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Regularity problem for one class of nonlinear parabolic

systems with non-smooth in time principal matrices

Arina A. Arkhipova, Jana Stará

Abstract. Partial regularity of solutions to a class of second order nonlinear para-
bolic systems with non-smooth in time principal matrices is proved in the paper.
The coefficients are assumed to be measurable and bounded in the time vari-
able and VMO-smooth in the space variables uniformly with respect to time.
To prove the result, we apply the so-called A(t)-caloric approximation method.
The method was applied by the authors earlier to study regularity of quasilinear
systems.

Keywords: nonlinear parabolic systems; regularity problem

Classification: 35B65, 35D30, 35K99

1. Introduction

In this paper we study partial regularity of weak solutions to the following class
of parabolic systems:

(1) ut(z)− div a(z,∇u(z)) = 0, z = (x, t) ∈ Q,

where Q = Ω× (−T, 0), Ω is a bounded domain in Rn, n ≥ 2, and a constant T is
positive. By ut we denote the time derivative of a function u : Q → RN , N > 1,
and by ∇u = (ux1 , . . . , uxn), uxi =

∂u
∂xi

, its space gradient.

We assume that the Carathéodory functions a(z, p) = {akα(z, p)}k≤N
α≤n satisfy

the following conditions:
[H1] there exists a number L > 0 such that

(2) |a(z, p)| ≤ L(1 + |p|) a.a. z ∈ Q, ∀ p ∈ R
nN ;

[H2] there is β ∈ (0, 1] such that

(3)
|a(x, t, p)− a(y, t, p)| ≤ Lmin{1, |x− y|β}(1+|p|) a.a. x, y ∈ Ω,

t ∈ (−T, 0), ∀ p ∈ R
nN ;
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[H3] the coefficients a(z, p) are differentiable with respect to p, the matrix ∂a
∂p =

{
∂ak

α(z,p)

∂pl
β

}k,l≤N

α,β≤n
has bounded measurable entries, and the ellipticity conditions

(4) ν|ξ|2 ≤
(∂a(z, p)

∂p
ξ · ξ

)
,

∣∣∣∂a(z, p)
∂p

∣∣∣ ≤ µ, a.a. z ∈ Q, ∀ p, ξ ∈ R
nN ,

hold with positive numbers ν ≤ µ;
[H4] the matrix ∂a

∂p is uniformly continuous in p ∈ RnN for almost all z ∈ Q,

i.e. there exists a nonnegative bounded nondecreasing and concave function ω(s),
s ∈ [0,∞), such that ω(s) → 0, s → +0, and

(5)
∣∣∣∂a(z, p)

∂p
− ∂a(z, p0)

∂p

∣∣∣ ≤ ω(|p− p0|2), p, p0 ∈ R
nN , a.a. z ∈ Q;

[H5] the entries of the matrix ∂a(z,p)
∂p belong to the class VMO(Ω) for almost all

t ∈ Λ = (−T, 0) and all p ∈ RnN ; moreover the following condition holds

(6) sup
Q̺(z

0)⊂Q,

̺≤r, p∈R
nN

∫

Q̺(z0)

∣∣∣∂a(x, t, p)
∂p

−
(∂a
∂p

)
̺,x0

(t; p)
∣∣∣
2

dz =: q(r) → 0, r → 0,

where Q̺(z
0) is a parabolic cylinder (see the notation below) and

(∂a
∂p

)
̺,x0

(t; p) =

∫

B̺(x0)

∂a(x, t, p)

∂p
dx a.a. t ∈ Λ, ∀ p ∈ R

nN .

Here B̺(x
0) is a ball in Rn centered in x0 with the radius ̺.

As we study only interior partial regularity of weak solutions to system (1) we
can assume that conditions [H1]–[H5] are satisfied locally in Q.

We consider weak solutions u of system (1) defined as follows:

Definition 1.1. A function u ∈ V (Q) := L2((−T, 0);W 1
2 (Ω)) is a weak solution

to system (1) if it satisfies the identity

(7)

∫

Q

[−u(z) · ϕt(z) + a(z,∇u(z)) · ∇ϕ(z)] dz = 0

for all ϕ ∈
o

W 1
2(Q) = [C∞

0 (Q)]W 1
2 (Q).

In this paper we continue to study optimal conditions on the principal parts of
different classes of parabolic systems to relax the known assumptions on the data
which guarantee partial regularity of weak solutions.

In our previous papers [8] and [5] we considered quasilinear systems

(8) ut − div(A(z, u)∇u) = 0, z ∈ Q,
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and proved partial regularity of weak solutions under relaxed smoothness assump-
tions on the principal matrix A(x, t, u) in the arguments x and t. We assumed in
these papers only boundedness in the time variable and integral VMO-smoothness
in the space variables x = (x1, . . . , xn) of the matrix A(x, t, u). We studied regu-
larity of solutions inside Q in [8] and up to the parabolic boundary of Q under the
Cauchy–Dirichlet conditions in [5]. (Regularity of weak solutions to the Venttsel
boundary problem for linear and quasilinear parabolic systems under the same
assumptions on the data was proved by the A(t)-caloric approximation method
in [3], [4].)

Further we proved partial regularity of weak solutions to a class of nondiver-
gence type quasilinear systems

(9) ut −A(x, t, u,∇u)∇2u = 0, z ∈ Q,

under relaxed assumptions on the matrix A(x, t, u, p) in [6].
We also proved partial regularity of weak solutions to a class of 2m-order

quasilinear parabolic systems under relaxed smoothness conditions on the princi-
pal matrix in [7].

To relax known regularity assumptions on the data, we applied in our works the
so-called “A(t)-caloric approximation” method. This approach is a modification
of the A-caloric approximation method suggested and successfully applied by
F. Duzaar and G. Mingione in [18] (see also [9]) to study regularity to a wide
class of nonlinear parabolic systems:

(10) ut − div a(z, u,∇u) = 0, z = (x, t) ∈ Q.

We denote by A an elliptic constant [nN × nN ]-matrix and by A(t) an elliptic
matrix with bounded measurable entries depending on t .

Using properties of the fractional Sobolev spaces, the authors of [18] proved
by A-caloric approximation method new results on the partial regularity and
obtained estimates of the singular sets of solutions. Note that in the elliptic
setting the possibility of using the correspondent “A-harmonic approximation
method” was exploited in [17] and [19] (for the origin of the method see [18]).
Another approach to study partial regularity for elliptic problems one can find in
[12], [13].

We do not consider here systems (10) where functions a(z, u, p) depend on the
argument u explicitly. As it is known, to study systems (10) we need additional
considerations and we are able to obtain only more rough estimate of the singular
sets.

In [18] the class of systems (1) was studied separately. In this case the authors
assumed that the functions a(x, t, p) satisfy the Hölder continuity condition in the
variables z = (x, t) with an exponent β ∈ (0, 1) (in the parabolic metric δ). We
recall that the parabolic metric δ is defined as follows

δ(z1; z2) = max{|x1 − x2|, |t1 − t2|1/2}, z1 = (x1, t1), z2 = (x2, t2) ∈ R
n+1.
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In particular it means that the functions a(x, t, p) are assumed to be Hölder
continuous in t with the exponent β/2 in [18].

Moreover, it was supposed in that paper that the entries of the matrix ∂a(z,p)
∂p

were continuous functions in z. Under natural assumptions on the behavior of a

and ∂a(z,p)
∂p in the argument p it was proved that

(11) dimP Σ := inf{λ > 0: Hλ(Σ; δ) = 0} ≤ n+ 2− 2β − ε0

for the closed singular set Σ of a weak solution u ∈ V (Q) to system (1) where
Hλ(Σ; δ) is the canonical Hausdorff measure of the set Σ constructed in Rn+1

with respect to the parabolic metric δ. Here ε0 > 0 is a number depending on the
data of the problem. On the open set Q0 = Q \Σ the gradient ∇u was proved to
be the Hölder continuous function with the exponent β in the parabolic metric.

To study dependence between smoothness assumptions on the data of elliptic
systems and estimates of the singular sets of weak solutions, G. Mingione used the
properties of fractional Sobolev spaces (in particular, Poincaré type inequalities)
in [27]. The approach was later modified by F. Duzaar, G. Mingione in [18] to
improve known before estimates of the singular sets for parabolic systems. We
exploited this idea in our paper.

Here we intend to relax known assumptions on the main data when we study
regularity problem for systems (1) and assume in this paper only boundedness in t

of the functions a(x, t, p) and the matrix ∂a(x,t,p)
∂p . We prove under such relaxation

that

(12) dimP Σ ≤ n+ 2− 2β, β ∈ (0, 1).

We can estimate the singular set better provided that we assume that there exist
derivatives a′x(x, t, p), i.e. β = 1 in our assumptions. In this case we prove that

(13) dimP Σ ≤ n− χ

where a number χ > 0 is defined by the data.
The case β ∈ (0, 1) is considered in Theorem 2.1, and Theorem 2.2 is dedicated

to the situation β = 1. The estimates (12) and (13) are justified in Theorem 2.3.
Under similar smoothness conditions in x and t for the principal matrix, the

regularity question for a wide class of nonlinear scalar equations and 2m-order par-
abolic linear systems (m ≥ 1) was studied in a series of the works by N.V. Krylov,
H. Dong, D. Kim (see [24], [25], [14], [15] and references therein). In these works
the principal coefficients of the studied systems were also assumed bounded and
measurable in t and VMO-smooth in the space variables. Our results concern
nonlinear parabolic systems.

The paper is organized as follows: in Section 2 we list notation and main results;
Section 3 contains auxiliary results, Section 4 is dedicated to properties of A(t)-
caloric functions and we formulate the main A(t)-caloric lemma. In Section 5 we
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prove Theorem 2.1 and in Section 6 we prove Theorem 2.2. In the last Section 7
we prove Theorem 2.3.

2. Notation and main results

We assume that Ω is an open bounded domain in Rn and T is a positive
number. We will use the following notation:

z = (x, t), z0 = (x0, t0) ∈ Ω× Λ = Q ⊂ R
n+1, Λ = (−T, 0),

Γ = ∂Ω× Λ, Λr(t
0) = (t0 − r2, t0), Br(x

0) = {x ∈ R
n : |x− x0| < r},

Qr(z
0) = Br(x

0)× Λr(t
0), Γr(z

0) = ∂Br(x
0)× Λr(t

0),

∂pQr(z
0) = Γr(z

0) ∪ (Br(x0)× {t0 − r2}).

The Campanato space L2,λ(Q; δ) with λ ∈ [0, n+ 4] is the set of all functions
from L2(Q) with the finite seminorm

[u]L2,λ(Q;δ) =

(
sup

z0∈Q, r≤d0

1

rλ

∫

Qr(z0)∩Q

|u(z)− (u)r,z0 |2 dz
)1/2

where d0 = maxz1,z2∈Q δ(z1; z2).
We recall that the space L2,n+2+2α(Q; δ) is isomorphic to the Hölder space

C0,α(Q; δ) for α ∈ (0, 1], see [10].
Throughout the paper we use the standard notation for the Lebesgue and

Sobolev spaces and we write ‖v‖p,Ω instead of ‖v‖Lp(Ω), p ≥ 1.

Further we use the Hölder spaces C0,α(Q) and Campanato spaces L2,λ(Q) with
respect to the parabolic metric δ.

Thus, for example, C0,α(Q) = C
α,α/2
x,t (Q) in the euclidian metric in Rn+1.

Next we denote the spaces

V (Q) = L2(Λ;W 1
2 (Ω)),

o

W
1

2(Q) = [C∞
0 (Q)]W 1

2 (Q),

V (Qr(z
0)) = L2(Λr(t

0);W 1
2 (Br(x

0))

for z0, r such that Qr(z
0) ⊂⊂ Q.

The space averages and the space-time averages of u ∈ L1(Qr(z
0)) are defined

by

(u)r,x0(t) =
1

|Br(x0)|

∫

Br(x0)

u(y, t) dy;

(u)r,z0 =
1

|Qr(z0)|

∫

Qr(z0)

u(z) dz =

∫

Qr(z0)

u(z) dz.
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Space averages of functions a(z, p) are defined by

(a)r,x0(t; p) =
1

|Br(x0)|

∫

Br(x0)

a(y, t, p) dy

=

∫

Br(x0)

a(y, t, p) dy, t ∈ Λr(t
0), p ∈ R

nN .

Here |Br| and |Qr| stand for the Lebesgue measures of Br and Qr in Rn and
Rn+1, respectively.

We often use the minimizing property of the averages, namely

(14)

∫

Qr(z0)

|u(z)− (u)r,z0 |2 dz ≤
∫

Qr(z0)

|u(z)− c|2 dz, ∀ c ∈ R
N ,

which is a consequence of the fact that the function Φ(c) =
∫
Qr(z0)

|u(z)− c|2 dz
attains its minimum for c = (u)r,z0 .

We write v ∈ H1/2(Λ;L2(Ω)) provided that v ∈ L2(Q) and the following
seminorm is finite:

[v]H1/2(Λ;L2(Ω)) =

(∫

Λ

∫

Λ

‖v(·, t+ h)− v(·, t)‖2L2(Ω)

|h|2 dt dh

)1/2
< ∞.

We also recall the definition of the parabolic fractional Sobolev spaces Wα,γ
2 (Q),

Q = Ω×Λ, α, γ ∈ (0, 1). A function v from L2(Q) belongs to the space Wα,γ
2 (Q)

if

[v]2Wα,γ
2 (Q) :=

∫

Λ

∫

Ω

∫

Ω

|v(x, t)− v(y, t)|2
|x− y|n+2α

dy dxdt

+

∫

Ω

∫

Λ

∫

Λ

|v(x, t)− v(x, s)|2
|t− s|1+2γ

dt ds dx < ∞.

We write A(z, p) ∈ {ν, µ} if the matrix A(z, p) satisfies the ellipticity condition
[H3] with the parameters 0 < ν ≤ µ for almost all z ∈ Q and all p ∈ RnN .

To save the space, we write v ∈ B(·) instead of v ∈ B(· ;RN ) for a functional
space B of N -vector functions.

In what follows we will use the notation Qr, Vr, (u)r without denoting center
of the ball or the cylinder if it does not cause misunderstandings.

In order to concentrate our attention on the properties of the principal functions
a(z, p), we omit additional nonlinear terms of the lower order. Certainly, we can
also add in the right-hand side of (1) functions from appropriate Campanato
spaces.

Next we formulate the main results of the paper.

Theorem 2.1. Let the assumptions [H1]–[H5] hold with β ∈ (0, 1) and u ∈ V (Q)
be a weak solution to (1). Then for any number M ≥ 1 there exist numbers
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τ, θ ∈ (0, 1) and R0 > 0 such that if Qr(z
0) ⊂ Q with some r < R0 and

(15)

∫

Qr(z0)

|∇u(z)|2 dz < M,

∫

Qr(z0)

|∇u(z)− (∇u)r,z0 |2 dz < θ,

then u belongs to C0,1(Qτ r(z0); δ), and ∇u ∈ C0,β(Qτ r(z0); δ) where β ∈ (0, 1)
is fixed in the assumption [H2]. The correspondent norms of u and ∇u can be
estimated by the data of the problem, ‖u‖V (Q), M , and r−1.

We also consider the case when β = 1 in the assumption [H2]. More exactly,
we assume that there exist derivatives a′x(x, t, p) =

∂a
∂x and

[H2’]

(16) |a′x(x, t, p)| ≤ L(1 + |p|)

holds.
In this situation we can slightly change some steps of the proof of Theorem 2.1

and we formulate it as a special result.

Theorem 2.2. Let the assumptions [H1], [ H3]–[H5], and [H2’] hold and u be
a weak solution to system (1). Then there exist numbers τ, θ ∈ (0, 1) and R0 > 0
such that if

(17)

∫

Qr(z0)

|∇u(z)− (∇u)r,z0 |2 dz < θ, r2
∫

Qr(z0)

|∇u(z)|2 dz < θ

in some cylinder Qr(z
0) ⊂ Q, r ≤ R0, then u ∈ C0,1(Qτ r(z0); δ), and ∇u ∈

Cα(Qτ r(z0); δ) with any α ∈ (0, 1), and the corresponding norms are estimated
by constants depending on ν, µ, L, r−1, α, and ‖u‖V (Q).

Theorem 2.3. Let the assumptions of Theorem 2.1 hold and u ∈ V (Q) be a weak
solution to system (1). Then u is the C0,1-function and its spatial derivatives
ux1 , . . . , uxn are Hölder continuous functions with the exponent β ∈ (0, 1) (in the
parabolic metric) on an open set Q0 ⊂ Q, Q0 = Q \ Σ where Σ is the closed
singular set of u and

(18) dimP Σ ≤ n+ 2− 2β.

If the conditions of Theorem 2.2 hold then u ∈ C0,1(Q0; δ) and∇u ∈ Cα(Q0; δ)
with any α ∈ (0, 1) where Q0 is an open set in Q and

(19) dimP (Σ) ≤ n− χ0

with some χ0 = χ0(µ/ν, n) > 0 for the closed singular set Σ = Q \Q0.
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3. Auxiliary results

In this section we recall several results needed further.

Lemma 3.1. Let w ∈ V (Q) be a weak solution to the system

(20) wt(z)− div(A(z)∇w(z)) = F1(z)− divF2(z),

where [nN × nN ]-matrix A(z) ∈ {ν, µ} for almost all z ∈ Q, F1, F2 ∈ L2(Q).

Then w ∈ H
1/2
loc (Λ;L

2(Ω)) and the following estimates hold in any cylinder
Q2R(z

0) ⊂ Q:

(21)

‖w − k‖2V (QR(z0)) := sup
ΛR(t0)

∫

BR(x0)

|w(x, t) − k|2 dx+

∫

QR(z0)

|∇w(z)|2 dz

≤ c

R2

∫

Q2R(z0)

|w(z)− k|2 dz

+ c

∫

Q2R(z0)

(R2|F1(z)|2 + |F2(z)|2) dz, ∀ k ∈ R
N ;

(22)

∫

QR(z0)

|w(z)− (w)R,z0 |2 dz ≤ cR2

∫

Q2R(z0)

|∇w|2 dz

+ c

∫

Q2R(z0)

(R4|F1|2 +R2|F2|2) dz;

(23)
[w]2H1/2(ΛR(t0);BR(x0)) ≤ c{‖∇w‖22,Q2R(z0) +R−2‖w‖22,Q2R(z0)

+R2‖F1‖22,Q2R(z0) + ‖F2‖22,Q2R(z0)}.

Moreover, w ∈ L2(n+2)/n(Q) and

(24) ‖w‖22(n+2)/n,QR
≤ c(n)

{
sup
ΛR

‖w(·, t)‖22,BR
+ ‖∇w‖22,QR

}
.

The constants in inequalities (21)–(23) depend on µ/ν and n only.

Inequalities (21) and (22) are the well known Caccioppoli and Poincaré in-
equalities. They can be derived from identity (7) applying in advance the Steklov
average procedure (see, for example [11], [21], [22]). Proofs of (23) and (24) for
systems and scalar parabolic equations are the same, one can find them in [26],
Chapter 2 and 3.

Lemma 3.2. Let the matrix A(z) ∈ {ν, µ} for almost all z ∈ Q, F1 ∈
L(2(n+2)/(n+4))+ε(Q), F2 ∈ L2+ε(Q) with an ε > 0 and w ∈ V (Q) be a weak
solution to system (20) then ∇w ∈ Lqo

loc(Q) for some qo ∈ (2, 2 + ε), and the
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inequality holds

(25)

(∫

Qr

|∇w|q0 dz
)2/q0

≤ c

∫

Q2r

|∇w|2 dz + c

(∫

Q2r

|F2|qo dz
)2/q0

+ c

(∫

Q2r

|F1|s dz
)2/s

,

for any Q2r ⊂ Q and s = 2(n+ 2)/(n+ 4) + (qo − 2). The constant c in (25)
depends on µ/ν and n.

This lemma is a local variant of the Gehring lemma on the reverse Hölder
inequalities [20] proved by M. Giaquinta and G. Modica. In the parabolic metric
the lemma was applied first time in [22]. The result was extended for the case of
additional functions from the anisotropic spaces and integrals over manifolds of
the lower dimensions [1], [2]. The extension of the result for the case of p-parabolic
metric, p 6= 2, see [23].

Lemmas 3.1 and 3.2 guarantee few useful results for nonlinear systems (1).
Indeed, we can use the condition [H3] to obtain the equality

(26)

a(z, p) = a(z, 0) + A(z, p)p,

A(z, p) =

∫ 1

0

∂a

∂p
(z, s p) ds ∈ {ν, µ} a.a. z ∈ Q, ∀ p ∈ R

nN .

We consider a weak solution u ∈ V (Q) of system (1) as a weak solution to system

(27) ut − div(A(z,∇u)∇u) = div a(z, 0).

More exactly, a weak solution u ∈ V (Q) to system (27) (or to system (1))
satisfies the identity

(28)

∫

Q

[−u · ϕt + A(z,∇u)∇u · ∇ϕ] dz = −
∫

Q

a(z, 0) · ∇ϕdz, ϕ ∈
o

W 1
2(Q).

We put u = w, A(z,∇u(z)) = A(z), −a(z, 0) = F2(z), |F2(z)| ≤ L, F1 = 0,
and consider (27) as the linear system (20). Applying Lemma 3.1 and Lemma 3.2,
we obtain that the following assertion is valid.

Lemma 3.3. Let the assumptions [H1] and [H3] hold, u ∈ V (Q) be a weak

solution to system (1). Then u ∈ H
1/2
loc (Λ;L

2(Ω)) and the following inequalities
are valid in any Q2R(z

0) ⊂ Q:

(29)

‖u− k‖2V (QR(z0)) = sup
ΛR(t0)

‖u− k‖22,BR(x0) +

∫

QR(z0)

|∇u|2 dz

≤ c

R2

∫

Q2R(z0)

|u(z)− k|2 dz + cL2, ∀ k ∈ R
N ,
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(30)

∫

QR(z0)

|u(z)− (u)R,z0 |2 dz ≤ cR2

∫

Q2R(z0)

(|∇u|2 + L2) dz.

(31) [u]2H1/2(ΛR;L2(BR)) ≤ c{‖∇u‖22,Q2R
+L2+R−2‖u−k‖22,Q2R

}, ∀ k ∈ R
N .

Moreover, there exists number qo > 2 such that ∇u ∈ Lq
loc(Q) for q ∈ [2, qo)

and the inequality

(32)

(∫

QR(z0)

|∇u|q dz
)2/q

≤ c

∫

Q2R(z0)

(|∇u|2 + L2) dz, Q2R(z
0) ⊂ Q,

holds. The constants c in (29)–(32) depends on µ/ν and n only.

Lemma 3.4. 1) Let a function v ∈ H1/2(Λ;L2(Ω)). Then for a fixed h > 0

(33)

∫ −h

−T+h

‖v(· , t+ τ)− v(· , t)‖22,Ωdt ≤ 8|τ | [v]2H1/2(Λ;L2(Ω)), |τ | < h

4
.

2) If v ∈ W
α,α/2
2 (QR(z

0)) then

(34) ‖v − (v)R,z0‖22,QR
≤ cR2α[v]2

W
α,α/2
2 (QR(z0))

with the absolute constant c > 0.

Proof: 1) Let a function v ∈ H1/2(Λ; L2(Ω)) and h > 0 be a fixed number.

We put λτ = (−τ, τ) and estimate the expression Jh(τ) =
∫ −h

−T+h ‖v(· , t + τ) −
v(· , t)‖22,Ω dt for |τ | < h/4. We start with the case τ > 0. Then

Jh(τ) =

∫

λτ

dξ Jh(τ)

=

∫

λτ

∫ −h

−T+h

‖[v(· , t+ τ) − v(· , t+ ξ)] + [v(·, t+ ξ)− v(· , t)]‖22,Ω dt dξ

≤ 4τ

∫

λτ

∫ −h

−T+h

‖v(· , t+ τ) − v(· , t+ ξ)‖22,Ω
|τ − ξ|2 dt dξ

+ 4τ

∫

λτ

∫ −h

−T+h

‖v(· , t+ ξ)− v(· , t)‖22,Ω
|ξ|2 dt dξ =: j1 + j2.

For a fixed τ we put s = t+ τ and ξ′ = ξ+ t in j1. Then ds = dt and dξ′ = dξ.
Now it follows that

j1 ≤ 4τ

∫

Λ

∫

Λ

‖v(· , s)− v(· , ξ′)‖22,Ω
|s− ξ′|2 ds dξ′ = 4τ [v]2H1/2(Λ;L2(Ω)).
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Further, we put ξ + t = s in j2 then

j2 ≤ 4τ

∫

Λ

∫

Λ

‖v(· , s)− v(· , t)‖22,Ω
|s− t|2 dt ds ≤ 4τ [v]2H1/2(Λ;L2(Ω)).

Estimate (33) follows with τ > 0. The case τ < 0 can be proved by the same way.
To justify estimate (34) we put η = (y, τ), z = (x, t) and write the inequalities

‖v − (v)R‖22,QR
=

∫

QR

∣∣∣∣v(z)−
∫

QR

v(η) dη

∣∣∣∣
2

dz

≤ 2

∫

QR

∫

QR

(|v(x, t) − v(y, t)|2 + |v(y, t)− v(η)|2) dη dz

≤ c(n)R2α[v]2
W

α,α/2
2 (QR(z0))

.

To obtain the last inequality we have used the definition of W
α,α/2
2 (QR(z

0)). �

Now we recall some results on the A(t)-caloric functions from [8].
We fix two positive numbers 0 < ν ≤ µ and consider [nN × nN ] matrices A(t)

with the entries from L∞(ΛR(t
0)), ΛR(t

0) ⊂ Λ, and A(t) ∈ {ν, µ} for almost all
t ∈ ΛR(t

0).

Definition 3.1. We say that a weak solution h ∈ V (QR(z
0)) to the system

(35) ht − div(A(t)∇h) = 0, z = (x, t) ∈ QR(z
0),

is an A(t)-caloric function in QR(z
0).

Obviously, any A(t)-caloric function satisfies Caccioppoli and Poincaré inequal-
ities (21) and (22) with F1 = F2 = 0.

Moreover, weak solutions h of system (35) have an additional smoothness in
any Q̺(z

0) for ̺ < r. The spatial derivatives Dαh, |α| < ∞, are continuous
functions and (Dαh)t are bounded in Q̺(z

0), ̺ < r, see [8].
For A(t)-caloric functions the following Campanato type integral estimates

hold.

Lemma 3.5 (Lemma 5 in [8]). Let h ∈ V (Qr) be an A(t)-caloric function in Qr

then

∫

Q̺(z0)

|h(z)− h̺,z0 |2 dz ≤ c
(̺
r

)2 ∫

Qr(z0)

|h(z)− hr,z0 |2 dz, ̺ < r;(36)

∫

Q̺(z0)

|∇h(z)|2 dz ≤ c

∫

Qr(z0)

|∇h(z)|2 dz, ̺ < r;(37)
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(38)

∫
Q̺(z0)|h(z)− (h)̺,z0 − (∇h)̺,z0 (x− x0)|2 dz

≤ c
(̺
r

)4 ∫

Qr(z0)

|h(z)− (h)r,z0 − (∇h)r,z0(x − x0)|2 dz, ̺ < r.

In inequalities (36), (37), (38) the constants c > 0 depend on ν, µ, n, and N only.

Lemma 3.6 (A(t)-caloric approximation lemma, Lemma 7 in [8]). Let µ, ν be
positive numbers, ν ≤ µ. Then for any ε > 0 there exists a constant Cε =
C(ε, ν, µ, n,N) > 0 such that whenever a matrix A(t) with entries in L∞(Λr)
satisfies the condition A(t) ∈ {ν, µ} for almost all t ∈ Λr then for any u ∈ V (Qr)
there exist an A(t)-caloric function h ∈ V (Qr/2), and a function ϕ ∈ C1

0 (Qr),
supQr

|∇ϕ| ≤ 1, such that

(39)

∫

Qr/2

(|h(z)− (h)r/2|2 + r2|∇h(z)|2) dz

≤ 2n+4

∫

Qr

(|u(z)− (u)r|2 + r2|∇u(z)|2) dz,

(40)

∫

Qr/2

|u(z)− h(z)|2 dz ≤ ε

∫

Qr

(|u(z)− (u)r|2 + r2|∇u(z)|2) dz

+ Cεr
2L2

r(u, ϕ)

where

(41) L2
r(u, ϕ) =

∣∣∣∣
∫

Qr

[−u · ϕt +A(t)∇u · ∇ϕ] dz

∣∣∣∣
2

.

4. Proof of Theorem 2.1

Let u ∈ V (Q) be a weak solution to system (1). We put

v(z) = u(z)− k − l (x− x0)

for any k ∈ RN , l ∈ RnN . The function v ∈ V (Q) is a weak solution to system

(42) vt − div a(x, t,∇v(z) + l) = 0.

It satisfies the identity

(43)

∫

Q

[−v(z) · ϕt(z) + a(z,∇v(z) + l) · ∇ϕ(z)] dz = 0, ∀ϕ ∈
o

W 1
2(Q).
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Taking into account that

a(z,∇v(z) + l)− a(z, l) + a(z, l)

=

∫ 1

0

∂a

∂p
(z, s∇v(z) + l) ds∇v(z) + [a(x, t, l)− a(x0, t, l)] + a(x0, t, l),

we can write identity (43) in the form

(44)

∫

Q

[−v · ϕt + A(z;∇v, l)∇v · ∇ϕ] dz = −
∫

Q

∆′a · ∇ϕdz,

where

A(z;∇v, l) =

∫ 1

0

∂a

∂p
(z, s∇v(z) + l) ds ∈ {ν, µ} a.a. z ∈ Q,

∫

Q

a(x0, t, l) · ∇ϕ(z) dz = 0,

and

∆′a(x, t, l) = a(x, t, l)− a(x0, t, l), |∆′a(x, t, l)| ≤ L|x− x0|β(|l|+ 1).

By Lemma 3.1, v ∈ H
1/2
loc (Λ;L

2(Ω)) and the Caccioppoli and Poincaré inequal-
ities are valid. It follows that

(45)

∫

Qr

|v(z)− (v)r |2 dz ≤ cr2
∫

Q2r

(|∇v(z)|2 + L2r2β(|l|2 + 1)) dz,

(46)

∫

Qr(z0)

|∇v(z)|2 dz ≤ c

r2

∫

Q2r(z0)

|v(z)|2 dz

+ c L2r2β(|l|2 + 1), c = c
(µ
ν
, n

)
,

in any Q2r(z
0) ⊂⊂ Q. As

∫

Qr

|∇u− (∇u)r,z0 |2 dz ≤
∫

Qr

|∇u− l|2 dz, ∀ l ∈ R
nN ,

then using inequality (46) for v(z) = u(z)−k− l(x−x0)), we obtain the following
relation

(47)

∫

Qr(z0)

|∇u − (∇u)r,z0 |2 dz ≤ c

r2

∫

Q2r(z0)

|u(z)− k − l(x− x0)|2 dz

+ cL2r2β(|l|2 + 1).
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For the fixed Qr(z
0) such that Q2r(z

0) ⊂⊂ Q, we put

Φ(̺, z0) = Φ(̺) =

∫

Q̺(z0)

|∇u − (∇u)̺,z0 |2 dz,

Ψ(̺, z0) = Ψ(̺) =

∫

Q̺(z0)

|∇u|2 dz,

and further we consider

v(z) = u(z)− (u)r,z0 − (∇u)r,z0(x− x0).

Thus, vt(z) = ut(z), ∇v(z) = ∇u(z)− (∇u)r,z0 .
Below we apply Lemma 3.6 to this function v. For a fixed ε > 0 and the matrix

(48) A(t) =

∫

Br(x0)

∂a(x, t, (∇u)r,z0)

∂p
dx ∈ {ν, µ} a.a. t ∈ Λr(t

0)

there exist an A(t)-caloric function h from V (Qr/2(z
0)), a constant Cε, and

a smooth function ϕ ∈ C1
0 (Qr(z

0)), supQr
|∇ϕ| ≤ 1, such that inequalities (39)

and (40) hold.
By (47) (with ̺/2 instead of r), we have the inequality

Φ
(̺
2

)
≤ c

̺2

∫

Q̺

|u(z)− k − l(x− x0)|2 dz + cL2̺2β(|l|2 + 1), ̺ ≤ r

2
,

where we choose k = (u)r,z0 + (h)̺,z0 , l = (∇u)r,z0 + (∇h)̺,z0 . Then

Φ
(̺
2

)
≤ c

̺2

∫

Q̺

|u− h+ h− (u)r − (h)̺ − (∇u)r(x− x0)− (∇h)̺(x− x0)|2 dz

+ c L2̺2β(|(∇u)r |2 + |(∇h)̺|2 + 1)

≤ c

̺2

{∫

Q̺

|v − h|2 dz +
∫

Q̺

|h− (h)̺ − (∇h)̺(x− x0)|2 dz
}

+ cL2̺2β(|(∇u)r |2 + |(∇h)̺|2 + 1).

Now we apply estimates (37), (38) to obtain the inequalities

Φ
(̺
2

)
≤ c

̺2

( r
̺

)n+2
∫

Qr/2

|v − h|2 dz

+
c

̺2

(̺
r

)4 ∫

Qr/2

|h− (h)r/2 − (∇h)r/2(x− x0)|2 dz

+ cL2̺2β(1 + |(∇u)r|2) + cL2̺2β
∫

Qr/2

|∇h|2 dz
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≤ c

r2

( r
̺

)n+4
∫

Qr/2

|v − h|2 dz

+
c

̺2

(̺
r

)4 ∫

Qr/2

(|h− (h)r/2|2 + r2|∇h|2) dz

+ cL2̺2β(1 + |(∇u)r|2) + cL2
(̺
r

)2β
r2β

∫

Qr/2

|∇h|2 dz ≤ (∗).

We will estimate the inequality (∗) with the help of relations (39), (40) for v
but not u in the way

(∗) ≤ cr−2
( r
̺

)n+4

{εMr + Cεr
2L2

r(v, ϕ)}+ c
(̺
r

)2
r−2Mr

+ cL2̺2β(1 + |(∇u)r|2) + c
(̺
r

)2β
r2βr−2Mr

where

Mr =

∫

Qr

(|v(z)− (v)r|2 + r2|∇v|2) dz.

Using the Caccioppoli inequality (45) for the function v, (v)r = 0, we obtain the
estimate of Mr:

(49)
Mr ≤ cr2

{∫

Q2r

|∇v|2 dz + r2β(|(∇u)2r|2 + 1)

}

≤ c r2{Φ(2r) + r2β(|(∇u)2r|2 + 1)}.

Thus, we have

(50)

Φ
(̺
2

)
≤ c

{( r
̺

)n+4

ε +
(̺
r

)2
+
(̺
r

)2β

r2β)
}
Φ(2r)

+ Cε

( r
̺

)n+4

L2
r(v, ϕ)

+ cL2
[( r

̺

)n+4

ε+
(̺
r

)2β]
r2β(|(∇u)2r|2 + 1).

The next step is to estimate the expression L2
r(v, ϕ) defined in (41).

Taking into account the definition (48) of the matrix A(t), we apply identity
(44) for v(z) with l = (∇u)r and obtain the relation

L2
r(v, ϕ) =

∣∣∣∣
∫

Qr

{−v · ϕt +A(t)∇v · ∇ϕ+ [A(z;∇v, (∇u)r)

− A(z;∇v, (∇u)r)]∇v · ∇ϕ} dz
∣∣∣∣
2



246 A.A. Arkhipova, J. Stará

=

∣∣∣∣
∫

Qr

[(A(t)− A(z;∇v, (∇u)r))∇v · ∇ϕ−∆′a · ∇ϕ] dz

∣∣∣∣
2

≤ 2

∫

Qr

|∆A|2 dz
∫

Qr

|∇v|2 dz + 2L2r2β(|(∇u)r|2 + 1)

where

|∆A| = |A(t) − A(z,∇v, (∇u)r)|.

We estimate |∆A| as follows

|∆A| ≤ |A(t)−A(z; 0, (∇u)r)|+|A(z; 0, (∇u)r)−A(z;∇v, (∇u)r))| =: j1(z)+j2(z)

where

A(z; 0, (∇u)r) =
∂a(z, (∇u)r)

∂p
.

We remark that

(51) j1(z) = |A(z; 0, (∇u)r)−A(t)| =
∣∣∣∂a(z, (∇u)r)

∂p
−
(∂a(z, (∇u)r)

∂p

)
r,x0

∣∣∣.

Using the assumption [H4] we get the inequality

(52)

j2(z) =

∣∣∣∣
∫ 1

0

[∂a(z, s∇u(z) + (1− s)(∇u)r))

∂p
− ∂a(z, (∇u)r)

∂p

]
ds

∣∣∣∣

≤
∫ 1

0

ω(|s∇u(z)− s(∇u)r)|2) ds ≤ ω(|∇v(z)|2).

With the help of relations (51), (52), and the assumptions [H4], [H5], we derive
the inequality

L2
r(v, ϕ) ≤ 2L2r2β(|(∇u)r |2 + 1) + 4

∫

Qr

(j21 (z) + j22(z)) dz

∫

Qr

|∇v|2 dz

(53)

≤ 4L2r2β(|(∇u)r |2 + 1) + 4[q(r) + ω0 ω(Φ(r))]Φ(r), ω0 = sup
s∈[0,∞)

ω(s).

Thus

(54)

Φ
(̺
2

)
≤ c

{(̺
r

)2
+ ε

( r
̺

)n+4

+
(̺
r

)2β
r2β

+ Cε

( r
̺

)n+4

[ω(Φ(r)) + q(r)]
}
Φ(2r)

+ cL2
{
ε
( r
̺

)n+4

+
(̺
r

)2β

+ Cε

( r
̺

)n+4}
r2β(|l2r|2 + 1).

Here and below l̺ = (∇u)̺.
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Now we fix

γ =
1 + β

2
, R = 2r, τ ≤ 1

4
, ̺ = 2τR,

and note that β < γ < 1. We obtain from (54) that

(55)

Φ(τR) ≤ c0
{
τ2 + τ2βR2β + ετ−(n+4)

+ Cετ
−(n+4)[ω(2n+2Φ(R)) + q(R)]

}
Φ(R)

+ c1
{
τ2 + ετ−(n+4) + Cετ

−(n+4)
}
R2β(|lR|2 + 1).

We choose the parameter τ ≤ 1/4 such that

(56) c0τ
2 ≤ τ2γ

8

and then fix ε > 0 to obtain the relation

(57) c0ετ
−(n+4) ≤ τ2γ

8
.

The next step is to choose such small θ ∈ (0, 1) that the inequality

(58) c0Cετ
−(n+4)ω(2n+2θ) <

τ2γ

8

holds.
At last we fix R0 > 0 to satisfy the condition

(59) c0(τ
2βR2β

0 + Cετ
−(n+4)q(R0)) ≤

τ2γ

8
.

Let the assumptions (15) hold in the fixed point z0 for some M ≥ 1 with
a radius R < R0 and θ fixed by (58). It means that

(60) Φ(R) = Φ(R, z0) < θ, Ψ(R) = Ψ(R, z0) < M.

Evidently, |lR|2 < M and |lR|2 + 1 < 2M in this case.
We additionally assume that θ = θ(M) and R0 = R0(M) satisfy the restriction

(61)
τ−(n+2)

√
θ

1− τβ
<

√
M,

K

τ2β − τ2γ
R2β

0 <
θ

4M

where

K = 2c1{τ2 + ετ−(n+4) + Cετ
−(n+4)}.

Now it follows from (55) that

(62) Φ(τ R) ≤ τ2γ

2
Φ(R) + 2KR2β M.
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In particular, by (60) and (61) it follows from (62) that

(63) Φ(τ R) < θ.

It means that the first assumption (60) is valid if we change R by τR. Then

(64) Φ(τ2R) ≤ τ2γ

2
Φ(τ R) + 2K(τ R)2βM.

Next we make the iterations in (64) for the sequence {τ jR}, j ∈ N, and obtain
the inequalities

(65)

Φ(τ jR) ≤ τ2γ

2
Φ(τ j−1R) + 2KM(τ j−1R)2β

≤
(τ2γ

2

)j
Φ(R) + τ2βj

2KMR2β

τ2β(1− τ2(γ−β))
.

Thanks to conditions (60) and (61), it follows from (65) that

Φ(τ jR) ≤ τ2βj
[Φ(R)

2
+

2KMR2β

τ2β − τ2γ

]
≤ τ2βjθ, j ∈ N.

Now we assert that the sequence {lτ jr} has a finite limit when j → ∞.
Let j,m ∈ N, j > m, then

(66)

|lτ jR − lτmR| ≤
j−1∑

k=m

|lτk+1R − lτkR| ≤ τ−(n+2)Σj−1
k=mΦ1/2(τkR)

≤ τ−(n+2)

j−1∑

k=m

τβk
√
θ ≤ τ−(n+2)

1− τβ

√
θ τβm <

√
M τβm → 0

when m → ∞.
Thus, there exists a finite limit l0 = limj→∞ lτ jR.
By (61),

|lτ jR − lR| ≤
τ−(n+2)

1− τβ

√
θ <

√
M

and

|lτ jR| ≤ |lτ jR − lR|+ |lR| < 2
√
M, ∀ j ∈ N.

For any ̺ ∈ (0, R) there exists τ jR such that τ j+1R ≤ ̺ < τ jR. It follows
from (61) and (65) that

(67) Φ(̺, z0) ≤ c̺2β{R−2βΦ(R, z0) +M}, ∀ ̺ ≤ R.

Here the constant c > 0 depends on the parameters from the assumptions
[H1]–[H5] but does not depend on z0.
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Moreover, there exists the limit of an arbitrary sequence l̺m , ̺m → 0. Indeed,
for any ̺m there exists τ jmR such that τ jm+1R ≤ ̺m < τ jmR and

|l̺m − lτ jmR| ≤ τ−(n+2)Φ1/2(τ jmR) ≤ τ−(n+2)τβjm
√
θ → 0, jm → ∞.

Then
|l̺m − l0| ≤ |l̺m − lτ jmR|+ |lτ jm − l0| → 0

provided that ̺m → 0, τ jmR → 0.
We assumed that the assumptions (60) hold in a fixed point z0. But it is

easy to see that they are also valid in some neighborhood Q̺0(z
0) (for the fixed

earlier R), i.e.

(68) Φ(R, ξ) < θ, Ψ(R, ξ) < M, ∀ ξ ∈ Q̺0(z
0).

It means that inequality (67) holds for all ξ ∈ Q̺0(z
0) but not only for z0.

Thus

(69) sup
̺≤R, ξ∈Q̺0 (z

0)

̺−2βΦ(̺, ξ) ≤ c(R−1){‖∇u‖22,Q +M}.

This estimate guarantees us that the norm of the gradient of u in

L2,n+2+2β(Q̺0(z
0); δ)

is bounded. Due to the isomorphism of this space to Cβ(Q̺0(z
0); δ), we can

conclude Hölder continuity of the gradient of u in the vicinity of the point where
conditions (60) hold.

Smoothness of u in Q̺0(z
0) follows from the Poincaré inequality (30) and the

second assumption (60). Thus, u ∈ L2,n+4(Q̺0(z
0); δ) and we can conclude that

u ∈ C0,1(Q̺0(z
0); δ). �

5. Proof of Theorem 2.2

Lemma 5.1. Let the conditions [H1], [H2′], and [H3] hold. Then

1) there exist the derivatives ∇2u, ut ∈ L2
loc(Q);

2) there exists a number q′ > 2 such that ∇2u, ut ∈ Lq′

loc(Q).

Proof: Let U(z) = ∇u(z). Then formally U is a solution to the system

(70) Ut − div(A(z, U)∇U) = − divF (z), z ∈ Q′ ⊂⊂ Q

where A(z, p) = ∂a(z,p)
∂p ∈ {ν, µ}, p ∈ RnN , F (z) = −a′x(z,∇u(z)), and |F (z)| ≤

L(1 + |∇u(z)|) by the assumption [H2’].
To justify existence of ∇U we should consider the difference Uh(z) = (∇u(x+

hes, t) − ∇u(x, t))/h, s ≤ n, where e1, . . . , en is the canonical basis in Rn, |h| <
δ(Q′; ∂Q), and prove uniform boundedness of ‖Uh‖2,Q′ in h. Then the existence
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of ∇U ∈ L2(Q′) follows and one can assert that U ∈ V (Q′) is a weak solution of
(70) in V (Q′), Q′ ⊂⊂ Q.

Moreover, U ∈ Ṽloc(Q), where Ṽ (Q) = C(Λ;L2(Ω))∩L2(Λ;W 1
2 (Ω)). It satisfies

the identity

(71)

∫

Q′

[−U · ϕt + A(z, U)∇U · ∇ϕ] dz =

∫

Q′

F (z) · ∇ϕdz,

ϕ ∈
o

W 1
2(Q

′), Q′ ⊂⊂ Q.

By Lemma 3.3, ∇u ∈ Lq
loc(Q) with some q > 2. It means that F ∈ Lq

loc(Q) and
applying Lemmas 3.1 and 3.2 we obtain that the first and the second assertions
of this lemma are valid, q′ ∈ (2, q]. �

Moreover, we have the following local estimates for U :

(72)

IU − (U)2rI
2
Ṽ (Qr)

:= sup
ΛR

∫

Br

|U − (U)2r|2 dx+

∫

Qr

|∇U |2 dz

≤ cr−2

∫

Q2r

|U − (U)2r |2 dz + c

∫

Q2r

|F |2 dz,

(73)

∫

Qr

|U − (U)r |2 dz ≤ cr2
∫

Q2r

|∇U |2 dz + cr2
∫

Q2r

|F |2 dz, Q2r ⊂ Q.

Inequality (72) follows from (21) for w = U , k = U2r, F1 = 0, F2 = F . Inequality
(73) also is a consequence of inequality (22) for w = U .

The constants c in the Caccioppoli inequality (72) and in the Poincaré in-
equality (73) depend on ν, µ, n, and N only. Moreover, we have for q′ ∈ (2, q]
that

(74)

(∫

Qr

|∇U |q′ dz
)2/q′

≤ c1

∫

Q2r

|∇U |2 dz+c2

(∫

Q2r

|F |q′ dz
)2/q′

, Q2r ⊂ Q.

It follows from (24) that

(75) ‖Û‖22(n+2)/n,Qr
≤ c(n)IÛI2

Ṽ (Qr)
, Û = U − (U)2r .

Now we claim that

(76) r2
∫

Qr

|U |2(n+2)/n dz ≤ cγ(r)

{∫

Q2r

|U − (U)2r|2 dz+ r2
∫

Q2r

(1+ |U |2) dz
}

where
γ(r) = ‖U‖4/n2(n+2)/n,Qr

→ 0 r → 0.
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Indeed, by (75) we have the inequalities

(77)

∫

Qr

|U |2(n+2)/n dz = ‖U‖2+4/n
2(n+2)/n,Qr

= γ(r) ‖U‖22(n+2)/n,Qr

≤ c(n)γ(r){‖Û‖22(n+2)/n,Qr
+ |U2r|2|Qr|}

≤ c(n)γ(r){IÛI2
Ṽ (Qr)

+ ‖U‖22,Q2r
}.

Applying (72) to (77) we obtain that

(78)

∫

Qr

|U |2(n+2)/n dz ≤ c(ν, µ, n)γ(r)

{
r−2

∫

Q2r

|U − (U)2r|2 dz

+

∫

Q2r

(|F |2 + |U |2) dz
}
.

Using the definition of F (z) we derive from (78) inequality (76).
Now we fix Qr(z

0) ⊂ Q such that Q8r(z
0) ⊂ Q, and for a fixed ε > 0 and

U ∈ V (Qr(z
0)) we apply A(t)-caloric lemma (Lemma 3.6) with the matrix

(79) A(t) =

∫

Br(x0)

∂a(x, t, (U)r,z0)

∂p
dx ∈ {ν, µ} a.a. t ∈ Λr(t

0).

By Lemma 3.6, there exist an A(t)-caloric function h ∈ V (Qr/2(z
0)), a constant

Cε > 0, and a function ϕ ∈ C1
0 (Qr(z

0)), supQr(z0) |∇ϕ| ≤ 1, such that inequalities

(39) and (40) hold for the function U with

L2
r(U,ϕ) =

∣∣∣∣
∫

Qr(z0)

[−U · ϕt +A(t)∇U · ∇ϕ] dz

∣∣∣∣
2

.

Now we put

Φ(̺, z0) =

∫

Q̺(z0)

|U − (U)̺,z0 |2 dz, Ψ(̺, z0) = ̺2
∫

Q̺(z0)

(1 + |U |2) dz,

J(̺, z0) = Φ(̺, z0) + Ψ(̺, z0), ̺ ≤ 8r.

We do not change the point z0 up to the end of the proof and that is why we omit
further dependence of the functions and the sets on this point: Φ(̺, z0) = Φ(̺),
Qr(z

0) = Qr, and so on.
Note that from the Caccioppoli inequality (72) it follows that

(80) r2
∫

Qr

|∇U |2 dz ≤ cΦ(2r) + cr2
∫

Q2r

|F |2 dz ≤ cJ(2r).
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Inequalities (39) and (40) guarantee now that

∫

Qr/2

(|h(z)− (h)r/2|2 + r2|∇h(z)|2) dz ≤ c J(2r),(81)

∫

Qr/2

|U(z)− h(z)|2 dz ≤ cεJ(2r) + Cεr
2L2

r(U,ϕ).(82)

The following inequality holds for ̺ ≤ r/2:

Φ(̺) ≤ 2

∫

Q̺

|(U − h)− (U − h)̺|2 dz + 2

∫

Q̺

|h− h̺|2 dz

≤ 2

∫

Q̺

|U − h|2 dz + c
(̺
r

)2 ∫

Qr/2

|h− (h)r/2|2 dz.

Estimate (36) for h was applied in the last inequality.
We continue to estimate Φ(̺) with the help of inequalities (81) and (82). Then

(83) Φ(̺) ≤ c
(̺
r

)2
J(2r) + c

( r
̺

)n+2

{εJ(2r) + Cεr
2L2

r(U,ϕ)}.

To estimate L2
r(U,ϕ), we address to identity (71) and obtain the relations

L2
r(U,ϕ) =

∣∣∣
∫

Qr

[−U · ϕt + A∇U · ∇ϕ+∆A∇U · ∇ϕ] dz
∣∣∣
2

=
∣∣∣
∫

Qr

(F · ∇ϕ+∆A∇U · ∇ϕ) dz
∣∣∣
2

.

Here the difference
∆A = A(t)− A(z, U)

we estimate in the way:

|∆A| ≤
∣∣∣∂a(z, U)

∂p
− ∂a(z, (U)r)

∂p

∣∣∣+
∣∣∣∂a(z, (U)r)

∂p
−A(t)

∣∣∣.

Observe that supz∈Qr
|∇ϕ(z)| ≤ 1.

Further we use the assumptions [H4] and [H5] to derive the following inequal-
ities:

r2L2
r(U,ϕ) ≤ 2r2

∫

Qr

|F |2 dz + 2r2
∫

Qr

|∆A|2 dz
∫

Qr

|∇U |2 dz

≤ c

{∫

Qr

∣∣∣∂a(z, U)

∂p
− ∂a(z, (U)r)

∂p

∣∣∣
2

dz

+

∫

Qr

∣∣∣∂a(z, (U)r)

∂p
−
(∂a
∂p

)
x0,r

(t;Ur)
∣∣∣
2

dz

}
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× r2
∫

Qr

|∇U |2 dz + cΨ(r)

≤ cΨ(r) + c

[
ω

(∫

Qr

|U − (U)r |2 dz
)
+ q(r)

]
r2

∫

Qr

|∇U |2 dz.

Applying relation (80) to the last inequality, we obtain that

(84) r2L2
r(U,ϕ) ≤ cΨ(r) + c[ω(Φ(r)) + q(r)]J(2r).

It follows from (83) and (84) that

(85)

Φ(̺) ≤ c
{(̺

r

)2
+ ε

( r
̺

)n+2

+ Cε

( r
̺

)n+2

[ω(Φ(r)) + q(r)]
}
J(2r)

+ Cε

( r
̺

)n+2

Ψ(r), ̺ ≤ r

2
.

On the next step of the proof we will estimate the function Ψ(̺). To do this,
we put

(86) I(̺, z0) = I(̺) =

∫

Q̺(z0)

|u(z)− (u)̺,z0 |2 dz

and apply once more A(t)-caloric lemma (Lemma 3.6).
We put

(87) A0(t) = A
0
r,x0(t; (∇u)r), A

0(z, p) =

∫ 1

0

∂a(z, sp)

∂p
ds.

For the fixed earlier ε, the cylinder Qr(z
0), and the function u ∈ V (Qr(z

0))
there exist an A0(t)-caloric function η ∈ V (Qr/2(z

0)), a constant C0
ε > 0, and

a function ϕ ∈ C1
0 (Qr(z

0)), supz∈Qr
|∇ϕ(z)| ≤ 1, such that

(88)

∫

Qr/2

(|η(z)− (η)r/2|2 + r2|∇η(z)|2) dz

≤ 2n+4

∫

Qr

(|u(z)− (u)r|2 + r2|∇u(z)|2) dz,

(89)

∫

Qr/2

|u(z)− η(z)|2 dz

≤ ε

∫

Qr

(|u(z)− (u)r|2 + r2|∇u(z)|2) dz + C0
ε r

2L2
r(u, ϕ)

where

L2
r(u, ϕ) =

∣∣∣∣
∫

Qr

[−u · ϕt +A0(t)∇u · ∇ϕ] dz

∣∣∣∣
2

.
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Using the Caccioppoli inequality (29) we obtain the relation

(90)

∫

Qr

(|u(z)− (u)r|2 + r2|∇u(z)|2) dz ≤ c(I(2r) + L2r2),

here L is the constant from the assumption [H3].
Now we have the following relations for I(̺), ̺ ≤ r/2:

I(̺) ≤ 2

∫

Q̺

|(u− η)− (u − η)̺|2 dz + 2

∫

Q̺

|η − (η)̺|2 dz

≤ c
( r
̺

)n+2
∫

Qr/2

|u− η|2 dz + c
(̺
r

)2 ∫

Qr/2

|η − (η)r/2|2 dz

≤ c
{(̺

r

)2
+
( r
̺

)n+2

(C0
ε r

2L2
r(u, ϕ) + ε)

}
I(2r) + cC0

ε

( r
̺

)n+2

r2.

We applied relation (36) to justify the second inequality. The last relation holds
due to inequalities (88), (89) and (90).

Now we use the identity (28) to estimate the expression L2
r(u, ϕ):

L2
r(u, ϕ) ≤ 2

∫

Qr

|∆A|2 dz
∫

Qr

|∇u|2 dz + 2L2

where

|∆A| = |A0(z,∇u)−A0(t)| ≤ |A0(z,∇u)−A
0(z, (∇u)r)|+ |A0(z, (∇u)r)−A0(t)|.

With the help of the assumptions [H4], [H5], and inequality (90), we obtain
the estimate

r2L2
r(u, ϕ) ≤

[ ∫

Qr

ω2(|∇u− (∇u)r|2) dz + q(r)

]
r2

∫

Qr

|∇u(z)|2 dz + 2L2r2

≤ c[ω(Φ(r)) + q(r)]I(2r) + cL2r2.

It follows from the estimate for I(̺) and the last inequality that

I(̺) ≤ c
{(̺

r

)2

+ε
(r
̺

)n+2

+C0
ε

( r
̺

)n+2

[ω(Φ(r))+ q(r)]
}
I(2r)+ cC0

ε

( r
̺

)n+2

L2r2.

Applying the Caccioppoli and the Poincaré inequalities, we derive from the last
inequality that

(91)

Ψ
(̺
2

)
≤ c

{(̺
r

)2
+ ε

( r
̺

)n+2

+ C0
ε

( r
̺

)n+2

[ω(Φ(r)) + q(r)]
}
Ψ(4r)

+ cC0
ε

( r
̺

)n+2

L2r2.
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Now we add inequality (91) to (85) and obtain for ̺/2 ≤ r the inequality

(92)

J
(̺
2

)
≤ c

{(̺
r

)2
+ ε

( r
̺

)n+2

+ Ĉε

( r
̺

)n+2

[ω(Φ(r)) + q(r)]
}
J(4r)

+ cC0
ε

( r
̺

)n+2

L2r2 + cĈε

( r
̺

)n+2

Ψ(4r), Ĉε = Cε + C0
ε .

Further we apply the Cauchy inequality and relation (76) to estimate Ψ(4r) =
Ψ(R/2), R = 8r, as follows

(93)

Ψ
(R
2

)
=

(R
2

)2 ∫

QR/2

(|U |2 + 1) dz ≤ R2

∫

QR/2

(|U |2(n+2)/n + c(n)) dz

= R2

∫

QR/2

|U |2(n+2)/n dz + c(n)R2

≤ cR2 + cγ(R)(Φ(R) + Ψ(R))

= cR2 + γ(R)J(R), γ(R) → 0, R → 0.

Now we put in (92) r = R/8, ̺ = τR where τ ≤ 1/16 we will choose below. Thus,

(94)
J(τR) ≤ c0{τ2 + ετ−(n+2) + Ĉετ

−(n+2)[ω(8n+2Φ(R)) + q(R)

+ γ(R)]J(R)}+ c1Ĉετ
−(n+2)R2.

In (94) the constants c0 and c1 depend on the parameters ν, µ, L, n,N , but do not
depend on the fixed point z0.

Now we make the choice of the parameters τ, ε and the maximal radius R0.
For any number α ∈ (0, 1) we fix a number α′ ∈ (α, 1) and choose τ ≤ 1/16 to
satisfy the relation

(95) c0τ
2 ≤ τ2α

′

8
.

Then we fix ε < 1 such that

(96) εc0τ
−(n+2) ≤ τ2α

′

8
.

As the function ω(s) → 0 when s → 0, we can fix a number θ ∈ (0, 1) satisfying
the condition

(97) c0Ĉετ
−(n+2)ω(8n+2θ) ≤ τ2α

′

8
.

Using the condition [H5] and relation (76), we find R0 such that

(98) c0 Ĉετ
−(n+2)(q(R0) + γ(R0)) ≤

τ2α
′

8
, c1Ĉετ

−(n+2)R2
0 ≤ θ

2
.
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Let us assume that for some R ≤ R0 the following inequality is valid in the
fixed point z0:

(99)

J(R) = J(R, z0)

=

∫

QR(z0)

|U(z)− (U)R,z0)|2 dz +R2

∫

QR(z0)

(|U |2 + 1) dz < θ.

As Φ(R) < J(R), the assumption (99) supplies the condition Φ(R) < θ, and the
inequality

(100) c0Ĉετ
−(n+2)ω(8n+2Φ(R)) ≤ τ2α

′

8

holds for such R due to (97). In this case we obtain from (94) the relation

(101) J(τR) ≤ τ2α
′

2
J(R) +KR2, K = c1Ĉετ

−(n+2),

and KR2
0 ≤ θ/2 by (98).

In particular, it follows that

Φ(τR) < J(τR) < θ,

and inequality (100) holds with τR instead of R.
It allows us to repeat all considerations with τR instead of R. Thus,

J(τ2R) ≤ τ2α
′

2
J(τR) +K(τR)2.

Now we can assert that the following inequalities hold for the sequence Rj = τ jR:

(102) J(Rj) ≤
τ2α

′

2
J(Rj−1) +K(Rj−1)

2, j ∈ N.

The iteration process guarantees us that

(103) J(Rj) ≤ τ2αj [J(R) + cK(R)2α], j ∈ N, α < α′.

It follows from (103) that the inequality

(104) J(̺) = J(̺, z0) ≤ c
( ̺

R

)2α
J(R, z0) + cK̺2α

holds for all ̺ ≤ R. In particular, we obtain from (104) that

(105)
1

̺n+2+2α

∫

Q̺(z0)

|∇u(z)− (∇u)̺,z0 |2 dz ≤ c(R−1, ν, µ, L, α, ‖∇u‖2,Q).
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As inequality (99) holds (for the fixed R ≤ R0) in some neighborhood of the
point z0, we can assert that estimate (105) also is valid in some cylinder Q̺0(z

0).
More exactly,

(106)

1

̺n+2+2α

∫

Q̺(ξ)

|∇u(z)− (∇u)̺,ξ|2 dz

≤ c(R−1, ν, µ, L, α, ‖∇u‖2,Q), ∀ ξ ∈ Q̺0(z
0).

This inequality guarantees estimate of the seminorm of the gradient of u in
L2,n+2+2α(Q̺0(z

0); δ). It follows that the norm in this space is also estimated.
Due to the isomorphism of the Campanato space L2,n+2+2α(Q̺o(z

0); δ) and

Cα(Q̺0(z
0); δ) , we have the estimate of the gradient of u in the Hölder norm in

Q̺0(z
0).

Moreover, |∇u| is bounded near the point z0 and we have also the following
estimate for the function u:

I(̺, ξ) ≤ c(Ψ(2̺, ξ) + ̺2) = c̺2
(
1 + sup

Q̺0(z
0)

|∇u|2
)
≤ c′(R−1, ν, µ, L, n,N)̺2,

∀ ξ ∈ Q̺0(z
0).

It means that u ∈ C0,1(Q̺0(z
0); δ). Theorem 2.2 is proved. �

Remark 5.1. To prove local smoothness of u near the point z0, we can change
smallness condition (99) by the assumption that

(107) lim inf
̺→0

̺2
∫

Q̺(z0)

(|∇2u|2 + |∇u|2) dz = 0.

Indeed, let (107) hold. Taking into account estimate (73) for U(z) = ∇u(z) we
can choose a radius R small enough to obtain validity of the assumption (99) for
the function J(R, z0). It means that condition (107) guarantees smoothness of u
in some neighborhood of z0.

6. Fractional derivatives of the gradient

Let the assumptions [H1]–[H5] hold and β ∈ (0, 1) be the parameter from the
condition [H2].

For cylinders Q̃ ⊂⊂ Q′′ ⊂⊂ Q′ ⊂⊂ Q we denote d0 = min{δ(Q′; ∂Q),

δ(Q′′; ∂Q′), δ(Q̃; ∂Q′′)} and define the difference

∆s
hu(z) = u(x+ hes, t)− u(x, t), s = 1, . . . , n,

where z ∈ Q′, h ∈ R
1, |h| < d0, and e1, . . . , en is the canonical basis in R

n.
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To estimate fractional derivatives of the gradient of u, we apply the difference
quotient method. We start with defining the functions

(108) U(z) =
∆s

hu(z)

|h|β , z = (x, t) ∈ Q′, s = 1, . . . , n.

It follows from identity (7) that the functions U(z) satisfy the equality

(109)

∫

Q

[
− U · ϕt +

1

|h|β {a(x+ hes, t,∇u(x+ hes, t))

− a(x, t,∇u(x, t))} · ∇ϕ}
]
dz = 0

for all ϕ ∈
o

W 1
2(Q

′).
The expression in the braces of relation (109) we rewrite in the form

{. . .} =

∫ 1

0

∂a(x+ hes, t,∇u(z) + q∆s
h∇u(z))

∂p
dq∆s

h∇u(z) + ∆′
ha(z)

=: A(z)∇(∆s
hu(z)) + ∆′

ha(z)

where the bounded matrix A(z) ∈ {ν, µ} for almost all z ∈ Q′. By the condi-
tion [H2],

(110)
|∆′

ha(z)| ≤ L|h|β(1 + |∇u(z)|),
∆′

ha(z) = a(x+ hes, t,∇u(x, t)) − a(x, t,∇u(x, t)).

Now the equality (109) can be written in the form

(111)

∫

Q

[−U · ϕt + A(z)∇U · ∇ϕ] dz =

∫

Q

F (z) · ∇ϕdz, ϕ ∈
o

W 1
2(Q

′),

where

F (z) = −∆′
ha(z)

|h|β , |F (z)| ≤ L(1 + |∇u(z)|).

Thus, for any fixed s = 1, . . . , n and |h| < d0, the function U ∈ V (Q′) is a weak
solution to the linear system

(112) Ut − div(A(z)∇U) = − divF (z), z ∈ Q′.

We apply Lemma 3.1 to assert that the following Caccioppoli and Poincaré in-
equalities are valid for the function U :

(113)

∫

QR

|∇U |2 dz = ‖∇U‖22,QR

≤ c{R−2‖U‖22,Q2R
+ L2(1 + ‖∇u‖22,Q2R

)}, Q2R ⊂ Q′;
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(114)

∫

QR

|U(z)− (U)R|2 dz ≤ c

{
R2

∫

Q2R

|∇U |2 dz

+ L2R2

∫

Q2R

(1 + |∇u|2) dz
}
, Q2R ⊂ Q′.

From the definition of the function U and inequality (113) it follows that

(115)

∫

Q′′

|U(z)|2 dz ≤ c

∫

Q′

|∇u(z)|2 dz,
∫

Q′′

|∇U(z)|2dz ≤ c(1 + ‖∇u‖22,Q) =: cM0.

The constant c in (115) depends on the data and d−1
0 .

By Lemma 3.3, F ∈ Lq(Q′) with some q > 2 in (112).
Using Lemma 3.2, we can assert that there exists p ∈ (2, q] such that ∇U ∈

Lp
loc(Q

′) and the estimate

(116) ‖∇U‖2
p,Q̃

≤ c{‖∇U‖22,Q′′ + 1 + ‖∇u‖2p,Q′′} ≤ cM0, ∀ Q̃ ⊂⊂ Q′′,

is valid. In the last inequality (116) we have used estimates (32) and (115).
Now it follows from (116) that

(117)

∫

QR

|∇U |2 dz ≤
(∫

QR

|∇U |p dz
)2/p

|QR|1−2/p

≤ c(n)‖∇U‖2
p,Q̃

R(n+2)(1−2/p) ≤ cM0R
m,

∀QR ⊂ Q̃. Here and below

m = (n+ 2)
(
1− 2

p

)
> 0.

In the definition of the function U(z) the direction es was fixed arbitrary. If we
take the number h sufficiently small we obtain from estimate (117) that

(118)

∫

QR(z0)

|∇u(x+ hes, t)−∇u(x, t)|2 dz ≤ c |h|2βRm,

s = 1, . . . , n, ∀QR ⊂ Q̃.

Here the constant c depends on ‖∇u‖2,Q, ν, µ, L, β, n, d−1
0 .

Note that all subdomains in Q were fixed arbitrarily. Thus, estimate (118) is
valid for any Qr(z

0) ⊂⊂ Q and the constant c in (118) depends on d−1 where
d = δ(Qr(z

0); ∂Q).
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By Lemma 3.1 the function U belongs to H
1/2
loc (Λ;L

2(Ω)). Let Q4R ⊂
Qo ⊂⊂ Q. Then the following estimate of the seminorm follows from (23):

(119)
[U ]

2
H1/2(ΛR;L2(BR)) ≤ c{‖∇U‖22,Q2R

+R−2‖U − (U)2R‖22,Q2R

+ L2(Rn+2 + ‖∇u‖22,Q2R
)}.

Using Poincaré inequality (114), we can derive from (119) the following esti-
mate:

(120) [U ]2H1/2(ΛR;L2(BR)) ≤ c{‖∇U‖22,Q4R
+Rn+2 + ‖∇u‖22,Q4R

}.

As ∇U and ∇u are functions from Lp
loc(Q), p > 2, we apply the Hölder inequality

and inequality (116) to the right-hand side of inequality (120) and obtain that

(121)
[U ]

2
H1/2(ΛR;L2(BR)) ≤ cR(n+2)(1−2/p){‖∇U‖2p,Q4R

+ 1 + ‖∇u‖2p,Q4R
}

≤ cRmM0.

It follows from (121) and Lemma 3.4 that

(122)

∫

QR

|U(x, t+ τ)−U(x, t)|2 dz ≤ c|τ |Rm, Q4R ⊂ Qo ⊂⊂ Q, |τ | < R2.

The constant c depends on ‖∇u‖22,Q, ν, µ, L, β, d−1, n; here m = (n+2)(1−2/p),

d = δ(Qo, ∂Q).
Now we prove integral continuity of the gradient of u in the time variable.

Lemma 6.1. Let Q4R ⊂ Q̃ ⊂⊂ Q be fixed, d = δ(Q̃; ∂Q) and τ ∈ R1, |τ | < R2.
Then the following estimate is valid

(123)

∫

QR

|∇u(x, t+ τ)−∇u(x, t)|2 dz ≤ c|τ |βRm

where β is the exponent from the assumption [H2], the exponent m > 0 is the
same as in estimate (122), and c = c(‖u‖V (Q), ν, µ, L, β, d

−1, n).

Proof: To estimate the left-hand side of inequality (123), we can fix any direction
s = 1, . . . , n and explain how to derive the inequality

(124)
Is :=

∫

QR

|uxs(x, t+ τ)− uxs(x, t)|2 dz

≤ c|τ |β Rm, c = c(‖u‖V (Q), d
−1, ν, µ, L, β, n)

for any s ≤ n.
We illustrate the procedure for s = n and denote below uxn = ∇nu. The other

directions can be considered in the same way.
We fix a number r ∈ (0, R) and put y = (x′, yn), yn ∈ (xn, xn + r). We will

define the number r below.
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The following relations are valid:

In =

∫

QR

∣∣∣∣
∫ xn+r

xn

{[∇nu(x, t+ τ) −∇nu(y, t+ τ)] + [∇nu(y, t+ τ)−∇nu(y, t)]

+ [∇nu(y, t)−∇nu(x, t)]} dyn
∣∣∣∣
2

dz

≤ 4

∫

QR

(∫ xn+r

xn

|∇nu(x, t+ τ)−∇nu(y, t+ τ)|2 dyn
)
dz

+ 4

∫

QR

∣∣∣∣
∫ xn+r

xn

∇n[u(y, t+ τ) − u(y, t)] dyn

∣∣∣∣
2

dz

+ 4

∫

QR

(∫ xn+r

xn

|∇nu(x, t)−∇nu(y, t)|2dyn
)
dz

=: 4(j1 + j2 + j3).

Note that the integrals j1 and j3 are estimated in the same way.
For example,

j1 =

∫

QR

(∫ r

0

|∇nu(x
′, xn, t+ τ)−∇nu(x

′, xn + ξ, t+ τ)|2 dξ
)
dz

≤ sup
ξ∈[0,r]

∫

QR

|∇nu(x
′, xn, t+ τ) −∇nu(x

′, xn + ξ, t+ τ)|2 dz

≤ c1r
2βRm

where the last inequality follows from estimate (118), the constant c1 depends on
‖u‖V (Q), β, ν, µ, L and d−1.

The same estimate we have for j3.
Further we transform and estimate the integral j2. After calculating the inter-

nal integral in j2 we have the expression

j2 =
1

r2

∫

QR

|[u(x′, xn + r, t+ τ) − u(x′, xn + r, t)]

− [u(x′, xn, t+ τ) − u(x′, xn, t)]|2dz

=
1

r2

∫

QR

|[u(x′, xn + r, t+ τ) − u(x′, xn, t+ τ)]

− [u(x′, xn + r, t)− u(x′, xn, t)]|2dz.

If we put in the definition (108) of the function U the direction s = n and |h| = r
we will have the function

U(x, t) =
u(x′, xn + r, t)− u(x, t)

rβ
=

u(x+ ren, t)− u(x, t)

rβ
.
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Then it follows from estimate (122) that

(125) j2 =
r2β

r2

∫

QR

|U(x, t+ τ)− U(x, t)|2 dz ≤ c2
|τ |Rmr2β

r2
.

Here the constant c2 depends on the same data as c1 does.
Taking into account the estimates of j1, j2, j3, we arrive at the following in-

equality for In:

(126) In ≤ c
{
r2β +

r2β |τ |
r2

}
Rm, m = (n+ 2)

(
1− 2

p

)
.

We choose now the number r ≤ R to satisfy the equality

r2 = |τ |.

Then we obtain from (126) that

(127) In ≤ c|τ |βRm.

Repeating the proof for any direction s = 1, . . . , n− 1, we obtain estimate (124).
Inequality (123) follows. �

Lemma 6.2. For any α∈(0, β) the gradient of u belongs to the spaceW
α,α/2
2 (Q′),

∀Q′ ⊂⊂ Q, and

(128) [∇u]2
W

α,α/2
2 (Q′)

≤ c

where the constant c depends on ‖∇u‖2,Q, α, β, µ, ν, L, n, and 1/δ(Q′; ∂Q).

Validity of the assertion of Lemma 6.2 follows from estimates (118) and (123)
if we apply Proposition 3.4 of [18].

Remark 6.1. Certainly, estimate (116) supplies better information on the be-
havior of the gradient of u in the space variables but we can not improve estimate
(122) (and as a consequence (123)) in the situation when no smoothness in t of
the functions a(x, t, p) is assumed.

7. Estimates of the singular sets. Proof of Theorem 2.3

First, we consider the case β = 1.
Using Remark 5.2, we can assert that all singular points of the solution under

consideration are described by the set

(129) Σ =

{
z0 ∈ Q : lim inf

̺→0
̺2

∫

Q̺(z0)

(|∇2u|2 + |∇u|2) dz > 0

}
.
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We recall that the functions ∇u and ∇2u are integrable with some degree p > 2
(we fix the degree p the same in estimates (32) and (74)). If z0 ∈ Σ then

0 <
1

̺n

∫

Q̺(z0)

(|∇2u|2 + |∇u|2) dz ≤ |Q̺|1−2/p

̺n

(∫

Q̺(z0)

(|∇2u|+ |∇u|)p dz
)2/p

= c(n)

(
1

̺n−(p−2)

∫

Q̺(z0)

(|∇2u|+ |∇u|)p dz
)2/p

.

It follows that Σ ⊂ Σp where the set

Σp =

{
z0 ∈ Q : lim inf

̺→0

1

̺n−(p−2)

∫

Q̺(z0)

(|∇2u|+ |∇u|)p dz > 0

}
.

Then Hn−(p−2)(Σp; δ) = 0 (see, for example, [21], [16]). Thus, Hn−(p−2)(Σ; δ) = 0
and

(130) dimP Σ ≤ n− χ0, χ0 = p− 2 > 0.

We have proved Theorem 2.3 for the case β = 1.

Now we assume that β ∈ (0, 1). By Lemma 6.2, ∇u ∈ W
α,α/2
loc (Q), and the

Poincaré inequality (34) is valid for ∇u:

(131)

∫

Q̺(z0)

|∇u(z)− (∇u)̺,z0 |2 dz ≤ c̺2α[∇u]2Wα,α/2(Q̺(z0)),

∀α < β, Q̺(z
0) ⊂⊂ Q.

It follows that

(132)

∫

Q̺(z0)

|∇u(z)− (∇u)̺,z0 |2 dz ≤ c̺−(n+2)+2α[∇u]2Wα,α/2(Q̺(z0))

∀α < β, Q̺(z
0) ⊂⊂ Q.

If we take into account the description of the set Q0 of the regular points of u
and denote as Σ the admissible closed singular set of this solution, Σ = Q \Q0,
then we can assert that Σ ⊆ Σ1 ∪ Σ2 where

Σ1 =

{
z0 ∈ Q : lim inf

̺→0

∫

Q̺(z0)

|∇u(z)− (∇u)̺,z0 |2 dz > 0

}

and

Σ2 =
{
z0 ∈ Q : lim sup

̺→0
|(∇u)̺,z0 | = ∞

}
.

We will prove that dimP Σ1 ≤ n+ 2− 2β and dimP Σ2 ≤ n+ 2− 2β.
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Now we fix a number ε ∈ (0, β) and put

S1 =
{
z0 ∈ Q : lim sup

̺→0
̺−(n+2)+2α[∇u]2

W
α,α/2
2 (Q̺(z0))

> 0
}
, α = β − ε

2
.

It follows from (132) with α = β− ε/2 that Σ1 ⊂ S1. As ε was fixed arbitrary,
we use Lemma 3.2 from [18] or Lemma 4.2 from [27] and can assert that

(133) dimP Σ1 ≤ dimP S1 ≤ n+ 2− 2β.

To estimate the set Σ2, we consider the set

S2 = {z0 ∈ Q : lim sup ̺−(n+2)+2α−ε[∇u]2Wα,α/2(Q̺(z0)) > 0}.

We have the estimate

(134) Hn+2−2β+2ε(S2; δ) = 0.

Further we will prove that Σ2 ⊂ S2. To prove the implication Σ2 ⊂ S2, we fix
a point z0 ∈ Q \ S2 and will prove that z0 ∈ Q \ Σ2.

We fix a number ̺ > 0 and consider the sequence ̺i = τ i̺ with any fixed
τ ∈ (0, 1), i ∈ N, ̺i → 0, i → ∞, and will prove that the following limit exists
and is finite

(135) lim
̺k→0

|(∇u)̺k,z0 | < ∞.

To this end, we estimate the difference

Jk := |(∇u)̺k+1,z0 − (∇u)̺k,z0 |2 ≤
∫

Q̺k+1(z0)

|∇u(z)− (∇u)̺k,z0
|2 dz

≤ τ−(n+2)

∫

Q̺k(z0)

|∇u(z)− (∇u)̺k,z0 |2 dz.

We continue to estimate the right-hand side of the last inequality with the help
of estimate (131) then

Jk ≤ cτ−(n+2)̺
−(n+2)+2α
k [∇u]2

W
α,α/2
2 (Q̺k

(z0))

≤ c
̺εk

̺n+2−2α+ε
k

[∇u]2
W

α,α/2
2 (Q̺k

(z0))
≤(∗) c1̺

ε
k → 0, k → ∞.

At the last step in inequality (∗) we have used the definition of the set S2.
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For arbitrary m > k we have now inequalities

|(∇u)̺m,z0 − (∇u)̺k,z0 | ≤
j=m−1∑

j=k

|(∇u)̺j+1,z0 − (∇u)̺j ,z0 |

≤ c

j=m−1∑

j=k

̺εj ≤ c(τ)τεk̺ε → 0, k → ∞.

It means that there exists limk→∞ |(∇u)̺k
| < ∞. It is not difficult to justify that

the finite limit of the sequence |(∇u)rj ,z0 | exists for arbitrary sequence of rj → 0.

Thus, z0 ∈ Q \ Σ2. In a result we have that Q \ S2 ⊂ Q \ Σ2 and Σ2 ⊂ S2.
By (134), Hn+2−2β+2ε(Σ2; δ) = 0. As this equality is valid for any ε > 0, we

obtain the estimate

(136) dimP (Σ2) ≤ n+ 2− 2β.

The estimate
dimP (Σ) ≤ n+ 2− 2β

follows now from (133) and (136) in the case when β ∈ (0, 1). �
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[6] Arkhipova A.A., Stará J., Regularity of weak solutions to linear and quasilinear parabolic

systems of non-divergence type with non-smooth in time principal matrix: A(t)-caloric

method, Forum Math. 29 (2017), no. 5, 1039–1064.
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