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Abstract. When S is a polynomial ring or more generally a standard graded algebra over
a field K, with homogeneous maximal ideal m, it is known that for an ideal I of S, the
regularity of powers of I becomes eventually a linear function, i.e., reg(Im) = dm + e for
m ≫ 0 and some integers d, e. This motivates writing reg(Im) = dm+em for every m > 0.
The sequence em, called the defect sequence of the ideal I , is the subject of much research
and its nature is still widely unexplored. We know that em is eventually constant. In
this article, after proving various results about the regularity of monomial ideals and their
powers, we give several bounds and restrictions on em and its first differences when I is
a primary monomial ideal. Our theorems extend the previous results about m-primary ideals
in the monomial case. We also use our results to obtatin information about the regularity
of powers of a monomial ideal using its primary decomposition. Finally, we study another
interesting phenomenon related to the defect sequence, namely that of regularity jump,
where we give an infinite family of ideals with regularity jumps at the second power.
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1. Introduction

Let I be a homogeneous ideal in a polynomial ring S = K[x1, . . . , xn], K a field of

characteristic zero. Castelnuovo-Mumford regularity, or simply regularity, together

with the projective dimension are the most important invariants of a homogeneous

ideal in a polynomial ring K[x1, . . . , xn] (or a closed subscheme of Pn). It measures

the extent of cohomological complexity of such an ideal. More generally, let M be

a finitely generated graded S-module. Consider a minimal graded free resolution

of M as follows:

F : . . . → Fi
δi−→ Fi−1

δi−1−→ . . . → F0
δ0−→ M.
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There exist integers aij such that Fi =
∑

S(−aij). The regularity of M , de-

noted reg(M), is then defined to be the supremum of the numbers aij − i.

Another way of defining the regularity is through graded local cohomology mod-

ules Hi
m
(M), where m = (x1, . . . , xn) denotes the irrelevant maximal ideal of S. As

this module is Artinian, one can define end(Hi
m
(M)) as the maximum integer k such

that Hi
m
(M)k 6= 0. Then one can equivalently define

reg(M) = max{end(Hi
m(M)) + i}.

For equivalent definitions and various algebro-geometric properties of the regularity

we refer to [3].

In this paper we are mostly concerned with the case where M = I is a homoge-

neous ideal in S. One interesting problem in this setting is to determine the regularity

of powers Im. In Section 2, we prove several results and relations about the regu-

larity of primary monomial ideals and their powers. Using these results, we then

prove theorems about the regularity of an ideal by using its primary decomposition.

Moreover, the main results of [6] and [8] show that the regularity of powers of ideals

behaves linearly, i.e., reg(Im) = dm+ e for m ≫ 0. See also [2]. The coefficient d is

the asymptotic generating degree of I, i.e. the minimal number such that I is integral

over I6d, with I6d denoting the ideal generated by the forms in I of degree at most d.

This prompts writing reg(Im) = dm + em for every m > 0. The coefficients em are

called the regularity defect sequence and is more interesting and the above results

can be taken to mean that em is eventually constant, i.e., em+1 = em for m ≫ 0.

It is therefore also interesting to study the first difference sequence em+1 − em. In

particular it is interesting to give bounds for these differences. Another objective

of Section 2 is to prove several bounds and constraints for the defect sequence and

the above differences in the case that I is a monomial ideal. Here we again use the

primary decomposition in order to deduce results for more general monomial ideals.

Some of our results are generalizations of that of [1] to the case of primary ideals.

For example we prove a generalization of the stabilization of the defect sequence

(e.g. Theorems 2.13 and 2.14) which was proven in [1] for m-primary ideals.

In [5] an interesting notion, namely that of regularity jumps has been defined. An

ideal has regularity jump at the kth power if reg(Ik)− reg(Ik−1) > d. By definition

of the defect sequence, this is equivalent to ek − ek−1 > 0. In the same article the

author mentions many new and known examples of ideals with this property. In

Section 3 we consider the problem of ideals with regularity jumps and show that an

infinite family of binomial ideals In for n > 3 have regularity jump at k = 2. The

ideals In define Cohen-Macaulay rings of minimal multiplicity indicating that even

among such ideals one can find examples whose squares do not have linear resolution.
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The ideal I3 has been shown in [5] to have such a regularity jump by declaring the

existence of a nonlinear second syzygy. Our contribution here is to show that for all

n > 3 the ideal I2n has regularity strictly greater than 4. We achieve this by local

cohomological methods.

2. Regularity of monomial ideals and their powers

In this section, we first prove some results about regularity of primary monomial

ideals in S = K[x1, . . . , xn] and their powers and then apply them to get some

information about the defect sequence. Let us introduce some notation that we are

going to use throughout the whole paper.

Some notation. As in the introduction, S = K[x1, . . . , xn] with K a field of

characteristic zero. If I is a monomial ideal, we denote by Λ(I) the set of indeter-

minates that appear in the minimal set of monomials generating I. We also denote

the highest degree of a minimal monomial generator of I by µ(I) and the maximum

power of pure generators by ν(I). The set of minimal generators of I is denoted by

min.gen(I).

Lemma 2.1. Let p be a prime monomial ideal in S = K[x1, . . . , xn].

(i) p is generated by a subset of variables, i.e., it is of the form (xi1 , . . . , xil) for

{i1, . . . , il} ⊆ {1, . . . , n}.
(ii) If I is a p-primary monomial ideal, then I = (xa1

i1
, . . . , xal

il
, h1, . . . , hr), where hi

are monomials which contain only variables xij for 1 6 j 6 l.

P r o o f. (i) This is well-known and easy to verify.

(ii) If I is p-primary then
√
I = p = (xi1 , . . . , xil) by (i). So x

aj

ij
lies in I for some

power of xij . The assumption that I is p-primary then implies that the nonpure

minimal generators of I can only contain indeterminates among xij for 1 6 j 6 l.

�

Remark 2.2. (i) Let J be an m-primary ideal so that S/J is artinian. Then

reg(S/J) = max{i : (S/J)i 6= 0}. In other words, reg(S/J) is the maximal degree of
homogeneous elements of S/J . In this case, we denote by η(J) the set of homogeneous

polynomials of maximal degree of S/J . The set of nonzero elements of the socle

of S/J will be denoted by s(J) (see [1]). Note also that reg(J) = reg(S/J) + 1.

(ii) Let I be a homogeneous ideal and let u ∈ S be a nonzero divisor on S/I.

Then reg(S/(I + uS)) = reg(S/I)+deg(u)− 1. In particular, if u is a linear nonzero

divisor of S/I, then reg(S/(I + uS)) = reg(S/I).
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In Section 3, we will need the following definition. If m is a monomial, then we

will denote the highest index of a variable dividing m by t(m) and the highest power

of xt(m) dividing m by l(m).

Definition 2.3. A monomial ideal is called weakly stable, if for every mono-

mial m ∈ I, and for every j < t(m), there exists an integer power r such that

xr
jm/x

t(m)
l(m) ∈ I.

The following remark describes the behavior of regularity in exact sequences and

can be proven by taking the associated long exact local cohomology sequence.

Remark 2.4. Consider the following exact sequence of finitely generated graded

S-modules 0 → M1 → M2 → M3 → 0. Then

(i) regM2 6 max{regM1, regM3}.
(ii) regM1 6 max{regM2, regM3 + 1}.
(iii) regM3 6 max{regM1 − 1, regM2}.
iv) If regM1 > regM2, then regM3 = regM1 − 1.

(v) If regM2 > regM1, then regM3 = regM2.

(vi) If regM3 > regM2, then regM1 = regM3 + 1.

With the above notation and remarks, we begin with our first result.

Proposition 2.5. (i) Let J ⊆ I be monomial ideals such that I is p-primary and J

is q-primary. Then reg(Im) 6 reg(Jm) + t for every m ∈ N, for t = m
k
∑

j=1

aij − k,

where x
ai1

i1
, . . . , x

aik

ik
are the pure powers in min.gen(I) of variables in Λ(I) \ Λ(J).

(ii) Let J ⊆ I be p-primary monomial ideals. Then reg(Im) 6 reg(Jm) for every

m ∈ N.

P r o o f. (i) Since J ⊆ I it follows that Λ(J) ⊆ Λ(I). We may assume, without

loss of generality, that Λ(J) = {x1, . . . , xl} and Λ(I) = {x1, . . . , xl, xl+1, . . . , xs}.
Let xal+1

l+1 , . . . , xas
s be the pure power generators of I that are not in J , i.e., powers

of variables in Λ(I) \ Λ(J) as indicated above. Then

(x
mal+1

l+1 , . . . , xmas

s , xs+1, . . . , xn)

is a regular sequence for S/Jm and (xs+1, . . . , xn) is a regular sequence for S/Im.

Set Jm = Jm + (x
mal+1

l+1 , . . . , xmas
s , xs+1, . . . , xn) and Im = Im + (xs+1, . . . , xn).

Then Jm and Im are m-primary and it follows from Remark 2.2 (ii) that reg(Im) =

reg(Im) and reg(S/Jm) = reg(S/Jm)+
s
∑

l+1

(mai − 1). Moreover, Jm ⊆ Im and hence

η(Im) ∩ Jm = ∅, where η(Im) is as in Remark 2.2 (i). It follows that each element
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of η(Im) is nonzero in S/Jm and therefore reg(Im) 6 reg(Jm). Alternatively, one can

argue (notationally easier) that S/Jm ։ S/Im and hence end(S/Im) 6 end(S/Jm)

and the claim follows.

(ii) Since both I and J are p-primary, it follows that Λ(I) = Λ(J). So (ii) is

a special case of (i) where s = l and t = 0. �

Proposition 2.6. Let I be a p-primary monomial ideal. Then reg(Im+1) >

reg(Im) for every m > 0. In other words, em+1 − em > −d.

P r o o f. Applying Proposition 2.5 (ii) to the pair Im+1 ⊂ Im, we see that

reg(Im+1) > reg(Im). We may assume that Λ(I) = {x1, . . . , xs} and define Im =

Im + (xs+1, . . . , xn). It is m-primary and reg(Im) = reg(Im) by Remark 2.2 (i).

Let f ∈ η(Im). Since xs+1 = . . . = xn = 0 in S/Im, we may assume that f ∈
K[x1, . . . , xs]. It follows that xjf ∈ Im for 1 6 j 6 s or equivalently that xjf ∈ Im.

This implies that f /∈ η(Im+1) and since by assumption f /∈ Im+1, we conslude that

reg(Im) < reg(Im+1). �

Example (Conca, [7]). The assumption that the monomial ideal I is p-primary

is necessary in Proposition 2.6. Indeed, in S = K[x1, x2, x3], consider the monomial

ideal I = (x4
1, x

4
2, x

3
1x2, x1x

3
2, x

2
1x

2
2x

5
3). Then 7 = reg(I2) < reg(I) = 8. In this

example even
√
I = (x1, x2). However, I is not (x1, x2)-primary.

Corollary 2.7. Let I be a primary monomial ideal. Then reg(In−1/In) =

reg(In)− 1 for every n > 0.

P r o o f. Consider the exact sequence

0 → In → In−1 → In−1/In → 0.

By Proposition 2.6, reg(In) > reg(In−1) for every n > 0. The claim follows from

Remark 2.4 (iv) applied to the above exact sequence. �

The following corollary, which is interesting in its own right, will be useful later

on in the paper.

Corollary 2.8. Let I and J be primary monomial ideals such that Λ(I)∩Λ(J) = ∅.
Then reg(I + J)n = max

i∈[0,n−1]
{reg(Ii+1) + reg(Jn−i)} − 1 for every n > 0.

P r o o f. If n = 1, then one checks that I +J is also primary and if f ∈ η(I) and

g ∈ η(J), then fg ∈ η(I + J). Consequently, reg(I + J) = reg(I) + reg(J) − 1. If

n > 1, By [7], Theorem 3.3,

reg((I + J)n−1/(I + J)n) = max
i∈[0,n−1]

{reg(Ii/Ii+1) + reg(Jn−i−1/Jn−i)}.
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By Corollary 2.7, reg(Ii/Ii+1) = reg(Ii+1) − 1 and similarly, reg(Jn−i−1/Jn−i) =

reg(Jn−i) − 1. Finally, note that the ideal (I + J)n is also primary and hence

reg((I + J)n−1/(I + J)n) = reg((I + J)n)− 1, which completes the proof. �

Next we prove a result on the regularity of powers of a monomial ideal using its

primary decomposition. Before this, we need a lemma.

Lemma 2.9. Let I and J be monomial ideals such that Λ(I) ∩ Λ(J) = ∅. Then
(i) IJ = I ∩ J .

(ii) If I and J are primary ideals, then reg(IJ) = reg(I) + reg(J).

P r o o f. (i) Note that I ∩J is generated by cij = lcm(fi, gj) where the fi and gj
are the monomial generators of I and J . The assumption Λ(I) ∩ Λ(J) = ∅ implies
that cij = figj ∈ IJ , respectively. So every generator of I ∩ J is contained in IJ .

This implies that I ∩J ⊆ IJ . As the other inclusion is automatic, one concludes (i).

(ii) If I and J are primary ideals, then consider the short exact sequence

0 → I ∩ J → I ⊕ J → I + J → 0.

By Corollary 2.8, it follows that reg(I+J) > max{reg(I), reg(J)} = reg(I⊕J). Now

Remark 2.4 (vi) together with Corollary 2.8 gives that reg(I ∩J) = reg(I + J)+ 1 =

reg(I) + reg(J). Now use part (i). �

Recall from the introduction that if I is a homogeneous ideal in a polynomial

ring S, then we set em = reg(Im) − dm. It is known by [6], and independently [8],

that em is eventually constant. Of particular interest is to determine when this

sequence becomes stationary, i.e., to determine l ∈ N such that em+1 = em for

m > l. Therefore it is interesting to get bounds for the differences em+1 − em.

Theorem 2.10. Let I be a monomial ideal with primary decomposition I =
l
⋂

1
Qj

where Qj is pj-primary and such that Λ(Qi) ∩ Λ(Qj) = ∅ for i 6= j. Also, let f j
m

be the first difference of the defect sequence of Qj, i.e., f
j
m = ej,m − ej,m−1, where

ej,m is the defect sequence of the ideal Qj . Then

(i) reg(Im) > reg(Im−1) for every m > 0,

(ii) em − em−1 =
l
∑

j=1

f j
m +

l
∑

j=1

ν(Qj)− d.

P r o o f. (i) By our assumptions, one deduces from a generalization of Lemma 2.9

to arbitrary finite number of ideals that

Im = (Q1 . . . Ql)
m = Qm

1 ∩ . . . ∩Qm
l for every m > 0.
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Note that Qm
j is also a primary ideal by Lemma 2.1. By Proposition 2.6 we have that

reg(Qm
j ) > reg(Qm−1

j ) for every j. Now, Lemma 2.9 (ii) gives that reg
( l
⋂

j=1

Qm
j

)

=
l
∑

j=1

reg(Qm
j ) for m > 0. This implies in particular the above claim.

(ii) By the arguments of part (i), reg(Im) = reg
( l
⋂

j=1

Qm
j

)

=
l
∑

j=1

reg(Qm
j ). It then

follows that

(em−em−1)+d = reg(Im)−reg(Im−1) =
∑

(reg(Qm
j )−reg(Qm−1

j )) =
∑

f j
m+

∑

dj

where dj is the asymptotic generating degree of Qj. Now, by the description of

the ideals Qj in Lemma 2.1, the asymptotic generating degree of Qj is equal to the

greatest degree of the minimal pure generators of Qj , i.e., ν(Qj). �

The following proposition gives bounds for the defect sequence of I in terms of the

defect sequence of I1 defined in the proof of Proposition 2.5, which is m-primary.

Proposition 2.11. Let {em} and {e′m} be the defect sequences of the p-primary
ideal I and m-primary ideal I1 respectively. We have em 6 e′m < em +m.

P r o o f. Set I1 = I + (xs+1, . . . , xn) as before. By [7], Proposition 2.9 and

Theorem 2.4 respectively, it holds that

reg(Im) 6 reg(Im1 ) 6 max
i∈[1,m−1]
j∈[1,m]

{reg(Im−i + i), reg(Im−j+1 + j)}.

By Proposition 2.6, this maximum is strictly less than reg(Im) +m. Now bearing in

mind that the asymptotic generating degrees of I and I1 are equal, we set reg(Im) =

dm+ em and reg(Im1 ) = dm+ e′m to get the claimed inequalities. �

The following results generalize the analogous results for m-primary ideals proved

in [1] for primary ideals in the monomial case.

Theorem 2.12. Let J ⊆ I be such that J is a homogeneous ideal and I is

a primary monomial ideal with asymptotic generating degree d. Let Im = Im + (xi :

xi /∈ Λ(I)). Write reg(Im) = dm+ em and let c be the maximal degree of a minimal

generator of J . If J ∩ η(Im) 6= ∅, then em − em−1 6 c− d.

P r o o f. We may assume that Λ(I) = {x1, . . . , xs}. Take f ∈ J ∩ η(Im), then

deg(f) = reg(S/Im) = reg(S/Im). Since f ∈ J , we have f =
∑

tigi, where the gi
are minimal generators of J . Since f ∈ η(Im), it follows that f /∈ Im. Observe

that IIm−1 ⊆ Im. Indeed, write t = α + β ∈ Im−1, where α ∈ Im−1 and β ∈
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(xs+1, . . . , xn). If g ∈ I, then tg = αg+βg ∈ Im+(xs+1, . . . , xn) = Im. Since J ⊆ I,

we have that gi ∈ I. As f /∈ Im, the above observation shows that not all of the ti
can lie in Im−1. Suppose that t1 /∈ Im−1. It follows that

reg(Im) = reg(Im) = deg(f) + 1 = deg(t1) + deg(g1) + 1

6 reg(Im−1) + c = reg(Im−1) + c.

Hence reg(Im)− reg(Im−1) 6 c which amounts to saying that em − em−1 6 c− d.

�

Proposition 2.13. Let J ⊆ I be monomial ideals such that I is p-primary and J

is q-primary. Write reg(Im) = dm+ em and let c = max{µ(J), bi} where bi are the
powers of pure minimal generators of I in variables in Λ(I) \ Λ(J). If reg(Im) >

reg(J) +
∑

(bi − 1), then em − em−1 6 c− d.

P r o o f. As Λ(J) ⊆ Λ(I) by assumption, we may assume that Λ(J) =

{x1, . . . , xl} and Λ(I) = {x1, . . . , xl, xl+1, . . . , xs}. Let Im = Im + (xs+1, . . . , xn) for

m > 0. The assumption reg(Im) > reg(J) +
∑

(bi − 1) implies that

η(Im) ⊆ J1 = J + (x
bl+1

l+1 , . . . , x
bs
s , xs+1, . . . , xn) ⊆ I1 = I + (xs+1, . . . , xn).

Note that I1 and J1 are m-primary ideals. Let f ∈ η(Im) and write f =
∑

tigi where

the gi are minimal generators of J1. Next observe that J1Im−1 ⊆ Im. This can be

proved by using the above inclusions, and the arguments similar to the ones in the

proof of Theorem 2.12. This shows that there exists a ti, say t1, such that t1 /∈ Im−1.

The last step of the proof is exactly that of Theorem 2.12. �

In [1], Theorem 2.7 a bound for the defect sequence of m-primary monomial ideals

has been proven. In what follows we generalize this result to the case of arbitrary

primary monomial ideals.

Theorem 2.14. Let J ⊆ I be monomial ideals such that I is p-primary and J is

q-primary. Let c, c′ be respectively the maximum and minimum degree of a minimal

generator of J . Let d′ be the minimum degree of an element of min.gen(I) \ J .

If m > min{(reg(J) + t)/d, reg(J)/d′ + max{1 − c′/d′, 0}}, where t =
∑

(bj − 1)

and bj are the powers of the pure generators of I in variables in Λ(I) \ Λ(J), then

em − em−1 6 c− d.

This holds for each m such that η(J) 6⊂ s(I ′m) + η(I ′m−1J), where I ′ is the ideal

generated by min.gen(I) \ J and s(I ′m) is as in Remark 2.2.
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P r o o f. If m > (reg(J) + t)/d, then reg(Im) = dm + em > reg(J) + t and

consequently, em − em−1 6 c− d by Proposition 2.13. On the other hand, if d′m >

reg(J) + t, then Im ⊆ J1 = J + (xl+1, . . . , xs, xs+1, . . . , xn) and hence also Im ⊆ J1
with the notation of Proposition 2.13. Thus we have reg(Im) > reg(J). Now Im =

(J + I ′)m + (xs+1, . . . , xn) =
m
∑

i=0

J iI ′m−i + (xs+1, . . . , xn) ⊆
m
∑

i=0

Ji and since all

of the summands but the last two are contained in J2 and reg(J2) > reg(J) by

Theorem 2.6, one concludes that in order for reg(Im) = reg(J) to have a chance, we

must have η(J1) ⊆ s(I ′m)+ η(I ′mJ1). The minimum degree of an element of s(I ′m) is

d′m− 1, and the minimum degree of an element of s((I ′m−1J1)) is d′(m− 1)+ c′− 1.

Consequently, if d′m > reg(J) + d′ − c′ then the degrees of the above elements are

larger than reg(J)−1 = reg(S/J), which is exactly the degree of an element of η(J1).

�

Corollary 2.15. Let I be a primary monomial ideal. Let d+ b be the maximum

degree of a minimal generator of I. Then em+1 6 em + b for all m > 1.

P r o o f. Since by Theorem 2.6, reg(Im) > reg(I) for all m > 1, the claim follows

from Proposition 2.13. Note that by setting J = I in this proposition, Λ(I)\Λ(J) = ∅
and hence we may set

∑

(bj − 1) = 0. �

Remark 2.16. In the above generalizations from m-primary ideals to arbi-

trary primary monomial ideals we have restrict ourselves to the m-primary ide-

als by considering ideals Im. An alternative way to view this reduction is the

following approach: If I ⊂ (xi1 , . . . , xir ) is a homogeneous ideal, we know that

I = (I ∩ K[xi1 , . . . , xir ])S. As the extension K[xi1 , . . . , xir ] → S is faithfully flat,

the Betti numbers of I ∩ K[xi1 , . . . , xir ] over K[xi1 , . . . , xir ] are exactly the Betti

numbers of I over S. Therefore we may assume, without loss of generality, that I is

(xi1 , . . . , xir )-primary and replace S by K[xi1 , . . . , xir ] and I by I ∩K[xi1 , . . . , xir ]

and therefore restrict ourselves to the case that I is m-primary (in K[xi1 , . . . , xir ]).

However, note that in Theorems 2.13 and 2.14 unlike the analogous results in [1], in

which both ideals are m-primary, the ideals are associated to different prime ideals

in general. Therefore, some changes and correction terms are needed to be added in

the generalizations that we have considered in the above results.

3. Regularity jumps of a binomial ideal

We begin with the definition of the notion of a regularity jump as given in [5].

Definition 3.1. Let I be an ideal generated in a single degree d. We say that

the regularity of powers of I jumps at place k if ek > ek−1.
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By definition of the defect sequence, the above condition is equivalent to reg(Ik)−
reg(Ik−1) > d and indeed this is the original condition stated in [5]. Before we

proceed, let us introduce a remark.

Remark 3.2. Let I be a homogeneous ideal in the polynomial ring S =

K[x1, . . . , xn] and m be the irrelevant maximal ideal of S. If I is not m-primary,

then reg(I) = min{µ : Hi(S/I)µ−i = 0 for all i}. See [4], Proposition 9.5.
We are now ready to state our result. The example is as follows:

Example. Let n > 3 and

In = (x2
1, . . . , x

2
n+1, x1x2, . . . , x1xn+1,

x2x3 − x1xn+2, x2x4 − x1xn+3, . . . , x2xn+1 − x1x2n, . . . ,

x3x4 − x1x2n+1, . . . , x3xn+1 − x1x3n−2, . . . , xnxn+1 − x1xs),

where s = 1
2n(n+ 1) + 1.

In this description, a generator apart from x2
1, . . . , x

2
n+1, x1x2, . . . , x1xn+1 is of

the form xixj − x1xt(n,i,j), where 2 6 i < j 6 n + 1 and t(n, i, j) = (i − 1)n −
1
2 (i− 1)(i − 2) + 1 + (j − i).

Another description of this ideal as given in [5] is as follows:

In = (x2, y21 , y
2
2 , . . . , y

2
n, xy1, . . . , xyn, yiyj − xzi,j) for 1 6 i < j 6 n.

In [5] it is proven that I23 has a nonlinear resolution and it is conjectured that

this holds for n > 3. Note that the In define Cohen-Macaulay rings with minimal

multiplicity. We prove:

Theorem 3.3. For In (n > 3) as above, reg(In) = 2 and reg(I2n) > 4. There-

fore I2n has a nonlinear resolution and we get an infinite family of ideals with regu-

larity jumps at k = 2.

P r o o f. In order to avoid complicated indices, we prefer to work with the first

description of In given above. Then one can easily check that In is weakly stable

(Definition 2.3) and hence reg(In) = µ(In) = 2. Note however that I2n is not weakly

stable. In order to show that reg(I2n) > 4, setting Jn = I2n, we show that there

exists an integer l such that H l
m(S/Jn)4−l 6= 0. By Remark 3.2, it follows that

reg(Jn) > 4. To this end, we use the fact that local cohomology can be computed

via Čech complex. Note that since x4
1 = . . . = x4

n+1 = 0 in S/Jn, the cohomology

can in fact be computed by the complex

0 → S/Jn
d0

−→
⊕

n+26i6s

(S/Jn)xi

d1

−→
⊕

n+26i<j6s

(S/Jn)xixj

d2

−→ . . .

ds−n−1

−→ (S/Jn)xn+2...xs
→ 0.
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For n > 3, one can check the following equalities in S/Jn (note that we abuse the

notation and denote the image of an element β ∈ S in S/Jn again by β):

x1x2x3x4 = x2
1x2x2n+1 = x2

1x3xn+3 = x2
1x4xn+2

If xixj − x1xr is a generator of In such that {i, j} ∩ {2, 3, 4} 6= ∅, then one sees
that

x2
1xtxr = 0 ∀ t ∈ {i, j} ∩ {2, 3, 4}.

Now let xi1xj1 − x1xr1 , . . . , xilxjl − x1xrl be the set of all generators of In of the

form xixj − x1xr such that {i, j} ∩ {2, 3, 4} = ∅. Note that l = 1
2 (n− 3)(n− 4). Set

α := x1x2x3x4. Then combining the above two series of equalities shows that

for r ∈ {n+ 2, . . . , s} \ {r1, . . . , rl}, αxr = 0.

This implies that the element

κ :=
(

0, . . . ,
α

xr1 . . . xrl

, . . . , 0
)

∈ Cl(S/Jn)

lies in ker(dl)4−l (note that for n = 4, l = 0 and one defines κ := (0, . . . , α, . . . , 0)).

It follows that κ ∈ H l
m(S/Jn)4−l which, as one sees, is nonzero in this cohomology

module (for example by induction on n and using the structure of the maps di) and

hence H l
m(S/Jn)4−l 6= 0. �

Example. Let n = 4. Note that for n = 3 we get the example of Conca. One can

compute (for example using CoCoA) that reg(I4) = 2 and reg(I24 ) = 5. In this case

H0
m(S/J4)4 6= 0 as one gets from the above proof.

4. Future works

It would be interesting to find results analogous to Theorems 2.12, 2.13 and 2.14

for nonmonomial ideals. One could also try to extend Theorem 2.10 and get some

information about the regularity of powers of more general monomial ideals using

their primary decomposition.
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