 2r ∈ {1, 2, . . . ,m − 1}. This implies that the vertices

v2k,0, v2k−1,0, v2k−2,1, v2k−3,1, . . . , v2k−2(n−3),n−3, v2k−2(n−3)−1,n−3 are resolved.

It remains to resolve the vertices v2k−2(n−2),n−2, v2k−2(n−2)−1,n−2, v2k−2(n−1),n−1

and v2k−2(n−1)−1,n−1. For v1,n−1 ∈ W , by (2.2) we have

d(v2k−2(n−2),n−2, v1,n−1) = k − (n− 2) + n+ (n− 2)− (n− 1) = k + 1,

d(v2k−2(n−2)−1,n−2, v1,n−1) = k − (n− 2)− 1 + n+ (n− 2)− (n− 1) = k,

and by (2.1),

d(v2k−2(n−1),n−1, v1,n−1) = k − n+ 1,

d(v2k−2(n−1)−1,n−1, v1,n−1) = k − (n− 1)− 1 = k.

Hence W is a resolving set of C(Γ,−X) which means that dim(C(Γ,−X)) 6 |W |.

�

It is easy to check that Theorem 2.2 does not hold for m = 2n and 2n+ 1. From

Theorems 2.1 and 2.2 we obtain the following corollary.

Corollary 2.3. Let Γ = Zm×Zn and X = {(0, 1), (1, 0), (2, 0)}, where n > 3 and

m > 4. Then

dim(C(Γ,−X)) 6

{

min
{

n,
⌊m

2

⌋

+ 1
}

if m /∈ {2n, 2n+ 1},

n+ 1 if m = 2n or 2n+ 1.

626



P r o o f. If n > 3 andm > 2n+2 then by Theorem 2.2 we get dim(C(Γ,−X)) 6 n.

Since n 6 m/2− 1, we obtain n = min{n, ⌊m/2⌋+ 1}.

If n > 3 and 4 6 m 6 2n − 1, then by Theorem 2.1 we have dim(C(Γ,−X)) 6

⌊m/2⌋ + 1. Since ⌊m/2⌋ + 1 6 ⌊(2n− 1)/2⌋ + 1 = n, we obtain ⌊m/2⌋ + 1 =

min{n, ⌊m/2⌋+ 1}.

If m = 2n or 2n+1, then by Theorem 2.1 we have dim(C(Γ,−X)) 6 ⌊m/2⌋+1 =

n+ 1. �

Since the graphs C(Γ, X) and C(Γ,−X) are isomorphic, we get an upper bound

on the metric dimension of C(Γ, X).

Corollary 2.4. Let Γ = Zm×Zn and X = {(0, 1), (1, 0), (2, 0)}, where n > 3 and

m > 4. Then

dim(C(Γ, X)) 6

{

min
{

n,
⌊m

2

⌋

+ 1
}

if m /∈ {2n, 2n+ 1},

n+ 1 if m = 2n or 2n+ 1.

3. Directed Cayley graphs with 4 generators

Let us consider directed Cayley graphs C(Γ, X) for the group Γ = Zm × Zn and

the generating set X = {(0, 1), (1, 0), (2, 0), (3, 0)}. We present resolving sets which

yield upper bounds on the metric dimension of C(Γ,−X). The graph C(Γ,−X)

contains directed edges vi,jvi,j−1, vi,jvi−1,j , vi,jvi−2,j and vi,jvi−3,j , where i =

0, 1, . . . ,m − 1 and j = 0, 1, . . . , n − 1. The distance from vertex vi,j to vertex vz,l

in C(Γ,−X) is

d(vi,j , vz,l) =
⌈ i− z

3

⌉

+ j − l if i > z, j > l,(3.1)

d(vi,j , vz,l) =
⌈ i− z

3

⌉

+ n+ (j − l) if i > z, j < l,(3.2)

d(vi,j , vz,l) =
⌈m+ (i− z)

3

⌉

+ j − l if i < z, j > l,(3.3)

d(vi,j , vz,l) =
⌈m+ (i− z)

3

⌉

+ n+ (j − l) if i < z, j < l.(3.4)

Theorem 3.1. Let Γ = Zm × Zn and X = {(0, 1), (1, 0), (2, 0), (3, 0)}, where

n > 3 and m > 5. Then

dim(C(Γ,−X)) 6
⌊m+ 1

3

⌋

+ 1.
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P r o o f. Let m = 3p+ ε, where p > 2 and ε ∈ {−1, 0, 1}. Let us show that

W = {v0,0, v3,0, . . . , v3(p−2),0, vm−4,0, vm−2,0}

is a resolving set of the graph C(Γ,−X), where Γ = Zm×Zn and X = {(0, 1), (1, 0),

(2, 0), (3, 0)}. Note that

|W | = (p− 1) + 2 = p+ 1 =
m− ε

3
+ 1 =

⌊m+ 1

3

⌋

+ 1.

We present all vertices having the same distance to v0,0 ∈ W . For r = 0, 1, 2, . . . ,

m− 1, by (3.1),

d(vr,k−⌈r/3⌉, v0,0) =
⌈r

3

⌉

+ k −
⌈r

3

⌉

= k,

where 0 6 k−⌈r/3⌉ 6 n−1. This implies that the only vertices having the distance k

to v0,0 are the vertices of the set

S−1 = {v0,k, v1,k−1, v2,k−1, v3,k−1, v4,k−2, . . . , v3(p−1),k−(p−1), v3p−2,k−p}

if ε = −1 (where the second indices must be at least 0 and at most n− 1). If ε = 0,

we have one extra vertex v3p−1,k−p, so for ε = 0 we define S0 = S−1 ∪ {v3p−1,k−p}.

If ε = 1, then the vertices v3p−1,k−p and v3p,k−p also have distance k to v0,0, so S1 =

S−1 ∪ {v3p−1,k−p, v3p,k−p} is the set of vertices having the distance k to v0,0 ∈ W .

We show that all vertices in Sε for ε = −1, 0, 1, are resolved by W .

For v3,0 ∈ W and r = 3, 4, . . . ,m− 1, by (3.1) we have

d(vr,k−⌈r/3⌉, v3,0) =
⌈r − 3

3

⌉

+ k −
⌈r

3

⌉

= k − 1.

For r = 0, 1, 2, by (3.3) we obtain

d(v0,k, v3,0) =
⌈m− 3

3

⌉

+ k = k − 1 +
⌈m

3

⌉

,

d(v1,k−1, v3,0) =
⌈m− 2

3

⌉

+ k − 1 = k − 1 +
⌈m− 2

3

⌉

and

d(v2,k−1, v3,0) =
⌈m− 1

3

⌉

+ k − 1 = k − 1 +
⌈m− 1

3

⌉

.

In general, for vi,0 ∈ W , where i = 3, 6, . . . , 3(p−2), and for r = i, i+1, . . . ,m−1,

by (3.1) we have

d(vr,k−⌈r/3⌉, vi,0) =
⌈r − i

3

⌉

+ k −
⌈r

3

⌉

= k −
i

3
.
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For r = 0, 1, . . . , i− 1, by (3.3) we obtain

d(vr,k−⌈r/3⌉, vi,0) =
⌈m+ r − i

3

⌉

+ k −
⌈ r

3

⌉

= k −
i

3
+
⌈m+ r

3

⌉

−
⌈ r

3

⌉

> k −
i

3
,

where 0 6 k − ⌈r/3⌉ 6 n− 1.

This implies that the only vertices which can have the same representations with

respect to W ′ = {v0,0, v3,0, . . . , v3(p−2),0} ⊂ W are the vertices vi,k−i/3, vi+1,k−i/3−1,

vi+2,k−i/3−1 for i = 0, 3, 6, . . . , 3(p − 3), which are the triples (v0,k, v1,k−1, v2,k−1),

(v3,k−1, v4,k−2, v5,k−2), . . . , (v3(p−3),k−(p−3), v3p−8,k−(p−2), v3p−7,k−(p−2)) and the last

6 + ε vertices of Sε (which are the vertices v3(p−2),k−(p−2), v3p−5,k−(p−1), . . .) have

the representation (k, k − 1, . . . , k − (p− 2)) with respect to W ′.

Let us use vm−4,0, vm−2,0 ∈ W to resolve the vertices vi,k−i/3, vi+1,k−i/3−1,

vi+2,k−i/3−1 for i = 0, 3, 6, . . . , 3(p− 3). For vm−4,0 ∈ W , by (3.3) we obtain

d(vi,k−i/3 , vm−4,0) =
⌈m+ i− (m− 4)

3

⌉

+ k −
i

3
= k + 2,

d(vi+1,k−i/3−1, vm−4,0) =
⌈m+ i+ 1− (m− 4)

3

⌉

+ k −
i

3
− 1 = k + 1,

d(vi+2,k−i/3−1, vm−4,0) =
⌈m+ i+ 2− (m− 4)

3

⌉

+ k −
i

3
− 1 = k + 1,

and for vm−2,0 ∈ W ,

d(vi,k−i/3 , vm−2,0) =
⌈m+ i− (m− 2)

3

⌉

+ k −
i

3
= k + 1,

d(vi+1,k−i/3−1, vm−2,0) =
⌈m+ i+ 1− (m− 2)

3

⌉

+ k −
i

3
− 1 = k,

d(vi+2,k−i/3−1, vm−2,0) =
⌈m+ i+ 2− (m− 2)

3

⌉

+ k −
i

3
− 1 = k + 1,

so the vertices vi,k−i/3, vi+1,k−i/3−1, vi+2,k−i/3−1 are resolved. It remains to resolve

the last 6 + ε vertices of Sε.

For ε = −1 we need to resolve the 5 vertices v3p−6,k−(p−2), v3p−5,k−(p−1),

v3p−4,k−(p−1), v3p−3,k−(p−1), v3p−2,k−p. Since m = 3p− 1, we have vm−4,0 = v3p−5,0

and vm−2,0 = v3p−3,0. Then for v3p−5,0 ∈ W ,

d(v3p−6,k−(p−2), v3p−5,0) =
⌈m− 1

3

⌉

+ k − (p− 2) = k + 2,

d(v3p−5,k−(p−1), v3p−5,0) = k − p+ 1,

d(v3p−4,k−(p−1), v3p−5,0) =
⌈1

3

⌉

+ k − (p− 1) = k − p+ 2,

d(v3p−3,k−(p−1), v3p−5,0) =
⌈2

3

⌉

+ k − (p− 1) = k − p+ 2,

d(v3p−2,k−p, v3p−5,0) =
⌈3

3

⌉

+ k − p = k − p+ 1.
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We resolve the pairs (v3p−5,k−(p−1), v3p−2,k−p) and (v3p−4,k−(p−1), v3p−3,k−(p−1)) by

v3p−3,0 ∈ W . We get

d(v3p−5,k−(p−1), v3p−3,0) =
⌈m− 2

3

⌉

+ k − (p− 1) = k,

d(v3p−4,k−(p−1), v3p−3,0) =
⌈m− 1

3

⌉

+ k − (p− 1) = k + 1,

d(v3p−3,k−(p−1), v3p−3,0) = k − p+ 1,

d(v3p−2,k−p, v3p−3,0) =
⌈1

3

⌉

+ k − p = k − p+ 1,

thus all vertices of V (C(Γ,−X)) are resolved if ε = −1.

For ε = 0 we resolve the 6 vertices v3p−6,k−(p−2), v3p−5,k−(p−1), . . . , v3p−1,k−p by

vm−4,0 = v3p−4,0 and vm−2,0 = v3p−2,0. For v3p−4,0 ∈ W ,

d(v3p−6,k−(p−2), v3p−4,0) =
⌈m− 2

3

⌉

+ k − (p− 2) = k + 2,

d(v3p−5,k−(p−1), v3p−4,0) =
⌈m− 1

3

⌉

+ k − (p− 1) = k + 1,

d(v3p−4,k−(p−1), v3p−4,0) = k − p+ 1,

d(v3p−3,k−(p−1), v3p−4,0) =
⌈1

3

⌉

+ k − (p− 1) = k − p+ 2,

d(v3p−2,k−p, v3p−4,0) =
⌈2

3

⌉

+ k − p = k − p+ 1,

d(v3p−1,k−p, v3p−4,0) =
⌈3

3

⌉

+ k − p = k − p+ 1.

It remains to resolve the vertices v3p−4,k−(p−1), v3p−2,k−p, v3p−1,k−p. For v3p−2,0 ∈ W

we obtain

d(v3p−4,k−(p−1), v3p−2,0) =
⌈m− 2

3

⌉

+ k − (p− 1) = k + 1,

d(v3p−2,k−p, v3p−2,0) = k − p,

d(v3p−1,k−p, v3p−2,0) =
⌈1

3

⌉

+ k − p = k − p+ 1,

so if ε = 1, all vertices are resolved.

For ε = 1 we resolve the 7 vertices v3p−6,k−(p−2), v3p−5,k−(p−1), . . . , v3p,k−p by

vm−4,0 = v3p−3,0 and vm−2,0 = v3p−1,0. For v3p−3,0 ∈ W ,

d(v3p−6,k−(p−2), v3p−3,0) =
⌈m− 3

3

⌉

+ k − (p− 2) = k + 2,

d(v3p−5,k−(p−1), v3p−3,0) =
⌈m− 2

3

⌉

+ k − (p− 1) = k + 1,

d(v3p−4,k−(p−1), v3p−3,0) =
⌈m− 1

3

⌉

+ k − (p− 1) = k + 1,

d(v3p−3,k−(p−1), v3p−3,0) = k − p+ 1,
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d(v3p−2,k−p, v3p−3,0) =
⌈1

3

⌉

+ k − p = k − p+ 1,

d(v3p−1,k−p, v3p−3,0) =
⌈2

3

⌉

+ k − p = k − p+ 1,

d(v3p,k−p, v3p−3,0) =
⌈3

3

⌉

+ k − p = k − p+ 1.

It remains to resolve the vertices v3p−5,k−(p−1), v3p−4,k−(p−1) and the vertices

v3p−3,k−(p−1), v3p−2,k−p, v3p−1,k−p, v3p,k−p. For v3p−1,0 ∈ W we obtain

d(v3p−5,k−(p−1), v3p−1,0) =
⌈m− 4

3

⌉

+ k − (p− 1) = k,

d(v3p−4,k−(p−1), v3p−1,0) =
⌈m− 3

3

⌉

+ k − (p− 1) = k + 1,

d(v3p−3,k−(p−1), v3p−1,0) =
⌈m− 2

3

⌉

+ k − (p− 1) = k + 1,

d(v3p−2,k−p, v3p−1,0) =
⌈m− 1

3

⌉

+ k − p = k,

d(v3p−1,k−p, v3p−1,0) = k − p,

d(v3p,k−p, v3p−1,0) =
⌈1

3

⌉

+ k − p = k − p+ 1.

All vertices are resolved by W , therefore dim(C(Γ,−X)) 6 |W | = ⌊(m+ 1)/3⌋+ 1.

�

Theorem 3.2. Let Γ = Zm × Zn and X = {(0, 1), (1, 0), (2, 0), (3, 0)}, where

n > 3 and m > 3n+ 2. Then dim(C(Γ,−X)) 6 n.

P r o o f. We show that

W = {v0,0, v0,1, v0,2, . . . , v0,n−3, v1,n−2, v2,n−1}

is a resolving set of the graph C(Γ,−X). Let us present all vertices having the same

distance to v0,0 ∈ W . For r = 0, 1, 2, . . . , n− 1, by (3.1) we have

d(v3k−3r,r , v0,0) =
⌈3k − 3r

3

⌉

+ r = k,

d(v3k−3r−1,r , v0,0) =
⌈3k − 3r − 1

3

⌉

+ r = k,

d(v3k−3r−2,r , v0,0) =
⌈3k − 3r − 2

3

⌉

+ r = k,

where 3k− 3r− 2, 3k− 3r− 1, 3k− 3r ∈ {0, 1, . . . ,m− 1}. This implies that the only

vertices having the distance k to v0,0 are the vertices v3k,0, v3k−1,0, v3k−2,0, v3k−3,1,
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v3k−4,1, v3k−5,1, . . . , v3k−3(n−1),n−1, v3k−3(n−1)−1,n−1, v3k−3(n−1)−2,n−1, where the

first indices are at least 0 and at most m − 1. We show that these vertices are

resolved by W .

For v0,1 ∈ W and r = 1, 2, . . . , n− 1, by (3.1) we have

d(v3k−3r,r , v0,1) = d(v3k−3r−1,r, v0,1) = d(v3k−3r−2,r , v0,1) = (k − r) + r − 1 = k − 1

(note that 3k − 3r − 2, 3k − 3r − 1, 3k − 3r ∈ {0, 1, . . . ,m− 1}). For r = 0, by (3.2)

we obtain

d(v3k,0, v0,1) = d(v3k−1,0, v0,1) = d(v3k−2,0, v0,1) = k + n− 1.

In general, for v0,i ∈ W , where i = 1, 2, . . . , n − 3, and for r = i, i+ 1, . . . , n− 1,

by (3.1) we have

d(v3k−3r,r , v0,i) =
⌈3k − 3r

3

⌉

+ r − i = k − i,

d(v3k−3r−1,r, v0,i) =
⌈3k − 3r − 1

3

⌉

+ r − i = k − i,

d(v3k−3r−2,r, v0,i) =
⌈3k − 3r − 2

3

⌉

+ r − i = k − i.

For r = 0, 1, . . . , i− 1, by (3.2) we obtain

d(v3k−3r,r , v0,i) =
⌈3k − 3r

3

⌉

+ n+ r − i = k + n− i,

d(v3k−3r−1,r , v0,i) =
⌈3k − 3r − 1

3

⌉

+ n+ r − i = k + n− i,

d(v3k−3r−2,r , v0,i) =
⌈3k − 3r − 2

3

⌉

+ n+ r − i = k + n− i,

where 3k − 3r − 2, 3k − 3r − 1, 3k − 3r ∈ {0, 1, . . . ,m− 1}.

Let W ′ = {v0,0, v0,1, v0,2, . . . , v0,n−3} ⊂ W . It follows that

r(v3k,0|W
′) = r(v3k−1,0|W

′) = r(v3k−2,0|W
′)

= (k, k + n− 1, k + n− 2, . . . , k + 3),

r(v3k−3,1|W
′) = r(v3k−4,1|W

′) = r(v3k−5,1|W
′)

= (k, k − 1, k + n− 2, . . . , k + 3),

...

r(v3k−3(n−4),n−4|W
′) = r(v3k−3(n−4)−1,n−4|W

′) = r(v3k−3(n−4)−2,n−4|W
′)

= (k, k − 1, k − 2, . . . , k − n+ 4, k + 3),
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which means that the vertices v3k−3r,r, v3k−3r−1,r, v3k−3r−2,r have the same repre-

sentations with respect toW ′ for r = 0, 1, . . . , n−4. The representation of the vertices

v3k−3(n−3),n−3, v3k−3(n−3)−1,n−3, v3k−3(n−3)−2,n−3, v3k−3(n−2),n−2, v3k−3(n−2)−1,n−2,

v3k−3(n−2)−2,n−2, v3k−3(n−1),n−1, v3k−3(n−1)−1,n−1, v3k−3(n−1)−2,n−1

with respect to W ′ is (k, k − 1, k − 2, . . . , k − n+ 3).

For v1,n−2 ∈ W and r = 0, 1, . . . , n− 4, by (3.2) we obtain

d(v3k−3r,r , v1,n−2) =
⌈3k − 3r − 1

3

⌉

+ n+ r − (n− 2) = k + 2,

d(v3k−3r−1,r , v1,n−2) =
⌈3k − 3r − 1− 1

3

⌉

+ n+ r − (n− 2) = k + 2,

d(v3k−3r−2,r , v1,n−2) =
⌈3k − 3r − 2− 1

3

⌉

+ n+ r − (n− 2) = k + 1,

where 3k − 3r − 2, 3k − 3r − 1, 3k − 3r ∈ {1, 2, . . . ,m− 1}.

For v2,n−1 ∈ W and r = 0, 1, . . . , n− 4, by (3.2) we obtain

d(v3k−3r,r , v2,n−1) =
⌈3k − 3r − 2

3

⌉

+ n+ r − (n− 1) = k + 1,

d(v3k−3r−1,r , v2,n−1) =
⌈3k − 3r − 1− 2

3

⌉

+ n+ r − (n− 1) = k,

d(v3k−3r−2,r , v2,n−1) =
⌈3k − 3r − 2− 2

3

⌉

+ n+ r − (n− 1) = k,

where 3k − 3r − 2, 3k − 3r − 1, 3k − 3r ∈ {2, 3, . . . ,m − 1}. It follows that the

vertices v3k,0, v3k−1,0, v3k−2,0, v3k−3,1, v3k−4,1, v3k−5,1, v3k−3(n−4),n−4, v3k−3(n−4)−1,

v3k−3(n−4)−2,n−4 are resolved.

It remains to resolve vertices v3k−3(n−3),n−3, v3k−3(n−3)−1,n−3, v3k−3(n−3)−2,n−3,

v3k−3(n−2),n−2, v3k−3(n−2)−1,n−2, v3k−3(n−2)−2,n−2, v3k−3(n−1),n−1,v3k−3(n−1)−1,n−1

and v3k−3(n−1)−2,n−1. For v1,n−2 ∈ W we have

d(v3k−3(n−3),n−3, v1,n−2) = d(v3k−3(n−3)−1,n−3, v1,n−2) = k + 2,

d(v3k−3(n−3)−2,n−3, v1,n−2) = k + 1,

d(v3k−3(n−2),n−2, v1,n−2) = d(v3k−3(n−2)−1,n−2, v1,n−2) = k − n+ 2,

d(v3k−3(n−2)−2,n−2, v1,n−2) = k − n+ 1,

d(v3k−3(n−1),n−1, v1,n−2) = d(v3k−3(n−1)−1,n−1, v1,n−2) = k − n+ 2,

d(v3k−3(n−1)−2,n−1, v1,n−2) = k − n+ 1.
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For v2,n−1 ∈ W we have

d(v3k−3(n−3),n−3, v2,n−1) = k + 1,

d(v3k−3(n−3)−1,n−3, v2,n−1) = d(v3k−3(n−3)−2,n−3, v2,n−1) = k,

d(v3k−3(n−2),n−2, v2,n−1) = k + 1,

d(v3k−3(n−2)−1,n−2, v2,n−1) = d(v3k−3(n−2)−2,n−2, v2,n−1) = k,

d(v3k−3(n−1),n−1, v2,n−1) = k − n+ 1,

d(v3k−3(n−1)−1,n−1, v2,n−1) = d(v3k−3(n−1)−2,n−1, v2,n−1) = k − n.

Hence W is a resolving set of C(Γ,−X). The proof is complete. �

Let us note that Theorem 3.2 does not hold for m = 3n− 1, 3n and 3n+ 1. From

Theorems 3.1 and 3.2 we get the following upper bound on the metric dimension

of C(Γ,−X).

Corollary 3.3. Let Γ = Zm × Zn and X = {(0, 1), (1, 0), (2, 0), (3, 0)}, where

n > 3 and m > 5. Then

dim(C(Γ,−X)) 6

{

min
{

n,
⌊m+ 1

3

⌋

+ 1
}

if m /∈ {3n− 1, 3n, 3n+ 1},

n+ 1 if m = 3n− 1, 3n or 3n+ 1.

P r o o f. If n > 3 andm > 3n+2 then by Theorem 3.2 we have dimC(Γ,−X) 6 n.

Since n 6 (m− 2)/3, we obtain n = min{n, ⌊(m+ 1)/3⌋+ 1}.

If n > 3 and 5 6 m 6 3n− 2, then by Theorem 3.1 we get

dimC(Γ,−X) 6
⌊m+ 1

3

⌋

+ 1.

Since
⌊m+ 1

3

⌋

+ 1 6

⌊3n− 1

3

⌋

+ 1 = n,

we obtain
⌊m+ 1

3

⌋

+ 1 = min
{

n,
⌊m+ 1

3

⌋

+ 1
}

.

If m = 3n− 1, 3n or 3n+ 1, then by Theorem 3.1 we have

dimC(Γ,−X) 6
⌊ (m+ 1)

3

⌋

+ 1 = n+ 1.

�
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The graphs C(Γ, X) and C(Γ,−X) are isomorphic, so we obtain Corollary 3.4.

Corollary 3.4. Let Γ = Zm × Zn and X = {(0, 1), (1, 0), (2, 0), (3, 0)}, where

n > 3 and m > 5. Then

dimC(Γ, X) 6

{

min
{

n,
⌊m+ 1

3

⌋

+ 1
}

if m /∈ {3n− 1, 3n, 3n+ 1},

n+ 1 if m = 3n− 1, 3n or 3n+ 1.

4. Conclusion

In this paper we obtained strong upper bounds on the metric dimension of directed

Cayley graphs C(Γ, X) for Γ = Zm × Zn and X = {(0, 1), (1, 0), (2, 0), . . . , (p, 0)}

where p = 2 and 3. Note that the directed Cayley graph C(Zn, Y ) for Y =

{1, 2, . . . , p} is isomorphic to the circulant graph Cn(1, 2, . . . , p), thus the graph

C(Γ, X) for the group Γ = Zm × Zn and X = {(0, 1), (1, 0), (2, 0)} is isomorphic

to the Cartesian product Cm(1, 2)×Cn, where Cn is the cycle of order n. Similarly,

the Cayley graph C(Γ, X) for Γ = Zm × Zn and X = {(0, 1), (1, 0), (2, 0), (3, 0)} is

isomorphic to the graph Cm(1, 2, 3)× Cn.

For positive integers n, p and a1, a2, . . . , ap such that 1 6 a1 < a2 < . . . <

ap 6 n − 1, the directed circulant graph Cn(a1, a2, . . . , ap) consists of the vertices

v0, v1, . . . , vn−1 and directed edges vivi+aj
for every i = 0, 1, . . . , n − 1 and j =

1, 2, . . . , p indices are taken modulo n.

Hence, from Corollaries 2.4 and 3.4 we obtain bounds on the metric dimension for

the Cartesian product of a circulant graph and a cycle.

Corollary 4.1. Let n > 3 and m > 4. Then

dim(Cm(1, 2)× Cn) 6

{

min
{

n,
⌊m

2

⌋

+ 1
}

if m /∈ {2n, 2n+ 1},

n+ 1 if m = 2n or 2n+ 1.

Corollary 4.2. Let n > 3 and m > 5. Then

dim(Cm(1, 2, 3)× Cn) 6

{

min
{

n,
⌊m+ 1

3

⌋

+ 1
}

if m /∈ {3n− 1, 3n, 3n+ 1},

n+ 1 if m = 3n− 1, 3n or 3n+ 1.
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