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Abstract. We show that a finite nonabelian characteristically simple group G satisfies
n = |π(G)| + 2 if and only if G ∼= A5, where n is the number of isomorphism classes of
derived subgroups of G and π(G) is the set of prime divisors of the group G. Also, we give
a negative answer to a question raised in M. Zarrin (2014).
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1. Introduction and results

Following [3], we say that a group G has the property GRn if it has a finite num-

ber n of derived subgroups. In 2005, de Giovanni and Robinson [3] and, indepen-

dently, Herzog, Longobardi, Maj in [5] studied new finiteness conditions related to

the derived subgroups of a group. They proved that every locally graded GRn-group

is finite-by-abelian (that is, G′ is finite). More recently the author in [11], improved

this result, by proving that every locally graded GRn-group is nilpotent-by-abelian-

by-(finite of order 6 n!)-by-abelian.

Subsequently, the authors in [8], [9] investigated the class of groups which have at

most n isomorphism classes of derived subgroups (denoted by Dn) with n ∈ {2, 3}.

Clearly a group is a D1-group if and only if it is abelian. Also the authors, in [8],

classified completely the locally finite D3-groups. It seems interesting to study

GRn-groups for a given value of n. In this paper, among other things, we first

show that for every nonabelian characteristically simple Dn-group G, we have

n > |π(G)| + 2. Moreover, we show that this inequality is proper except for the

alternating group A5. In fact, we have the following new characterization of A5.
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Theorem 1.1. For every nonabelian characteristically simple Dn-group G we

have n = |π(G)| + 2 if and only if G ∼= A5.

Finally, we give a negative answer to the following question raised by the author

in [11]: Let G be a group and H a finite simple group. Is it true that

G ∼= H ⇔ G,H ∈ GRn \ GRn−1 for some n?

Or

G ∼= H ⇔ G,H ∈ Dn \Dn−1 for some n?

In this paper all groups will be finite and we use the usual notation, for example

An, Sn, PSL(n, q), PSU(n, q) and Sz(q), respectively, denote the alternating group

on n letters, the symmetric group on n letters, the projective special linear group of

degree n over the finite field of size q, the projective special unitary group of degree n

over the finite field of order q2 and the Suzuki group over the field with q elements.

2. Proofs

Here, we first show that for every nonabelian characteristically simpleDn-groupG,

we have n > |π(G)| + 2. For this, we need the following lemmas.

Lemma 2.1 (Burnside). Let P be a Sylow p-subgroup of a finite group G,

p a prime. If NG(P ) = CG(P ) then G is a p-nilpotent group.

Lemma 2.2. Let G be a finite group and suppose that G is not pi-nilpotent,

where pi is a prime, pi ∈ π(G). Then there is a subgroup Hi of G such that H
′

i is

a nontrivial pi-group. In particular if G is a Dn-group, then n > |π(G)| + 1.

P r o o f. Let pi ∈ π(G), and Pi ∈ Sylpi
(G). If NG(Pi) = CG(Pi), then by

Lemma 2.1, G is pi-nilpotent, a contradiction. So CG(Pi) < NG(Pi). Choose xi ∈

NG(Pi) \ CG(Pi), and let Hi = 〈xi, Pi〉. Then H ′

i = P ′

i [Pi, x], and H ′

i is a nontrivial

pi-subgroup. �

Lemma 2.3. If G is a finite nonabelian simple Dn-group, then n > |π(G)| + 2.

P r o o f. Since G is not p-nilpotent for every p ∈ π(G) and G′ = G, the assertion

follows from Lemma 2.2. �

Lemma 2.4. Let H be a Dn1
-group, K a Dn2

-group and G = H ×K. Then the

following statements are true:

(1) G is a Dt-group for some t > n1n2.

(2) If H ∼= K and K is a simple group, then G is a Dt-group for some t > n1n2+1.

(3) If (|H |, |K|) = 1, then G is a Dn1n2
-group.
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P r o o f. (1) Clearly.

(2) For proof, we consider the diagonal subgroup of G which is of the form T =

{(a, a) : a ∈ K}. Now as, by [7], every element of T is of the form ([a, b], [a, b]), where

a, b ∈ K, one can conclude that T is a perfect subgroup of G, that is T ′ = T . Hence

the result follows from Lemma 2.3 and Lemma 2.2.

(3) Since (|H |, |K|) = 1, every subgroup T of G is of the form T = T1 × T2 and

so T ′ = T ′

1 × T ′

2, where T1 and T2 are subgroups of H and K, respectively. This

completes the proof. �

Theorem 2.5. If G is a finite nonabelian characteristically simple Dn-group, then

n > |π(G)|+ 2.

P r o o f. Let G be a characteristically simple Dn-group. Then G ∼=
t∏

i=1

Ki,

where the Ki’s are isomorphic to a simple Dm-group K. Hence, by Lemma 2.4 and

Lemma 2.3, we have n > mt > (π(K) + 2)t = (π(G) + 2)t > (π(G) + 2), since

π(G) = π(K), as wanted. �

Corollary 2.6. A5 is the only nonabelian simple D5-group.

P r o o f. Let G be a nonabelian simple D5-group, then by Theorem 2.5,

|π(G)| = 3 and, by the results in [4], the nonabelian simple groups of order di-

visible by exactly three primes are the following eight groups: PSL(2, q), where

q ∈ {5, 7, 8, 9, 17}, PSL(3, 3), U3(3), U4(2). Now it is easy to see (by GAP [2] and

also Lemmas 2.7 and 2.9, below) that A5 is the only nonabelian simple D5-group. �

Now we can show that the inequality of Theorem 2.5, is proper except for the

group A5. In fact, in the sequel, we want to prove Theorem 1.1. For this purpose we

need the following lemmas.

Lemma 2.7. Let G = PSL(2, q) be a Dn-group such that |π(G)| > 5. Then

n > |π(G)|+ 2.

P r o o f. By Lemma 2.2, it is enough to find a proper subgroup of G such that

its derived subgroup is not a primary group. Suppose that {p, r, s, t, u} ⊆ π(G),

then since |G| = q(q2 − 1)/d, where d = (2, q − 1), we can assume {r, s, t, u} ⊆

π(q − 1)∪ π(q+ 1). Thus one of the numbers q − 1 or q+1 is of the form 2m where

m is a number which is divided by at least two distinct odd prime numbers. Now by

Dickson’s Theorem [6], G has dihedral subgroups of the formD2z where z | (q ± 1)/d.

The derived subgroup of D2z has order divisible by at least two distinct primes, as

desired. �
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Lemma 2.8. Let G = K ⋊H be a Frobenius group, then G′ = KH ′.

P r o o f. Obviously. �

Lemma 2.9. Let G = Sz(q), q = 22m+1. Then n > |π(G)| + 2.

P r o o f. Suppose that F is a Sylow 2-subgroup of G, then F is nonabelian of

order q2 and NG(F ) = FH = T is a Frobenius group with cyclic complement H

of order q − 1 and kernel F . Now since F is nonabelian, we have 1 < Z(F ) < F ,

on the other hand, H 6 NT (Z(F )), so S = Z(F )H is a Frobenius group and

by Lemma 2.8, |S′| = |Z(F )| = q and |T ′| = |F | = q2. So G has at least two

nonisomorphic 2-subgroups. Hence n > |π(G)| + 2. �

Remark 2.10. If G is a nonabelian simple group and |π(G)| ∈ {3, 4}, then we

say that G is a Kn-group for n = 3, 4. Herzog in [4] proved that there are eight

simple K3-groups. Also Shi in [10] gave a characterization of all simple K4-groups.

By GAP software we can see that in these groups n > |π(G)| + 2, except for the

group A5. In the following theorem, we show that in fact G = A5 is the only group

among all simple groups whose number of nonisomorphic derived subgroups is equal

to |π(G)| + 2.

Lemma 2.11. Let G be a nonabelian simple Dn-group. Then n = |π(G)| + 2 if

and only if G ∼= A5.

P r o o f. Let G be a nonabelian simple Dn-group, other than A5. By Lemma 2.1,

it is enough to find p ∈ π(G) and two subgroupsH1 andH2 of G such thatH
′

1 andH
′

2

are nonisomorphic p-groups, or to find a subgroup H whose derived subgroup is not

a p-group. It follows that n > |π(G)| + 2. It is well-known that every nonabelian

simple group contains a minimal simple group (see [1]). So if G is not a minimal

simple group, let H < G be a proper minimal simple subgroup. Thus |H ′| = |H | is

not a p-group, so n > |π(G)| + 2. Therefore it is enough to consider the following

minimal simple groups:

(1) PSL(2, 2p) where p is a prime number.

(2) PSL(2, 3p) where p is an odd prime.

(3) PSL(2, p) where p > 3 and 5 | p2 + 1.

(4) SZ(2p) where p is an odd prime.

(5) PSL(3, 3).

Now by Lemmas 2.7, 2.9 and Remark 2.10, the proof is complete. �

Now we are ready to prove the main result.
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P r o o f of Theorem 1.1. Let G be a characteristically simple Dn-group. Then

G ∼=
i=t∏

i=1

Ki, where the Ki’s are isomorphic to a simple Dm-group K. Now, by

Lemma 2.11, we get n > mt > (π(K) + 2)t > (π(G) + 2)t, since π(G) = π(K).

Therefore t = 1 and the result follows. �

Example 2.12. Consider the nonsolvable symmetric group G = Sn, for n > 5.

Since for every m 6 n, Sm 6 Sn, we have that D = {An, An−1, . . . , A4, V4, 1} is a set

of nonisomorphic derived subgroups of G. Now |D| = n− 1, therefore, if G ∈ Dt, we

have n 6 t+ 1, thus |π(G)| 6 t+ 1.

Note that generally, the relation in Lemma 2.3, is not true for all nonsolvable

groups. For example, see the following.

Example 2.13. Let H be an arbitrary (in particular an insolvable group)

Dn-group, with π(H) = {p1, p2, . . . , pt}. If n > t + 1, then consider the group

G = H × Zpt+1
× Zpt+2

× . . .× Zpn
, where p1 < p2 < . . . < pt < pt+1 < . . . < pn are

prime numbers. By Lemma 2.4, G is a Dn-group with |π(G)| = n.

Note that generally, two groups with the same number of derived subgroups

(or even with the same number of isomorphism classes of derived subgroups) need

not be necessarily isomorphic. In fact we give a negative answer to a question raised

in [11].

Proposition 2.14. Let G = D2n = 〈r, s : r2
n−1

= s2 = 1, rs = r−1〉 be the

dihedral group of order 2n. Then G ∈ Dn−1 ∩RGn−1.

P r o o f. G′ is cyclic of order 2n−2 and the derived subgroup of every subgroup

of G is one of the n− 1 subgroups of G′. On the other hand, each of these subgroups

of G′ is the derived subgroup of some subgroup of G. �

Example 2.15. Let G = D26 , S = A5 and H = D224 , then G, S are D5-groups

and H , S are RG23-groups.

Finally, in view of the above results, we raise the following conjecture.

Conjecture 2.16. Let G be a group and S a finite simple group such that

|G| = |S|. Is it true that

G ∼= S ⇔ G,S ∈ GRn \ GRn−1, for some n?

Or

G ∼= S ⇔ G,S ∈ Dn \Dn−1, for some n?
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