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A (@-linear automorphism

of the reals with non-measurable graph

STEPHEN SCHEINBERG

Abstract. This note contains a proof of the existence of a one-to-one function ©
of R onto itself with the following properties: © is a rational-linear automor-
phism of R, and the graph of © is a non-measurable subset of the plane.
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The existence of functions with non-measurable graphs was known to Sier-
pinski a century ago, but he apparently never published the details of a proof.
However, see [2] and [1]. What is new in this note is a proof of the existence of an
isomorphism © of R onto itself, as a rational vector space, which has the property
that the graph of © has zero inner measure and its complement R?\© also has
zero inner measure. Thus, the graph of © is not measurable. (The characteristic
function of a non-measurable set is not a measurable function, but its graph is
measurable.) As in rudimentary set theory, a function is identical with its graph.

In what follows every linear combination has rational coefficients.

For any set Z let |Z| be the cardinal of Z. As usual ¢ is the cardinal of the
continuum. Let m; be the Lebesgue measure on R and ms be the Lebesgue (2-
dimensional) measure on R2. Let K be the set of compact K C R? for which
mo(K) > 0. For x € R let V, be the vertical line {(z,y): y € R}.

Lemma 1. If K € K, then there are ¢ elements x of R for which |V, N K| = c.

PROOF: Let 0 < ma(K) = [ mq(V,NK)dm4(z) by Fubini’s theorem. So m1(V,N
K) > 0 for a set X (of such z’s) of positive measure. Therefore X has ¢ points,
and for each such point V, N K must contain ¢ points, since its measure is positive.
Lemma 1 is proved, along with the statement that the graph of any function has
zero inner measure. (We remark that K may not contain a set I x J of positive
measure. )

Now we proceed with the proof of the main statement (the title and the ab-
stract). The set K has ¢ members: Let us well order K = {K,: o < ¢}. We
shall find a one-one map F of 2 X ¢ into R, with these properties: the image of F'
is linearly independent, and defining =, = F(0,a) and y, = F(1,a), we have
(Ta)Ya) € Ka.
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Once we have the above, let A = {z,: a < ¢} and B = {yo: a < ¢}, two sets
whose union is linearly independent. Clearly, the linear span of A is of dimension ¢
and of co-dimension c; the same is true for B. Extend A to a (Hamel) basis A’
for R, and extend B to B’, similarly. Since |A’\ A| = |B’\B| = ¢, the one-one map
©: A — B defined by ©(z,) = y, can be extended to a one-one map, also called ©
from A’ onto B’. Of course, this © extends naturally to an isomorphism © from R
onto itself. The set © meets every K € K, since O(z,) = y, means exactly that
(Ta,Ya) € O.

It follows that R?\© cannot contain a set of positive measure; that is, the inner
measure of R?\© is zero. The inner measure of © is also zero, by Lemma 1.

In order to prove the existence of a function F' with the desired properties, we
shall proceed by transfinite induction. The set K is already well ordered. Well
order R = {z): A < c}.

By transfinite induction we shall produce a collection {F,: a < ¢} with these
properties:

(1) each Fi,: 2 X @ — R is one-to-one;

(2) the image of each F, is linearly independent;

(3) for B < a Fg C F,; and

(4) for B < a (x8,ys) € Kg, where zg = F(0, ) and yg = F(1, ).
Then our desired F' =, ., Fa-

Suppose we have a collection as above for all a < v < ¢. We are to find F} to
satisfy the four properties. Note that for v = 0, the properties hold vacuously. If
v is not a successor, simply take F, = UD&<’Y F,.

For v = 8+ 1 we proceed as follows. Put L to be the linear span of the
image of Fz. The span L has fewer than c¢ points. Lemma 1 shows that there
are ¢ points z not in L for which V, N K3 contains ¢ points. Let zg be one of
those z’s, say z,, where 7 is the smallest possible for definiteness. Let L’ be the
linear span of L U{zs}. In a manner similar to the selection of zg choose yg so
that yg is not in L’ but (x3,y3) € Kg. Put F(0,8) = 3 and F(1,3) = ys, and
extend Fp to Fgy1 accordingly. Properties (1)—(4) are evident, and the proof is
complete. O
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