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Regularity problem for one class of nonlinear parabolic

systems with non-smooth in time principal matrices

ARINA A. ARKHIPOVA, JANA STARA

Abstract. Partial regularity of solutions to a class of second order nonlinear para-
bolic systems with non-smooth in time principal matrices is proved in the paper.
The coefficients are assumed to be measurable and bounded in the time vari-
able and VMO-smooth in the space variables uniformly with respect to time.
To prove the result, we apply the so-called A(t)-caloric approximation method.
The method was applied by the authors earlier to study regularity of quasilinear
systems.

Keywords: nonlinear parabolic systems; regularity problem

Classification: 35B65, 35D30, 35K99

1. Introduction

In this paper we study partial regularity of weak solutions to the following class
of parabolic systems:

(1) ut(z) — diva(z, Vu(z)) = 0, z=(x,t) € Q,

where @ = Q x (=T,0), Q is a bounded domain in R, n > 2, and a constant T is
positive. By u; we denote the time derivative of a function u: Q@ — RN, N > 1,
and by Vu = (tgy, .-, Uz, ), Uz, = %, its space gradient.

k<N
a<n

We assume that the Carathéodory functions a(z,p) = {a®(z,p)} satisfy

the following conditions:
[H1] there exists a number L > 0 such that

(2) la(z,p)| < L(1+ |p|) aa. z2€Q, VpeR"™,;
[H2] there is 8 € (0, 1] such that

la(z,t,p) — a(y,t,p)| < Lmin{l,|z — y|"}(1+|p])  aa. z,y€Q,

3
) te (~T,0), VpeR"W;
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[H3] the coefficients a(z, p) are differentiable with respect to p, the matrix g—Z =

k k<N
{M} has bounded measurable entries, and the ellipticity conditions
6;05 a,B<n

da(z,p)

Tpgg) ‘%’;’p)‘gu, aa.zeQ, Vp, & e R,

(4) vle? < (
hold with positive numbers v < p;

[H4] the matrix g—z is uniformly continuous in p € R™V for almost all z € Q,
i.e. there exists a nonnegative bounded nondecreasing and concave function w(s),
s € [0,00), such that w(s) — 0, s = 40, and

da(z,p) Oda(z,p° .
(5) ’ ((9p ) - ((9[) )‘ < w(|p—p0|2), D, pO eR N, a.a. z € Q;
[H5] the entries of the matrix %;’p) belong to the class VMO() for almost all

t€ A= (-T,0) and all p € R""; moreover the following condition holds

(6) sup ][
QQ(ZU)CQa QQ(ZO)

o<r, peR™Y

Oda(x,t,p) Oa N
— (8p>g,z0(t’p)‘ dz =:q(r) — 0, r — 0,

where @,(2°) is a parabolic cylinder (see the notation below) and

da Dul,1.p) y
- t;p) = 2 2 Ay aa. teA, VpeR™,
<8p)9710( P) ]ig(lo) Op p

Here B,(2°) is a ball in R" centered in 2° with the radius p.

As we study only interior partial regularity of weak solutions to system (1) we
can assume that conditions [H1]-[H5] are satisfied locally in Q.

We consider weak solutions u of system (1) defined as follows:

Definition 1.1. A function u € V(Q) := L*((—T,0); W3(Q)) is a weak solution
to system (1) if it satisfies the identity

(7) /Q [—u(z) - pu(2) + alz Vu(2)) - Vlz)] dz = 0

for all € WHQ) = [T (@l 0)-

In this paper we continue to study optimal conditions on the principal parts of
different classes of parabolic systems to relax the known assumptions on the data
which guarantee partial regularity of weak solutions.

In our previous papers [8] and [5] we considered quasilinear systems

(8) uy — div(A(z,u)Vu) =0, z € Q,
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and proved partial regularity of weak solutions under relaxed smoothness assump-
tions on the principal matrix A(x,¢,u) in the arguments  and ¢t. We assumed in
these papers only boundedness in the time variable and integral VMO-smoothness
in the space variables © = (z1,..., ;) of the matrix A(x,t,u). We studied regu-
larity of solutions inside @ in [8] and up to the parabolic boundary of @ under the
Cauchy-Dirichlet conditions in [5]. (Regularity of weak solutions to the Venttsel
boundary problem for linear and quasilinear parabolic systems under the same
assumptions on the data was proved by the A(t)-caloric approximation method
in [3], [4].

Further we proved partial regularity of weak solutions to a class of nondiver-
gence type quasilinear systems

(9) ug — Az, t,u, Vu)Viu = 0, z€Q,

under relaxed assumptions on the matrix A(x, ¢, u,p) in [6].

We also proved partial regularity of weak solutions to a class of 2m-order
quasilinear parabolic systems under relaxed smoothness conditions on the princi-
pal matrix in [7].

To relax known regularity assumptions on the data, we applied in our works the
so-called “A(t)-caloric approximation” method. This approach is a modification
of the A-caloric approximation method suggested and successfully applied by
F. Duzaar and G. Mingione in [18] (see also [9]) to study regularity to a wide
class of nonlinear parabolic systems:

(10) uy — diva(z,u, Vu) = 0, z=(x,t) € Q.

We denote by A an elliptic constant [nN x nN]-matrix and by A(t) an elliptic
matrix with bounded measurable entries depending on ¢ .

Using properties of the fractional Sobolev spaces, the authors of [18] proved
by A-caloric approximation method new results on the partial regularity and
obtained estimates of the singular sets of solutions. Note that in the elliptic
setting the possibility of using the correspondent “A-harmonic approximation
method” was exploited in [17] and [19] (for the origin of the method see [18]).
Another approach to study partial regularity for elliptic problems one can find in
[12], [13].

We do not consider here systems (10) where functions a(z,u, p) depend on the
argument u explicitly. As it is known, to study systems (10) we need additional
considerations and we are able to obtain only more rough estimate of the singular
sets.

In [18] the class of systems (1) was studied separately. In this case the authors
assumed that the functions a(z, t, p) satisfy the Holder continuity condition in the
variables z = (z,t) with an exponent 5 € (0,1) (in the parabolic metric §). We
recall that the parabolic metric § is defined as follows

6(z%; 2%) = max{|zt — 22|, [t* — £2|/?}, 2= (2 th), 22 = (2% t?) e R*TL
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In particular it means that the functions a(z,t,p) are assumed to be Holder
continuous in ¢ with the exponent 3/2 in [18].

Moreover, it was supposed in that paper that the entries of the matrix %;p)
Werea(:(znti)nuous functions in z. Under natural assumptions on the behavior of a
a(z,p
dp

and in the argument p it was proved that

(11) dimp ¥ :=inf{A > 0: H(Z;0) =0} <n+2—-28—¢

for the closed singular set ¥ of a weak solution u € V(Q) to system (1) where
HA(;6) is the canonical Hausdorff measure of the set ¥ constructed in R™*!
with respect to the parabolic metric §. Here €y > 0 is a number depending on the
data of the problem. On the open set Qo = @ \ ¥ the gradient Vu was proved to
be the Holder continuous function with the exponent 8 in the parabolic metric.

To study dependence between smoothness assumptions on the data of elliptic
systems and estimates of the singular sets of weak solutions, G. Mingione used the
properties of fractional Sobolev spaces (in particular, Poincaré type inequalities)
in [27]. The approach was later modified by F. Duzaar, G. Mingione in [18] to
improve known before estimates of the singular sets for parabolic systems. We
exploited this idea in our paper.

Here we intend to relax known assumptions on the main data when we study
regularity problem for systems (1) and assume in this paper only boundedness in t

da(z,t

of the functions a(z,t,p) and the matrix T’m. We prove under such relaxation

that
(12) dimp» <n—+2-—2p3, B e (0,1).

We can estimate the singular set better provided that we assume that there exist
derivatives a! (z,t,p), i.e. § =1 in our assumptions. In this case we prove that

(13) dimp ¥ <n-—yx

where a number y > 0 is defined by the data.

The case 3 € (0,1) is considered in Theorem 2.1, and Theorem 2.2 is dedicated
to the situation § = 1. The estimates (12) and (13) are justified in Theorem 2.3.

Under similar smoothness conditions in = and ¢ for the principal matrix, the
regularity question for a wide class of nonlinear scalar equations and 2m-order par-
abolic linear systems (m > 1) was studied in a series of the works by N. V. Krylov,
H. Dong, D. Kim (see [24], [25], [14], [15] and references therein). In these works
the principal coefficients of the studied systems were also assumed bounded and
measurable in ¢ and VMO-smooth in the space variables. Our results concern
nonlinear parabolic systems.

The paper is organized as follows: in Section 2 we list notation and main results;
Section 3 contains auxiliary results, Section 4 is dedicated to properties of A(t)-
caloric functions and we formulate the main A(t)-caloric lemma. In Section 5 we



Regularity problem for nonlinear parabolic systems

prove Theorem 2.1 and in Section 6 we prove Theorem 2.2. In the last Section 7
we prove Theorem 2.3.

2. Notation and main results

We assume that 2 is an open bounded domain in R™ and T is a positive
number. We will use the following notation:

z = (z,1), =1t e Qx A=Q cR"M, A= (-T,0),
I'=00 x A, A (%) = (t° — 1?9, B.(z%) = {z € R": |z — 2| < r},
Qr(2%) = B.(2") x A (1), [ (2°) = 0B, (2") x A.(t°),
0pQr(2°) = T (2°) U (B, (a0) x {t —1%}).

The Campanato space £2*(Q;d) with A € [0,n + 4] is the set of all functions
from L2(Q) with the finite seminorm

1 1/2
[’U/]LZ,)\(Q;(;) = ( sup  — |u(z) — (u)mu|2 dz)
20€Q,r<do " JQr(z°)NQ

where do = max,1 ,2¢¢ 6(21; 2%).

We recall that the space £2"+2729(Q;4) is isomorphic to the Holder space
C%(Q;9) for a € (0, 1], see [10].

Throughout the paper we use the standard notation for the Lebesgue and
Sobolev spaces and we write ||v]|,,o instead of |[v]|Lr(q), p > 1.

Further we use the Holder spaces C%%(Q) and Campanato spaces £L2*(Q) with
respect to the parabolic metric 9.

Thus, for example, C%%(Q) = Cs”tam (Q) in the euclidian metric in R™*1.

Next we denote the spaces

ol [

V(Q) =LA W5(9),  Wa(Q) = [C5°(Qlwy)
V(QT(ZO)) = I’ (Ar(to)? ng (Br(xo))

for 2%, r such that Q.,.(2°) cc Q.
The space averages and the space-time averages of u € L'(Q,(2")) are defined
by

235
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Space averages of functions a(z, p) are defined by

(@)rz0(t;p) =

1
a(y,t,p)dy
1B, (z%)] /5, (20

= ][ a(y,t,p)dy, te A (t%), peR™.
B, (z%)

Here |B,| and |@Q,| stand for the Lebesgue measures of B, and @, in R™ and
R™+1 respectively.
We often use the minimizing property of the averages, namely

1) [ - @esPdes [ ) -cPds veerY,
Qr(29) Qr(2°)

which is a consequence of the fact that the function ®(c fQ (0 lu(z) — c|?dz

attains its minimum for ¢ = (u), .o.
We write v € HY?(A;L?(Q)) provided that v € L?*(Q) and the following
seminorm is finite:

[o(t+h) —v( )72 /2
[V 1/2(asL2 () = <// e ( )dtdh) < 00.

We also recall the definition of the parabolic fractional Sobolev spaces W37 (Q),
Q=0xA, a,v€(0,1). A function v from L?*(Q) belongs to the space W5""(Q)

if
e o /// oz |x7 |n+2’a)| dy de dt
t 2
///|vx |1+§78)| dtdsdx < oo.

We write A(z,p) € {v, u} if the matrix A(z,p) satisfies the ellipticity condition
[H3] with the parameters 0 < v < p for almost all z € Q and all p € R™V.

To save the space, we write v € B(-) instead of v € B(-;RY) for a functional
space B of N-vector functions.

In what follows we will use the notation @, V;., (u), without denoting center
of the ball or the cylinder if it does not cause misunderstandings.

In order to concentrate our attention on the properties of the principal functions
a(z,p), we omit additional nonlinear terms of the lower order. Certainly, we can
also add in the right-hand side of (1) functions from appropriate Campanato
spaces.

Next we formulate the main results of the paper.

Theorem 2.1. Let the assumptions [H1]-[H5] hold with § € (0,1) and u € V(Q)
be a weak solution to (1). Then for any number M > 1 there exist numbers
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7,0 € (0,1) and Ry > 0 such that if Q.(2") C Q with some r < Ry and

(15) ][ [Vu(z)]?dz < M, ][ IVu(z) — (Vu)z0|?dz < 0,
Qr(2°) Qr(29)

then u belongs to C%'(Q,,(29);9), and Vu € C%#(Q,,(29);) where B € (0,1)
is fixed in the assumption [H2]. The correspondent norms of w and Vu can be
estimated by the data of the problem, ||lul|y (), M, and rL

We also consider the case when § = 1 in the assumption [H2]. More exactly,

we assume that there exist derivatives a(z,t,p) = 92 and
[H27]

(16) |ag (2, t,p)| < L(1 + Ip])
holds.

In this situation we can slightly change some steps of the proof of Theorem 2.1
and we formulate it as a special result.

Theorem 2.2. Let the assumptions [H1], [ H3]-[H5], and [H2’] hold and u be
a weak solution to system (1). Then there exist numbers 1,60 € (0,1) and Ry > 0
such that if

(17) ][ |Vu(z) — (Vu),.0*dz < 6, T2][ |Vu(z)?dz < 6
Qr(29) Qr(2%)

in some cylinder Q,(z°) C Q, r < Ro, then u € C%Y(Q,(2Y);d), and Vu €

C(Q+r(29);0) with any o € (0,1), and the corresponding norms are estimated
by constants depending on v, i, L7, o, and ||uly(q).

Theorem 2.3. Let the assumptions of Theorem 2.1 hold and u € V(Q) be a weak
solution to system (1). Then u is the C%'-function and its spatial derivatives
Ugy,y -« - Uy, are Holder continuous functions with the exponent € (0,1) (in the
parabolic metric) on an open set Qo C Q, Qo = Q \ ¥ where ¥ is the closed
singular set of u and

(18) dimpY <n+2-285.

If the conditions of Theorem 2.2 hold thenu € C%*(Qo; ) and Vu € C*(Qo; d)
with any a € (0,1) where Qo is an open set in @) and
(19) dimp(2) < n—xo

with some xo = xo(p/v,n) > 0 for the closed singular set ¥ = Q \ Qo.
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3. Auxiliary results

In this section we recall several results needed further.

Lemma 3.1. Let w € V(Q) be a weak solution to the system
(20) wy(z) — div(A(2)Vw(z)) = Fi(z) — div F(z),

where [nN x nN]-matrix A(z) € {v,u} for almost all z € Q, Fy, F» € L*(Q).
Then w € Hllo/f(A;LQ(Q)) and the following estimates hold in any cylinder
Q2r(2°) C Q:

R — / (i, £) — k|2 da + / IV (z)2 dz
Agr(t%) J Br(x?) Qr(z%)

c 2
(21) < —/ lw(z) — k| dz
R? Q2r(2°)
ve| (RIREPHRED G YheRY;
Q2r(2Y)
/ lw(z) — (W)g,.0|*dz < cR2/ |Vw|?dz
(22) QR(ZO) QZR(ZO)
+c/ (RYFy > + R Fy|?) dz;
Q2r(2°)
2 _
(23) [w]H1/2(AR(t0);BR(;c0)) < C{HVU)H%,QQR(ZO) +R 2||wH§,Q2R(z“)

+ RQ||F1||§,Q2R(ZO) + ||F2||§,Q2R(20)}-
Moreover, w € L*"+2/"(Q) and

(24) [0l13 0 42) /.00 < () sup lw(, 13 5, + IVl g }-
R

The constants in inequalities (21)—(23) depend on p/v and n only.

Inequalities (21) and (22) are the well known Caccioppoli and Poincaré in-
equalities. They can be derived from identity (7) applying in advance the Steklov
average procedure (see, for example [11], [21], [22]). Proofs of (23) and (24) for
systems and scalar parabolic equations are the same, one can find them in [26],
Chapter 2 and 3.

Lemma 3.2. Let the matrix A(z) € {v,u} for almost all z € Q, Fi €
LEO+2)/(nt0)+e(Q) Fy € L?T(Q) with an e > 0 and w € V(Q) be a weak
solution to system (20) then Vw € L (Q) for some g, € (2,2 + ¢), and the

loc
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inequality holds

2/q0 2/q0
<][ |Vw|q°dz) gc][ |V’w|2dz+c<][ |F2|q°dz>
QT QZT QQT
2/s
—l—c(][ |F1|sdz) ,

for any Q2 C Q and s = 2(n+2)/(n+4) + (¢o — 2). The constant c in (25)
depends on p/v and n.

(25)

This lemma is a local variant of the Gehring lemma on the reverse Holder
inequalities [20] proved by M. Giaquinta and G. Modica. In the parabolic metric
the lemma was applied first time in [22]. The result was extended for the case of
additional functions from the anisotropic spaces and integrals over manifolds of
the lower dimensions [1], [2]. The extension of the result for the case of p-parabolic
metric, p # 2, see [23].

Lemmas 3.1 and 3.2 guarantee few useful results for nonlinear systems (1).
Indeed, we can use the condition [H3] to obtain the equality

a(z,p) = a(z,0) + A(z, p)p,

26 1
(26) A(z,p):/ g—;(z,sp)dse{y,u} aa. z€Q, YpeR"™,
0

We consider a weak solution u € V(Q) of system (1) as a weak solution to system
(27) up — div(A(z, Vu)Vu) = diva(z,0).

More exactly, a weak solution v € V(Q) to system (27) (or to system (1))
satisfies the identity

(28) /Q[u cp + Az, Vu)Vu - Vo] dz = — /Q a(z,0) - Vedz, RS V([)@(Q)

We put v = w, A(z,Vu(z)) = A(z2), —a(z,0) = Fa(z), |Fa(z)] < L, F} =0,
and consider (27) as the linear system (20). Applying Lemma 3.1 and Lemma 3.2,
we obtain that the following assertion is valid.

Lemma 3.3. Let the assumptions [H1] and [H3] hold, u € V(Q) be a weak

solution to system (1). Then u € Hllo/f (A; L2(2)) and the following inequalities
are valid in any Qar(2°) C Q:

Ju= bl uoy = 10 =Ml gy + . Valds
(29) An(t®) Qn(=)
c

< ﬁ][ lu(z) — k|*dz +cL? ~ VkeRY,
Q2r(29)

239
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(30) ][ [u(2) — (u)g 0| dz < CRQJ[ (|Vul? + L?) dz.
Qr(29) Q2r(2%)

(31) [ulFri/2(ap: 2y < IV Ul3gup + L+ R72lu—kl3 .}, VEERY.

Moreover, there exists number q, > 2 such that Vu € L (Q) for q € [2,q,)
and the inequality

2/q
(32) (][ |Vu|qdz) SC][ (Va2 + L2)dz,  Qar(:%) C O,
Qr(2%) Q2r(z°)

holds. The constants c in (29)—(32) depends on u/v and n only.
Lemma 3.4. 1) Let a function v € H'/?(A; L*(Q)). Then for a fixed h > 0
—h ) ) h
@) [ ottt o O adt <8t By <5
—T+h
a,a/2 0
2) If ve Wy, *(Qr(z")) then

(34) o= ()R l50n < R W aarz g, 0y,

with the absolute constant ¢ > 0.

PROOF: 1) Let a function v € HY?(A; L?>(R2)) and h > 0 be a fixed number.
We put A, = (—7,7) and estimate the expression Jp(7) = f:;Jrh lo(-,t 4+ 7) —
v(-,t)[15.q dt for || < h/4. We start with the case 7 > 0. Then

hh%:f A Ty (r)
f / (ot 1) — ol b O]+ [t 4+ €) — o D]2.0 dede
T+h

loC ot +7) — (.t + O3
=2 dtd
s / /THI EEYE bdg

’U'at+§ - 'at 3 . .
N O LA T PO
T+h €]

For a fixed T we put s =t +7and & = £+t in j;. Then ds = dt and d&’ = d&.
Now it follows that

[[v( )30
g1 < 47/ / £,|2 ds e’ = 47[v] 1/ 4, L2(9))"
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Further, we put £ +¢ = s in js then

. ||U('7S)_U('7t)”2
J2 < 47'/ / 3 2,8 dtds < 47—[’0]%[1/2(/\'L2(Q))'
AJA s — 1| ’

Estimate (33) follows with 7 > 0. The case 7 < 0 can be proved by the same way.
To justify estimate (34) we put n = (y,7), z = (x,t) and write the inequalities

lo — (@)alE.0p = / v@w—f v(n) dn

<2/ F (ot t) = o0 + o) = o))
RQa[ ]

2
dz

52 (Qr(0))

To obtain the last inequality we have used the definition of Wy" o *(Qr(z%). O

Now we recall some results on the A(%)-caloric functions from [8].

We fix two positive numbers 0 < v < u and consider [nN x nN| matrices A(t)
with the entries from L>®(Ag(t")), Ar(t°) C A, and A(t) € {v,u} for almost all
t € Ar(t°).

Definition 3.1. We say that a weak solution h € V(QRr(2")) to the system
(35) hy — div(A(t)Vh) =0, z = (z,t) € Qr(z"),
is an A(t)-caloric function in Qgr(z°).

Obviously, any A(t)-caloric function satisfies Caccioppoli and Poincaré inequal-
ities (21) and (22) with Fy = F» = 0.

Moreover, weak solutions h of system (35) have an additional smoothness in
any Q,(z°) for ¢ < r. The spatial derivatives D*h, |a| < oo, are continuous
functions and (D®h); are bounded in Q,(z°), o < r, see [8].

For A(t)-caloric functions the following Campanato type integral estimates
hold.

Lemma 3.5 (Lemma 5 in [8]). Let h € V(Q,) be an A(t)-caloric function in Q,
then

2
(36) ][ h(2) — hyao|?dz < c(g) ][ h(2) — hyol?dz, o<1
Qo (29) r Q. (29)

(37) ][ Vh(z)[2dz < c][ Vh(:)2dz, o<
Qo(2°) Qr(29)
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][Qg<zo>|h<z> — (W) — (Vh)gun (z — 2%) P d2

(38) N 2
- C(_) ]fmzw [h(2) = (W20 = (Vh)poo (@ —a%)Pdz, o<

r

In inequalities (36), (37), (38) the constants ¢ > 0 depend on v, ji,n, and N only.

Lemma 3.6 (A(t)-caloric approximation lemma, Lemma 7 in [8]). Let u,v be
positive numbers, v < pu. Then for any ¢ > 0 there exists a constant C. =
C(e,v,pu,n, N) > 0 such that whenever a matrix A(t) with entries in L*(A,)
satisfies the condition A(t) € {v, u} for almost all t € A, then for any u € V(Q,)
there exist an A(t)-caloric function h € V(Q,/2), and a function ¢ € C§(Q,),
supg, |V ¢| <1, such that

(1h(2) = (R} jal? + 72| VA(2)[*) dz

(39) Q7~/2

<2 (ule) = @)+ Vul) P

T

wy T, MRS f ()= (Tl 2

T

+ Cer® L2 (u, )

(41) L2(u, @) = ’ ][ [—u -t + A(t)Vu -Vl dz

r

4. Proof of Theorem 2.1
Let u € V(Q) be a weak solution to system (1). We put

v(z) =u(z) —k—1(x —2°)
for any k € RV, 1 € R*V. The function v € V(Q) is a weak solution to system
(42) vy — diva(z,t,Vo(z) +1) = 0.

It satisfies the identity

(43) /Q[—v(z) cou(2) + alz, Vo(2) + 1) - Vop(2)|dz = 0, Y € WL(Q).
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Taking into account that
a(z,Vu(z) +1) —a(z,1) + a(z,1)

= /1 ?(z, sVu(z) + 1) dsVo(z) + [a(z, t,1) — a(2®,t,1)] + a(z®,t,1),
o 9p

we can write identity (43) in the form

(44) / [—v -+ A(z; Vo, )V - Vo] dz = f/ A'a-Vedz,
Q Q

where

1
A(z; Vu,l) = / g—Z(z,va(z) +1)ds e {v,u} a.a. z € Q,
0

/ a(x®,t,1) - Vip(z)dz = 0,
Q
and

Na(z,t,1) = a(z,t,1) — a(z®,t,1), |Aa(z,t,1)| < Llz — 2°)° (|| + 1).

By Lemma 3.1, v € o2 (A; L?(92)) and the Caccioppoli and Poincaré inequal-

loc
ities are valid. It follows that

(45) ][ [v(2) — (v),]*dz < cr2][ (IVu(2) | + L322 (> + 1)) dz,

™

][ Vo(z)2dz < — lv(2)]2 dz
Q- (2%) T JQar(20)

FeLPP(IP+1),  c= c(ﬁ,n),
14

(46)

in any Q2,(2°) CC Q. As

][ |Vu — (Vu), 0| dz < ][ |Vu —1*dz, VieR"™W,

r Qr

then using inequality (46) for v(z) = u(z) —k —I(x — ")), we obtain the following
relation

. ]€2(0)|VU(VU),.720|2dz§ 7% o lu(z) — k — Iz — 2°)2 dz

+ L2 (112 +1).
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For the fixed Q,(2°) such that Q.,(2") CC Q, we put
B0 = 2(e) = £ [Vu (Vg
Qe(2°)

U(p, zo) =U(p) = ][ |Vu|2 dz,
Qo (2%)

and further we consider
U(Z) = ’U,(Z) - (U)T,ZU - (vu)r,zo (.I' - J)O).

Thus, v(2) = w(2), Vu(z) = Vu(z) — (Vu), 0.
Below we apply Lemma 3.6 to this function v. For a fixed € > 0 and the matrix

(48)  A(t) = ]{B » aa(:c,t,a(:u)r,zo)dxe ) aa te A()

there exist an A(t)-caloric function h from V(Q,2(2%)), a constant C., and
a smooth function ¢ € C§(Qr(2°)), supg |Ve| < 1, such that inequalities (39)
and (40) hold.

By (47) (with o/2 instead of r), we have the inequality

@(Q)gi lu(z) — k — U(z — 2°)2 dz + L2 (|I2 +1), o<
277 0% Jg,

)

N3

where we choose k = (u), 50 + (h), .0, I = (Vu), 0 + (Vh), 0. Then

*(3) < & ]é = bt b= () = (R)g = (Vu)(z = 2%) = (Vh)g(w — 2)|* dz

oL ((Fu) 4 (Th), 2+ 1)
< 2{ ] b-tras [, OG-ty as)

e Qo o
+ cL20*P(|(Vu) |2 4 [(Vh)o)* +1).

Now we apply estimates (37), (38) to obtain the inequalities

n+2
@(§)§%<I) ][ lv— h[2dz
2/ 7 0 \e Qr )2

c ey _ B o2
+ 92(T) ]{27./2 |h— (h)rj2 — (Vh)yjo(x —27)]" dz

+ cL?0% (1 + |(Vu),|*) + CLQQQB][ |Vh|?dz
Qr/2
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n+4
<=(%) ][ v~ h[>dz
rele Qry2

c

FS( =+ TaR) 2

2
0" AT Qr/2

25
el (14 |(Tu, )+ er?(2) 1% f  vhPds < ().
Qry/2

We will estimate the inequality (x) with the help of relations (39), (40) for v
but not u in the way

n+4 2
< 92 f 2 2 g -2
() < cr (Q) {eM, + Cr®L2(0,0)} + ¢(£) 77201,
2
L2 (14 |(Va),[?) +o(2) r¥r 2,

where

M, = ]ér(|v(z)—(v)7-| + 12| Vo[?) dz.

Using the Caccioppoli inequality (45) for the function v, (v), = 0, we obtain the
estimate of M,.:

M, < cr2{ ][ |Vol?dz + T26(|(VU)27~|2 + 1)}

< er?{®(2r) + P (|(Vu)ar |2 + 1)}

(49)

Thus, we have

() < (5 (9 e

r n+4
(50) +0(5) L)
+cL? Kg)an + (g)w}ﬁﬂ(uvu)yﬁ +1).

The next step is to estimate the expression £2(v, ) defined in (41).
Taking into account the definition (48) of the matrix A(t), we apply identity
(44) for v(z) with | = (Vu), and obtain the relation

£2(0,0) = \]{2 (v g0+ Ao - Vi + [A(: Vo, (Va),)

— A(z; Vo, (Vu),)|Vu - Vel dz
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2
} ][ (2; Vo, (Vu),))Vv - Vo — Ala - Vo] dz

<2/ 1aapd: ][ [Vof? dz + 2L (|(Tu), 2 + 1)

i QT‘

where

[AA| =|A(t) — Az, Vv, (Vu),)|.
We estimate |A A| as follows
|AA] < JA®) = A (20, (Vu),)[+]A(2;0, (Vu)r) = Az Vo, (Vu),))| = j1(2) +72(2)

where
A(20, (Vu),) = %})W)r)_

We remark that

0z (V) _ (20, (T))y |

(51)  J1(2) = [A(20, (Vu),) — A(H)] = ap

Using the assumption [H4] we get the inequality

/1 [aa(z, sVu(z) + (1 = s)(Vu),))  0dal(z, (Vu),)
0 op op

J2(2) =

(52) N
< [ ws7u(e)  s(Tu)) Py s < (Vo))
0
With the help of relations (51), (52), and the assumptions [H4], [H5], we derive
the inequality
(53)
£0p) <28 ((Va) P+ 1)+ 4 (R + B ds | Vol ds
Qr Q-
r

<AL (|(Vu),[* + 1) + 4lg(r) + wow(@(r)]@(r),  wo = Sup )W(S)~

Thus

o(3) < { () +=(5) "+ (D)
ryn+4
(54) FO(5) @) +a)] jo(2n)
+ cL2{ (Q)HH + (5)25 +C. (%)n+4}r25(|527-|2 +1).

Here and below 1, = (Vu),.
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Now we fix

, 0=27R,

A~ =

V= R = 2T; T<
and note that 8 <y < 1. We obtain from (54) that

®(TR) < Co{’l‘2 e N e )
(55) +Cer” MW (2" 20 (R)) + (R)] } B(R)
+e{r? +er " 4 Corm(TOYRP (|1 + 1),

We choose the parameter 7 < 1/4 such that

T
(56) 00T2 § —_—
8
and then fix € > 0 to obtain the relation
2y
(57) coeT~ (" < %

The next step is to choose such small § € (0,1) that the inequality

T2
(58) coCor ™y (27120) <« —
holds.
At last we fix Ry > 0 to satisfy the condition
28 p2p 4 T
(59) co(T?P Ry + Cor~ (" g(Ry)) < =
0

Let the assumptions (15) hold in the fixed point z° for some M > 1 with
a radius R < Rp and 6 fixed by (58). It means that

(60) ®(R) = (R, 2") < 0, U(R) = V(R,2°) < M.

Evidently, |lg|*> < M and |Igr|? + 1 < 2M in this case.
We additionally assume that = (M) and Ry = Ro(M) satisfy the restriction

~(n+2)\/p K 0
T 28
(61 T VM e <gpp
where
K= 2(:1{72 +er—(ntd) 4 CET*("H)}.
Now it follows from (55) that

(62) O(rR) < TT O(R) + 2K R M.

247
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In particular, by (60) and (61) it follows from (62) that

(63) ®(TR) < 6.

It means that the first assumption (60) is valid if we change R by 7R. Then
T2

(64) ®(T°R) < — (T R)+2K(7 R)*’ M.

Next we make the iterations in (64) for the sequence {77 R}, j € N, and obtain
the inequalities
. 2 ) )
d(r'R) < 7@(#*11%) +2KM(r71R)?P

2K M R?8
7-25(1 — 72(775)) ’

(65)

< (?)jq)(R) N

Thanks to conditions (60) and (61), it follows from (65) that

2K MR8 oy
ﬂ .
- < 7RI, jeN

®(r'R) < 7207 [@(ZR) +

Now we assert that the sequence {l,;,} has a finite limit when j — co.
Let j,m € N, j > m, then

j—1
lrig = Lenrl € 3 [ltig — Lug| <7D 912(74R)
k=m
66
(66) o
1—7

j—1
ST*(””)ZTWC\/EST 3 VO™ < /M P 50

k=m

when m — oo.
Thus, there exists a finite limit Iy = lim; o l;iR.
By (61),

7.—(n+2)

1—78

Vo < VM

|lTjR_lR| <
and
|lTjR| < |lTjR_ZR|+|lR| <2VM7 VJEN

For any ¢ € (0, R) there exists 7/ R such that 77t'R < o < 77 R. Tt follows
from (61) and (65) that
(67) ®(0,2°) < c®{R™O(R,2°) + M},  Vo<R

Here the constant ¢ > 0 depends on the parameters from the assumptions
[H1]-[H5] but does not depend on 2°.
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Moreover, there exists the limit of an arbitrary sequence [, , 0, — 0. Indeed,
for any o,, there exists 77 R such that 7/~ *t'R < 9,, < 77" R and

|l£)7n _ lijR| < 7-—("4‘2)@1/2(7-ij) < 7-—(7L+2)7-Bjm\/§ -0, G — 00.

Then
|l£)7n - ZO| S |l£)7n - lijRl + |l7'jm - ZO| - 0

provided that o,, — 0, 79" R — 0.

We assumed that the assumptions (60) hold in a fixed point 2Y. But it is
easy to see that they are also valid in some neighborhood Q,,(2°) (for the fixed
earlier R), i.e.

(68) O(R,€) <0,  U(RE <M,  VEEQy(2).

It means that inequality (67) holds for all £ € Q,,(2") but not only for 2°.
Thus

(69) sup 072 ®(0,€) < e(RT{||Vul3,q + M}
o< R, £€Q,,(2%)

This estimate guarantees us that the norm of the gradient of u in

LEF20(Qy, (2°); )

is bounded. Due to the isomorphism of this space to C?(Q,,(2°);4), we can
conclude Hélder continuity of the gradient of « in the vicinity of the point where
conditions (60) hold.

Smoothness of u in Q,,(z°) follows from the Poincaré inequality (30) and the
second assumption (60). Thus, u € £2"+4(Q,,(2°);d) and we can conclude that

u € C%1(Qy, (29);6). O

5. Proof of Theorem 2.2

Lemma 5.1. Let the conditions [H1], [H2'], and [H3] hold. Then
1) there exist the derivatives V2u, u; € L2 (Q);

loc

2) there exists a number ¢’ > 2 such that V?u, u; € Lf;C(Q).

PrOOF: Let U(z) = Vu(z). Then formally U is a solution to the system
(70) Uy — div(A(2,U)VU) = —div F(2), zeQ ccQ

where A(z,p) = %;’p) e{v,ul, p e R, F(z) = —d (2, Vu(z)), and |F(z)| <
L(1+ |Vu(z)|) by the assumption [H2'].

To justify existence of VU we should consider the difference Uy (z) = (Vu(z +
hes,t) — Vu(z,t))/h, s < n, where ey, ..., e, is the canonical basis in R", |h| <
0(Q';0Q), and prove uniform boundedness of ||Uy||2,q/ in h. Then the existence
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of VU € L*(Q') follows and one can assert that U € V(Q’) is a weak solution of
(70) in V(@'), Q" cC Q.

Moreover, U € Vioe(Q), where V(Q) = C(A; L2(Q))NL2(A; W (€2)). It satisfies
the identity

//[7U~50t+A(z,U)VU-Vgo]dz:/ F(z)-Vpdz,

(71)
peWLQ), Q@ ccaq.

By Lemma 3.3, Vu € LL _(Q) with some ¢ > 2. It means that F € L (Q) and

loc loc
applying Lemmas 3.1 and 3.2 we obtain that the first and the second assertions

of this lemma are valid, ¢’ € (2, ¢]. O

Moreover, we have the following local estimates for U:

W= (Ol = [ U= P o [ [VUPL
" Ar JB, r

(72)
SCT_2/ |U—(U)2,.|2dz—|—c/ |F|?dz,

(73) / U = (U), 2 dz < cr2/ VU ds + cr2/ F2dz,  Qa C Q.
Inequality (72) follows from (21) for w = U, k = Us,., F1 =0, F» = F. Inequality
(73) also is a consequence of inequality (22) for w =U.

The constants ¢ in the Caccioppoli inequality (72) and in the Poincaré in-

equality (73) depend on v, u, n, and N only. Moreover, we have for ¢’ € (2,4]
that

2/d’
(74) (][ VU4 dz) < cl][ |VU|2dz+02(][
Qr Q2r Q2

It follows from (24) that

, 2/q’
|F|q dz) s QQ»,- C Q

s

(75) HUHg(n—‘rQ)/n,QT < C(n)IUI%*(QT)) U=U- (U)27"

Now we claim that
(76) 72 ][ TR/ gy < ny(r){][ |U7(U)2T|2dz+r2][ (1+|U|2)dz}
r 2 Q2r

where

4/n
V) = Ullytsayjmg. =0 7= 0.
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Indeed, by (75) we have the inequalities

n n 2+4/n
/Q ORI az — U = A0 U sy,

< ()Y (r){IU5n42)/m,q, + [U2e*1Qr [}
7772 2
)y (M{IULE, 4+ 11U15 6, )

(77)

IN

Applying (72) to (77) we obtain that

/ IUIQ(”“)/"dZSC(V,um)V(T){T_Q | - @hias
(78) QT‘ 2r
+/ (|F|2+|U|2)dz}.
Qar

T

Using the definition of F(z) we derive from (78) inequality (76).
Now we fix Q,(2°) C @ such that Qs,(2°) C Q, and for a fixed € > 0 and
U € V(Q,(2Y)) we apply A(t)-caloric lemma (Lemma 3.6) with the matrix

(79) A(t) = ]i ( O)Wdze{y,u} a.a. te A (t°).

By Lemma 3.6, there exist an A(¢)-caloric function h € V(QT/Q(ZO)), a constant
C: > 0, and a function ¢ € C§(Qr(2%)), supg (.0 [Ve| < 1, such that inequalities
(39) and (40) hold for the function U with

2

L2(U,p) = ' ][ 0)[*U cor + A()VU - Vldz

Now we put

(g, 2°) = f U= (U)ol dz,  W(o,2%) = 92][ (1+|U2) dz
Qo (29) Qo(z9)
J(0,2%) = ®(p,2°) + ¥(p, 2Y), 0 < 8r.

We do not change the point z° up to the end of the proof and that is why we omit
further dependence of the functions and the sets on this point: ®(p, 2°) = ®(p),

Q.-(2°) = Q. and so on.
Note that from the Caccioppoli inequality (72) it follows that

(80) 7“2][ |VU[?dz < c®(2r) + cr2][ |F|2dz < cJ(2r).

™ 2r
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Inequalities (39) and (40) guarantee now that
(81) ][ (1n(2) = (h)yy2l? + 12|V h(2)[?) dz < e J(2r),
Qry/2
(82) ][ |U(2) — h(2)|*dz < ceJ(2r) + Cr?L2(U, ).
Qry2
The following inequality holds for o < r/2:

®(p) §2][ |(U7h)—(U—h)g|2dz+2][ |h — h,|*dz

e e

2 0 2 2
<24 jU-— dz+c(—) |h = (h),2]? dz.
'

e Qr/2

Estimate (36) for h was applied in the last inequality.
We continue to estimate ®(g) with the help of inequalities (81) and (82). Then

(83) (o) < c(g)QJ(zr) + c(%)n+2{a‘](2r) LU, )

To estimate L£2(U, ), we address to identity (71) and obtain the relations
L2(U,¢) = ‘7[ (~U - gy + AVU - Voo + AAVU - Vg dz|
- ’]{2 (F-Vo+ AAVU - Vi) dz| .
Here the difference

AA = A(t) — A(z,U)
we estimate in the way:

Oa(z,U)  dal(z,(U),)
< _
|AA| < op op

Observe that sup,.q [Vo(2)] < 1.
Further we use the assumptions [H4] and [H5] to derive the following inequal-

ities:
r2L2(U, p) < 27“2][ |F|?dz + 27“2][ |AA|? dz][ |VU|? dz
- " Qr
312
<e ][ ‘6@(2,U) ~ 9a(z, (U)r) &
L Op Ip

A T

2
dz}
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X 7’2][ |VU[*dz + c¥(r)

r

< eU(r) + c[w<][r U — (U), 2 dz> + q(r)} r2 ]ér VU2 dz.

Applying relation (80) to the last inequality, we obtain that
(84) r2L3(U,¢) < c¥(r) + clw(@(r)) + q(r)]J (2r).
It follows from (83) and (84) that

© b0 < e{(2) +e(2)" + Ce(2) i@t +ar}a2n)
85 ,
ve(5)Tvm, o<y

On the next step of the proof we will estimate the function ¥(p). To do this,
we put

(50) Ho) = 1) = 4 fu(s) = (), d:
Qe (%)
and apply once more A(t)-caloric lemma (Lemma 3.6).
We put
1
0
S A=A, A= [ 22D,
0

For the fixed earlier ¢, the cylinder Q,.(2"), and the function u € V(Q.,(z°))
there exist an A°(t)-caloric function 7 € V(Q,/2(z")), a constant C? > 0, and
a function ¢ € C§(Q,(2")), sup,cq, [V (2)| < 1, such that

f (I1(z) — (vl +72|Vn(2)) dz
Qry/2

(8)
= 2"+47[ (lu(2) = ()2 + 72| Vu(2)[2) dz,
f fu(z) — (=) dz
(89) Qry2
<c f (u(2) = ()2 + r2|Vu(2)[?) dz + COr2L2(u, )
where

2
£2(u, ) = \ Fru et 090 veld:
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Using the Caccioppoli inequality (29) we obtain the relation

(90) 7[ (lu(z) = (u),]? + r?|Vu(z)[?) dz < e(I(2r) + L*r?),

T

here L is the constant from the assumption [H3].
Now we have the following relations for I(p), o < r/2:

1<g>s27{2 I(u—n)—(u—n)gl2d2+2]2 0 — (n)el?dz

r\n+2 2
<57 ueaPasee(2) £ - el as
0 Qr/2 r Q

r/2
n+2

< c{ (€>2 + (g)n+2(05r2£%(u, ©) + E)}I(Qr) + cCg(g) re.

r

We applied relation (36) to justify the second inequality. The last relation holds
due to inequalities (88), (89) and (90).
Now we use the identity (28) to estimate the expression £2(u, ¢):

L2(u, ) < 27[ |AA|? dz][ |Vu|?dz + 212

where
|AA| =A% (2, Vu) = A%(t)] < |A®(2, V) = A%(z, (Vu),) | +]A° (2, (Vu),) — A°(#)].

With the help of the assumptions [H4|, [H5], and inequality (90), we obtain
the estimate

2 L2(u, @) [ (IVu — (Vu),[*) dz + q(r)] r? ][ |Vu(z)?dz + 2 L*r?

T

O(r)) + q(r)]I(2r) + eL?r?.

It follows from the estimate for I(p) and the last inequality that

n+2

10) < e{(2) +e () + e (5) T wle) +athren+ecd (2] ek

Applying the Caccioppoli and the Poincaré inequalities, we derive from the last
inequality that

(9) <o (5)2 + €<£)n+2 + 00 (g)"”[w(cp(r)) +q(r)] b ()

o + cCQ(g)WL?r?.
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Now we add inequality (91) to (85) and obtain for ¢/2 < r the inequality
0 0 2 r n+2 ~ r n+2
g\ <« £ Z Z
I(5) <e{(7) +(5)  +C(5) @) +atr )
o(T\'" 220 A (TYT? A 0
+cC’€(g) L —l—cCg(Q) V(4r), C.=C.+ Y.
Further we apply the Cauchy inequality and relation (76) to estimate W(4r) =
U(R/2), R = 8r, as follows
R R\2
v(B) - (B 7[ (U2 +1)dz §R2][ (URE2/ 4 e(n)) dz
2 27 Jan Q
/2 R/2

(93) - Rg]é UPCH2" dz + e(n) R?
R/2

< ¢R? 4+ ¢y(R)(®(R) + Y (R))
=cR*+~(R)J(R), ~(R)—0, R—0.

Now we put in (92) r = R/8, ¢ = 7R where 7 < 1/16 we will choose below. Thus,

J(TR) < co{r® + e~ ("2 4 C.r~ ("2 (8" 2®(R)) + ¢(R)

4
o1 +y(R)]J(R)} + e Cer™ ("2 R,
In (94) the constants ¢g and ¢; depend on the parameters v, u, L, n, N, but do not
depend on the fixed point z°.

Now we make the choice of the parameters 7,¢ and the maximal radius Rg.
For any number a € (0,1) we fix a number o’ € (a,1) and choose 7 < 1/16 to
satisfy the relation

2a’
(95) cor? < T —.
8
Then we fix € < 1 such that
2a’
(96) ecor” ("2 < T

8

As the function w(s) — 0 when s — 0, we can fix a number 6 € (0,1) satisfying
the condition

T2a'

=

Using the condition [H5] and relation (76), we find Ry such that

(97) coCor™ M2y (8720) <

20’
A _—(n T A —(n
(98) co Cer™ ") (q(Ro) + v(Ro)) < g c1Cer™("IRE <

N D

255



256 A.A. Arkhipova, J. Stard

Let us assume that for some R < Ry the following inequality is valid in the
fixed point 2°:

J(R) = J(R,2°)

99
o = [ W - @reParrf  (opena<e
Qr(z°) Qr(20)

As ®(R) < J(R), the assumption (99) supplies the condition ®(R) < ¢, and the
inequality

2a’
(100) coCer™ "2y (8"2B(R)) < TT

holds for such R due to (97). In this case we obtain from (94) the relation

’
7_204

(101) J(rR) < ——J(R) + KR?, K=cCor ("),
and KR3 < 6/2 by (98).

In particular, it follows that
®(TR) < J(TR) < 0,

and inequality (100) holds with 7R instead of R.
It allows us to repeat all considerations with 7R instead of R. Thus,

’
T2a

J(T?R) < —J(TR) + K(TR)?.

Now we can assert that the following inequalities hold for the sequence R; = 77 R:
7_20/

(102) J(Ry) < T d (R )+ K(Rj )%, G EN.

The iteration process guarantees us that
(103) J(R;) < 7Y [J(R) + cK(R)*"], jeEN, a<d.

It follows from (103) that the inequality

2a

(104) J(0) = J(o,2°) < c(%) J(R, %) + cK o*

holds for all p < R. In particular, we obtain from (104) that

1

(105) W/Q o IVu(z) = (Vu),.0?dz < e(R™1, v, 1, Lo, || Vul|2,0)-
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As inequality (99) holds (for the fixed R < Rp) in some neighborhood of the
point 2%, we can assert that estimate (105) also is valid in some cylinder Q,, (z°).
More exactly,

1

— e |Vu(z) — (Vu)el? dz
(106) "2 /Qg(é) ’

< C(Rila v, 1, L, a, ”VUHZQ)v Ve e ng(zo)'

This inequality guarantees estimate of the seminorm of the gradient of u in
L2229, (29);6). It follows that the norm in this space is also estimated.
Due to the isomorphism of the Campanato space L2"T2129(Q, (29);§) and

C*(Qy(29);0) , we have the estimate of the gradient of w in the Hoélder norm in

QQO (ZO)
Moreover, |Vu| is bounded near the point 2% and we have also the following
estimate for the function wu:

I(0,€) < c(V(20,8) + 0*) = co®*(1+ sup |Vu?) < (R v,u,L,n,N)o?,
Quo (=)

VE € Qy(2°).

It means that u € C%1(Q,,(2°);8). Theorem 2.2 is proved. O

Remark 5.1. To prove local smoothness of u near the point 2%, we can change
smallness condition (99) by the assumption that

0—0

(107) lim inf 92][ (IV2uf? + [Vul?) dz = 0.
Qo(2°)

Indeed, let (107) hold. Taking into account estimate (73) for U(z) = Vu(z) we
can choose a radius R small enough to obtain validity of the assumption (99) for
the function J(R, z°). It means that condition (107) guarantees smoothness of u
in some neighborhood of z°.

6. Fractional derivatives of the gradient

Let the assumptions [H1]-[H5] hold and 5 € (0, 1) be the parameter from the
condition [H2].

For cylinders Q@ CC Q" CC Q' CC Q we denote dy = min{§(Q’;0Q),
0(Q";0Q"), 5(@; 0Q")} and define the difference

pu(z) = u(r + hes, t) — u(z, t), s=1,...,n,

where 2z € Q', h € R, |h| < dy, and ey, ..., e, is the canonical basis in R™.
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To estimate fractional derivatives of the gradient of u, we apply the difference
quotient method. We start with defining the functions

(108) U(z)z%, () eQ, s=1,....n.

It follows from identity (7) that the functions U(z) satisfy the equality

1
/ [f U- i+ W{a(az + hes, t, Vu(x + hes, t))
(109) Q

—a(z,t, Vu(z,t))} - Ve}| dz =0

for all p € Wi(Q").
The expression in the braces of relation (109) we rewrite in the form

()= /O Oa(z + hes, t, Vu(z) + ¢Af Vu(z)) g2 Vu(z) + Ala(2)

dp
=1 A(2)V(Aju(z)) + Aja(z)

where the bounded matrix A(z) € {v, u} for almost all z € Q'. By the condi-
tion [H2],

|Aha(z)] < LB (1+ [Vu(2)]),

(110) ,
pa(z) = a(x + hes, t, Vu(z,t)) — a(x,t, Vu(z, t)).

Now the equality (109) can be written in the form
1) [ U ot AVU-Telds = [ FR)-Tode, o 3@
Q Q

where ,
A} a(z)

F(z) = —W7

[F(2)] < L(1 + [Vu(2)]).

Thus, for any fixed s = 1,...,n and |h| < dp, the function U € V(Q') is a weak
solution to the linear system

(112) U, — div(A(2)VU) = — div F(z), zeq.

We apply Lemma 3.1 to assert that the following Caccioppoli and Poincaré in-
equalities are valid for the function U:

) /Q VU dz = VU 2o,

< ARPNUIS g, + L2+ I Vull g,0)},  Q2r C Q'
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/ |U(2) — (U)g|*dz < c{R2/ |VU|? dz
Qr Q2r

(114)
+ L2R2/ (1+ |Vu|2)dz}, Q2r C Q.
QQR

From the definition of the function U and inequality (113) it follows that

/ |U(z)|2 dz<e |Vu(z)|2 dz,
(115) 1" Q/
/ VU (2)]?dz < e(1+ || Vull3,o) =: cMo.

The constant ¢ in (115) depends on the data and dj*.
By Lemma 3.3, F € LY(Q’) with some ¢ > 2 in (112).
Using Lemma 3.2, we can assert that there exists p € (2, ¢] such that VU €

LY (Q’') and the estimate

loc
(116) VU2 5 < cAIVUI5gr + 1+ [Vulj g} S Mo,  VQCCQ”,

is valid. In the last inequality (116) we have used estimates (32) and (115).
Now it follows from (116) that

2/p
VU|?dz < </ VUsz> 1-2/p
- / v [ v 1Qnl
< c(n)|[VU|2 gRUF2O2) < eMoR™,

VQr C @ Here and below
2
m:(n+2)(1—5) > 0.

In the definition of the function U(z) the direction es was fixed arbitrary. If we
take the number h sufficiently small we obtain from estimate (117) that

/ |Vu(x + hes, t) — Vu(z,t)|? dz < c|h|*) R™,
(118) Qr(z0)

s=1,...,n, VQRC@.

Here the constant ¢ depends on ||Vu|l2 @, v, 1, L, 8, n, dal.
Note that all subdomains in @) were fixed arbitrarily. Thus, estimate (118) is
valid for any Q,(z°) CC @ and the constant ¢ in (118) depends on d~—! where

d = 8(Q.(");9Q).
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By Lemma 3.1 the function U belongs to H/?(A;L%(Q)). Let Qup C

loc

Qo CC Q. Then the following estimate of the seminorm follows from (23):

[Uﬁr{l/z(AR;m(BR)) < C{||VU||§,Q2R +R7?|U - (U)2R||§,Q2R

(119) ) ) )
+ LAR" 4 [ Vull3 g,,)}-

Using Poincaré inequality (114), we can derive from (119) the following esti-
mate:

(120) UTins2amz2any < AIVUIE g + B2+ 1VUl3 g, )

As VU and Vu are functions from L (Q), p > 2, we apply the Hélder inequality

and inequality (116) to the right-hand side of inequality (120) and obtain that
2 n -
Ulin 2 ansza(may < CROTPEHIVUIG g + 1+ 1V0I1 0}

(121)
< CRmMQ.

It follows from (121) and Lemma 3.4 that
(122) / |U(2,t+7)—U(x,t)|*dz < c|7|R™, Qir C Qo CCQ, |7| < R%
R

The constant ¢ depends on [|Vull3 o, v, u, L, B, d~*,n; here m = (n+2)(1-2/p),
d=46(Q,,00Q).

Now we prove integral continuity of the gradient of w in the time variable.

Lemma 6.1. Let Qur C Q CC Q be fixed, d = 6(Q;0Q) and 7 € RY, |7| < R2.
Then the following estimate is valid

(123) / |Vu(z,t +7) — Vu(z,t)|? dz < c|[7|PR™

R

where [ is the exponent from the assumption [H2], the exponent m > 0 is the
same as in estimate (122), and ¢ = c(||ullv(q), v, 1, L, B, d~*,n).

PrROOF: To estimate the left-hand side of inequality (123), we can fix any direction
s =1,...,n and explain how to derive the inequality

I’ ::/ |y, (2, +7) —uws(ac,t)|2dz
R

< C|T|ﬂ Rm, C:C(HUHV(Q)ad_laVauaLaﬂan)

(124)

for any s < n.

We illustrate the procedure for s = n and denote below u,, = V,u. The other
directions can be considered in the same way.

We fix a number r € (0, R) and put y = (', yn), Yn € (T, 2, + ). We will
define the number r below.
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The following relations are valid:

.
R

Tp+T
][ {[Vau(z,t +7) — Vou(y,t + 7)] + [Vau(y, t +7) — Vau(y, t)]

n

2

+ [Vnu(y, t) - vnu(xv t)]} dyn dz

2

Tn+T
< 4/ (][ |Vou(z, t 4+ 7) — Vauly, t + T)|2 dyn) dz
Tn+T
F7 alutwt+7) = uly. 0 ay| d:

v f
R n

Tp+r
ca [ (7 9ot - St 0Pan, ) a:
Qr Tn
=:4(j1 + j2 + J3)-

Note that the integrals j; and j3 are estimated in the same way.
For example,

j1:/ <][ |Vnu(zlvggn7t+7')Vnu(zl,$n+§,t+7')|2d§> dz
Qr 0

< sup/ V(! zp, t +7) = Vou(z', z, + &t +7)|* dz
€€lo,r] JQr

S 017,,2,6 R™

where the last inequality follows from estimate (118), the constant ¢; depends on
lullvq), B; v, u, L and d~1.

The same estimate we have for js.

Further we transform and estimate the integral jo. After calculating the inter-
nal integral in jo we have the expression

. 1
jo = — [[u(z', xp + 71t +7) —u(a’, z, +7,1))
™™ Jor
— (@, zp, t +7) — (@, z,, )] Pdz
1
== [u(z' ,xp +rt+7) —u(a,zn,t +7)]
™™ Jor

— [z, zp 4 7, t) — u(a’, z,, t)]|?dz.

If we put in the definition (108) of the function U the direction s =n and |h| = r
we will have the function
u(@' oy +1,t) —u(z,t) u(z+ren,t) —u(z,t)

Uz, t) = 5 = e .
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Then it follows from estimate (122) that

728 || R™ 728

(125) Jo = |U(z,t +7) — Uz, t)>dz < ez

2
r Qr

Here the constant cy depends on the same data as ¢y does.
Taking into account the estimates of j1, jo, j3, we arrive at the following in-
equality for I™:

(126) "< c{r25 il }Rm, m=(n+ 2)(1 - %)

r2

We choose now the number r < R to satisfy the equality

r? =|7].
Then we obtain from (126) that
(127) I" < c|r|PR™.
Repeating the proof for any direction s = 1,...,n — 1, we obtain estimate (124).
Inequality (123) follows. O

Lemma 6.2. For any a € (0, 3) the gradient of u belongs to the space W;’Q/Q @),
V@' cc Q, and

(128) [VU]?/VZQ’&/2(QI) S c

where the constant ¢ depends on |Vull2,q, o, 8, 1, v, L, n, and 1/6(Q’; 0Q).

Validity of the assertion of Lemma 6.2 follows from estimates (118) and (123)
if we apply Proposition 3.4 of [18].

Remark 6.1. Certainly, estimate (116) supplies better information on the be-
havior of the gradient of u in the space variables but we can not improve estimate
(122) (and as a consequence (123)) in the situation when no smoothness in ¢ of
the functions a(z,t,p) is assumed.

7. Estimates of the singular sets. Proof of Theorem 2.3

First, we consider the case § = 1.

Using Remark 5.2, we can assert that all singular points of the solution under
consideration are described by the set
(129) Y= {ZO € Q: liminf 92][ (IV2ul* 4+ |Vul|?) dz > 0}.

0—0 Q

0(29)
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We recall that the functions Vu and V2u are integrable with some degree p > 2
(we fix the degree p the same in estimates (32) and (74)). If 2° € ¥ then

1 1-2/p
0< = (V2uf? + [Vul?) dz < % </
Q

23

2/p
(V2] + | Vu])? dz)
07 JQ, (29

e(29)
1 9 2/1’
= —_— pd .
c<n>(gn<p2> /Q oy VPl V) )

It follows that ¥ C X, where the set
¥, =12 Q: liminf 1 (|V2u| + |Vu|)P dz > 0 p.
p 0—0 Q”—(P—Q) Q,(=%)

Then H,,— (p—2)(Ep; ) = 0 (see, for example, [21], [16]). Thus, H,,_(p—2)(2;6) =0
and

(130) dimp ¥ < n — xo, Xo=p—2>0.

We have proved Theorem 2.3 for the case g = 1.

Now we assume that g € (0,1). By Lemma 6.2, Vu € Wl(gf/Q(Q), and the
Poincaré inequality (34) is valid for Vu:

/Q (20) [Vu(2) = (V)20 dz < co®* [Vuljya.azq, oy

Va< B, Q%) ccQq.

(131)

It follows that

[Vu(z) = (Vu)p 0 dz < co” TIP2TULT o g 20y

(132) ]ég(zo)
Ya < B, QQ(ZO) cC Q.

If we take into account the description of the set Q)¢ of the regular points of u
and denote as ¥ the admissible closed singular set of this solution, ¥ = Q \ Qo,
then we can assert that X C X1 U X9 where

¥ = {zo € @: liminf ][ [Vu(z) — (Vu),.0|* dz > 0}
e JQu(=0)

and
Yo = {ZO € Q: limsup [(Vu), 0| = oo}.
o0—0

We will prove that dimp X1 <n+2 — 28 and dimp X5 < n + 2 — 20.

263



264 A.A. Arkhipova, J. Stard

Now we fix a number ¢ € (0, 3) and put

S:{Oe i —(A2)t20 g2 >o}, _5_¢%
=7 €0 e Vliygerag, 0 a=F-3

It follows from (132) with « = 8 —¢/2 that ; C S1. As ¢ was fixed arbitrary,
we use Lemma 3.2 from [18] or Lemma 4.2 from [27] and can assert that

(133) dimp ¥ <dimp S; < n+2—28.
To estimate the set Y5, we consider the set
SQ = {ZO S QZ lim sup Qi(n+2)+2a7€[VU]?/VQ@/Q(QQ(ZO)) > 0}
We have the estimate

(134) Hn+2725+25(52; 5) =0.

Further we will prove that 3o C S2. To prove the implication Yo C S5, we fix
a point 2z € Q \ Sz and will prove that 20 € Q \ ¥s.

We fix a number o > 0 and consider the sequence g; = 7%p with any fixed
7€ (0,1),i €N, g; = 0, i = oo, and will prove that the following limit exists
and is finite

(135) ligo [(V),, 20| < 00,

Ok

To this end, we estimate the difference

Tk = (V) s a0 — (Vit) o2 < ][ V(=) — (Tu),, o[ dz
Qop+1(20)
< 7~ (n+2) ][ |Vu(z) — (Vau),, of* dz.
ng(zo)

We continue to estimate the right-hand side of the last inequality with the help
of estimate (131) then

—(n —(n+2)+2a
Jp < e +2)Qk( +2)+ [VU]?}V;,Q/2(Q%(ZO))

% 2
< CW[VMW;,Q/Q(Q% (29)) S(*) clgi — 0, k — oo.

At the last step in inequality (*) we have used the definition of the set So.
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For arbitrary m > k we have now inequalities

Jj=m—1
|(Vu)gm,z° - (vu)gk,zo| < Z |(vu)g]~+1,zo - (vu)gj,z“|
j=k
j=m-—1
<c 05 <c(m)rF e =0,  k— oo
=k

It means that there exists limy_, o [(Vt),, | < 0o. It is not difficult to justify that
the finite limit of the sequence |(Vu),, .o exists for arbitrary sequence of r; — 0.
Thus, z° € Q \ X2. In a result we have that Q \ So C Q \ X2 and Xy C So.

By (134), Hnt2-28+2:(X2;9) = 0. As this equality is valid for any € > 0, we

obtain the estimate

(136) dimp(Sy) < n+2—28.

The estimate

dimp(X) <n+2-28

follows now from (133) and (136) in the case when 8 € (0,1). O
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