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Abstract. Under real market conditions, there exist many cases when it is inevitable to
adopt numerical approximations of option prices due to non-existence of analytical formu-
lae. Obviously, any numerical technique should be tested for the cases when the analytical
solution is well known. The paper is devoted to the discontinuous Galerkin method applied
to European option pricing under the Merton jump-diffusion model, when the evolution
of the asset prices is driven by a Lévy process with finite activity. The valuation of op-
tions under such a model with lognormally distributed jumps requires solving a parabolic
partial integro-differential equation which involves both the integrals and the derivatives
of the unknown pricing function. The integral term related to jumps leads to new the-
oretical and numerical issues regarding the solving of the pricing equation in comparison
with the standard approach for the Black-Scholes equation. Here we adopt the idea of the
relatively modern technique that the integral terms in Merton-type models can be viewed
as solutions of proper differential equations, which can be accurately solved in a simple
way. For practical purposes of numerical pricing of options in such models we propose
a two-stage implicit-explicit scheme arising from the discontinuous piecewise polynomial
approximation, i.e., the discontinuous Galerkin method. This solution procedure is ac-
companied with theoretical results and discussed within the numerical results on reference
benchmarks.
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1. Introduction

One of the most important applications of advanced mathematics in finance is

related to pricing of financial derivatives and especially options due to their complex

payoff functions (see also [20] or [21]). In general, the modern pricing methods, that

date back to [5] and [29], are based on no-arbitrage arguments and can help various

participants of the market to recover correct prices and keep a balance between

the supply and demand. On the contrary, without efficient pricing procedures the

stability of the prices would be threatened.

In the simplest cases of the Gaussian distribution, the pricing method can lead to

analytical solutions. However, the empirical observations show that the returns of

financial asset prices are not normally distributed—instead, the fat tails and asymme-

try are present. In order to cope with these facts, one can consider either stochastic

volatility, probability distribution with more parameters, or jumps (or their combi-

nation), see e.g. [8] for a review. In these cases, however, the analytical solution can

be hardly attainable and some of the numerical approaches must be adopted. The

commonly used techniques are, for example, Monte Carlo simulation (see e.g. [6]),

lattices and trees (for the first time formulated in [10]), finite difference [37] or finite

element methods [1].

In this contribution we focus on the jump-diffusion model, for the first time intro-

duced by Merton in [30] and extended, among others, by Kou in [24]. For a complex

overview, see [8]. Specifically, we consider European-style options on a single asset,

price of which is driven by a Lévy model with finite activity, and numerically evaluate

the options by solving the relevant partial integro-differential equation (PIDE). This

complex governing equation with a combination of differential and integral terms has

been already treated by various numerical methods based on finite difference [9], fi-

nite volume [38] and finite element techniques [2]. Unlike these methods, we propose

a two-stage implicit-explicit time stepping scheme combined with the discontinu-

ous Galerkin spatial discretization. Moreover, the accurate and simple evaluation

of the integral term is performed as solving a proper PDE, see the inspiring idea

in [7].

The discontinuous Galerkin (DG) method was developed in the early 1970s (see

the technical report [32]) and it was successfully profiled in the field of computational

fluid dynamics, cf. [12]. Its potency in option pricing problems has not yet been fully

exploited, especially as concerns advanced option pricing models. Apart from our

recent research [18], [19], [20], [21], and [22], let us quote from very little material

published in the literature, at least papers [27] and [31].

Our approach improves the numerical valuation process for Merton-type jump-

diffusion models in several regards:
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(i) since the nonlocal integral term, which is non-stiff, is treated explicitly, the

resulting linear algebra systems are sparse and therefore easier to solve;

(ii) discontinuous approximations resolve option values and sensitivity measures

more properly, e.g. a piecewise (linear) payoff function has a discontinuous derivative

or discrete observations can be easily implemented;

(iii) since the differential part of PIDE is represented by the convection-diffusion

equation that may be convection dominated depending on the parameters of the

problem, the piece-wise discontinuous character of the DG solution enables to apply

the upwind stabilization that is natural in the finite volume methods;

(iv) the evaluation of the integral term as the solution of the auxiliary PDE leads

to the uniform approach to the complete problem through the numerical solution of

PDEs, which exhibits several advantages, either practical or theoretical, e.g., uni-

form implementation of discretization of the complete problem, uniform a priori or

a posteriori analysis.

It can be expected that other advantages of the DG approach will be much more

apparent when considering the generalizations of the model, e.g., more uncorellated

underlying assets, non-constant, wide ranging model parameters and particularly

complex payoff functions and market conditions (discrete barriers, American-style

constraints, penalty techniques, etc.). The promising steps within Black-Scholes

settings and stochastic volatility models are presented in [22].

To provide a credible numerical verification of properties of the scheme derived,

this method is presented on the fundamental jump-diffusion model, for which there

are a number of benchmarks and also an exact solution is known in the semi-closed

form of an infinite series. In line with the above, the presented numerical experiments

illustrate the significant capabilities of the proposed numerical approach, especially

its robustness with respect to the model parameters.

The paper is organized as follows. In Section 2 we introduce the relevant gov-

erning equation and define its variational formulation on a bounded domain. Next,

in Section 3 the numerical scheme is developed, followed by its error analysis in

Section 4. Finally, in Section 5, the convergence properties and robustness of

the proposed numerical scheme are demonstrated on reference numerical experi-

ments.

2. Merton jump-diffusion model

We consider here European-style options on an underlying asset S, i.e., options

exercising of which is permitted only at maturity time T . Such options exist either

as put (right to sell) or call (right to buy) options and their value at maturity can
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be represented as a payoff function

(2.1) max(S −K, 0) (call), max(K − S, 0) (put),

where K denotes the specified price at which an option contract can be exercised,
usually called the strike price. These options are called plain vanilla options due

to the simplicity of the payoff function. Despite this simplicity, the payoff function

is not linear and makes the pricing procedure quite challenging (compare with the

linear payoff of other financial derivatives, such as forwards of swaps).

Let us denote by V (S, t) the price of an option contract at time t written on the

underlying asset S, whose movement is represented by a combination of the Brownian

motion with drift and a compound Poisson process dJ (for survey see [8]), i.e., by

a Lévy process of the form

(2.2) dS = (r − λκ)S dt+ σS dW + ζS dJ,

where r is the instantaneous expected return on asset S (represented by a risk-free

interest rate), σ is the instantaneous volatility of the return, λ is the Poisson arrival

intensity, ζ is an impulse function giving a jump from S to (ζ + 1)S and κ is the

expectation E(ζ) of the random variable ζ. The Wiener process dW is assumed to

be independent of the Poisson process dJ . If λ = 0, then the asset dynamics (2.2)

is identical to the Black-Scholes (BS) model [5]. In contrast, (2.2) reduces to a pure

jump process for σ = 0. In the rest of the paper, we assume σ > 0 and λ > 0.

The model originally presented by Merton [30] is a special case of the jump-

diffusion model (2.2), where jumps are lognormally distributed, i.e., ln(ζ + 1) ∼
N(µ, γ2) with the probability density function

(2.3) g(y) =
1√
2πγ

exp
(
− (y − µ)2

2γ2

)
for ζ = ey.

The fundamental result for advanced option pricing techniques under the Merton

jump-diffusion model characterizes V (S, t) as a solution of a deterministic partial

integro-differential equation, see Subsection 2.1.

2.1. Governing equations. Similarly to the BS framework, the contingent

claim V is priced using an arbitrage-free principle, Itô calculus, elimination of

stochastic fluctuations and a construction of a sophisticated portfolio. Following [8],

the option price V at time t ∈ (0, T ) under the Merton model (2.2)–(2.3) can be
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represented in general as a solution of the backward PIDE

(2.4)
∂V

∂t
(S, t) +

1

2
σ2S2 ∂

2V

∂S2
(S, t) + rS

∂V

∂S
(S, t)− rV (S, t)

+

∫

R

[
V (Sey, t)− V (S, t)− S(ey − 1)

∂V

∂S
(S, t)

]
ν(dy) = 0

in (0,∞) × (0, T ) with Lévy measure ν( dy) = λg(y) dy and the terminal condition

as the payoff function (2.1). Using the definition of the Lévy measure with (2.3)

one obtains
∫
R
= ν( dy) = λ, which exactly means that the Lévy process (2.2) is

of a finite activity, in other words, it generates a finite number of jumps within any

finite time interval.

For further analysis it is suitable to change asset values S to the scaled logarithmic

ones x and time t to the time to maturity t̂, i.e.,

(2.5) x = ln(S/K), t̂ = T − t, û(x, t̂) = V (Kex, T − t̂)/K.

By change of variables (2.5) we obtain a new pricing function û(x, t̂) satisfying

(2.6)
∂û

∂t̂
+D(û) = I(û) in R× (0, T )

with a locally acting differential operator and a generally nonlocal integral operator

D(û) = − σ2

2

∂2û

∂x2
−

(
r − σ2

2
− λκ

)∂û
∂x

+ (r + λ)û,(2.7)

I(û) = λ

∫

R

û(x + y, t̂)g(y) dy,(2.8)

where κ =
∫
R
(ey − 1)g(y) dy = exp(µ + 1

2γ
2) − 1. Simultaneously to (2.6)–(2.8),

it is necessary to prescribe the initial condition given by the corresponding payoff

function (2.1), transformed according to (2.5) as

(2.9) û0(x) =

{
max(ex − 1, 0) for a call,

max(1− ex, 0) for a put.

Since the Cauchy problem (2.6)–(2.8) with (2.9) is defined on the unbounded spatial

domain R, the asymptotic values of u are consistent with the theoretical European

option prices as S → 0+ and S → ∞, see [16], i.e.,

lim
x→−∞

û(x, t̂) = 0, lim
x→∞

{û(x, t̂)− (ex − e−rt̂)} = 0, t̂ > 0 (call),(2.10)

lim
x→−∞

{û(x, t̂)− (e−rt̂ − ex)} = 0, lim
x→∞

û(x, t̂) = 0, t̂ > 0 (put).(2.11)
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2.2. Variational formulation on a bounded interval. The proposed pricing

methodology is related to numerical solving the PIDE, which requires truncation

of the domain R to a bounded interval Ω = (xmin, xmax), where xmin < 0 and

xmax > 0 stand for the minimal and maximal scaled logarithmic asset price, respec-

tively. Without loss of generality, we will assume that xmin = −xmax in the rest of

the paper.

To localize the original problem (2.6)–(2.9) to the bounded open interval (−xmax,

xmax) we follow the approach from [9]. In the first instance we define uR(x, t̂) as the

solution of the following problem reflecting (2.10) and (2.11), i.e.,

(2.12)
∂uR

∂t̂
+D(uR) = I(uR) in Ω× (0, T )

with the initial and an artificial (knock-out) conditions

uR(x, 0) = û0(x) in Ω,(2.13)

uR(x, t̂) = e−rt̂û0(x+ rt̂) in R \ Ω.(2.14)

As pointed out in [15], we approximate the original option contract (2.6)–(2.9) by

the artificial one (2.12)–(2.14), which pays a rebate corresponding to the discounted

and shifted payoff (2.14), cf. [2].

In what follows, we discuss estimates from [9] for the localization error based on

the probabilistic approach from [4]. Supposing European put options under Merton

jump-diffusion model, the following assumptions are fulfilled:

(A1) The function û0(x) is bounded in R.

(A2) There exists α > 0 such that
∫
|y|>1 e

α|y|g(y) dy < ∞.

Then we can apply the general result from [9] and state the relationship between the

solution û of (2.6)–(2.9) and the solution uR of (2.12)–(2.14) as

(2.15) |û(x, t̂)− uR(x, t̂)| 6 C ess sup û0 exp(−αδxmax) for |x| 6 (1− δ)xmax,

where the constant C does not depend on xmax and δ ∈ (0, 1) independent of xmax.

This estimate illustrates that the localization error decreases with the size of |Ω|. As
noted above this result holds directly for the case of put options, where ess sup û0 = 1.

For the case of call options, û0(x) is unbounded in R and the approach is quite

different. Since the call option does not allow direct application of the result (2.15)

due to (A1), similar estimates for calls are obtained by a transformation of the pricing

problem using the put-call parity

(2.16) Vcall(S, t)− Vput(S, t) = S −Ke−r(T−t).
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In the next paragraph we describe the non-local character of the integral term IuR

in (2.12) in more detail. First we split the integral term in two parts, make change

of variables z = x+ y and use the condition (2.14), then we can write

(2.17) I(uR)(x, t̂) = λ

∫

Ω

uR(z, t̂)g(z − x) dz + λ

∫

R\Ω

uR(z, t̂)g(z − x) dz

= λ

∫

R

ue
R(z, t̂)g(z − x) dz + λe−rt̂

∫

R\Ω

û0(z + rt̂)g(z − x) dz

= IR(uR)(x, t̂) +R(x, t̂),

where

(2.18) ue
R(z, t̂) =

{
uR(z, t̂), z ∈ Ω,

0, z ∈ R \ Ω.

The operator IR represents the restricted version of the integral operator I and the
function R(x, t̂) its remaining part. Suppose xmax > rT and consider the case of

a call option. Using the properties of the moment generating function of a normal

random variable and after some manipulations, the function R(x, t̂) can be expressed

as

(2.19) R(x, t̂) = λ

∫ ∞

xmax

(ez − e−rt̂)g(z − x) dz

=
λex√
2πγ

∫ ∞

xmax−x

ey exp
(
− (y − µ)2

2γ2

)
dy

− λe−rt̂

√
2πγ

∫ ∞

xmax−x

exp
(
− (y − µ)2

2γ2

)
dy

=
λexeµ+γ2/2

√
2πγ

∫ ∞

xmax−x

exp
(
− (y − (µ+ γ2))2

2γ2

)
dy

− λe−rt̂Φ
(
−xmax − x− µ

γ

)

= λ
[
(κ+ 1)exΦ

(x− xmax + µ+ γ2

γ

)
− e−rt̂Φ

(x− xmax + µ

γ

)]
,

where Φ denotes the cumulative distribution function of the standard normal distri-

bution. A similar approach for put options leads to the expression

(2.20) R(x, t̂) = λ

∫ −xmax

−∞

(e−rt̂ − ez)g(z − x) dz

= λ
[
e−rt̂Φ

(
−x+ xmax + µ

γ

)
− (κ+ 1)exΦ

(
−x+ xmax + µ+ γ2

γ

)]
.
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Consequently, taking all the above into account, it is possible to represent the

option pricing problem (OPP) as the initial-boundary value problem (restricted to Ω)

for the unknown function u(x, t̂) : Ω× (0, T ) → R
+
0 governed by

(2.21)
∂u

∂t̂
+D(u) = IR(u) +R in Ω× (0, T )

with the initial condition

(2.22) u(x, 0) = û0(x) in Ω

and boundary conditions

u(xmin, t̂) = uL(t̂) =

{
0 for a call,

e−rt̂ − e−xmax for a put,
(2.23)

u(xmax, t̂) = uU (t̂) =

{
exmax − e−rt̂ for a call,

0 for a put.
(2.24)

The integral operator IR is defined in (2.17) and the function R(x, t̂) plays a role

as an artificial source term, given by (2.19) or (2.20) according to the type of the

option.

The boundary conditions (2.23)–(2.24) are set artificially in accordance with the

asymptotic behaviour of options (2.10)–(2.11) and the localized problem (2.12)–

(2.14). We prescribed here the Dirichlet type of boundary conditions at both end-

points, which are inaccurate in general. However, this fact has no effect on the results

of the pricing process if we guarantee that the zone of financial interest, i.e., the do-

main Ω∗ ⊂ Ω in which option values are desirable to know, is sufficiently distant

from the far-field boundary ∂Ω. More precisely, the solution of (OPP) represents

a solution of the localized problem (2.12)–(2.14) restricted to Ω, which is related

to the original problem through error estimates (2.15) reflecting the fact that the

localization error is the most apparent near the boundary ∂Ω.

Next, we derive the variational formulation to (OPP) and establish its well-

posedness. First, we recall the well-known Lebesgue space L2(Ω) with the induced

norm ‖·‖ = (·, ·)1/2 by the inner product (·, ·), and Sobolev spaces H1(Ω) and

H1
0 (Ω) = {v ∈ H1(Ω): v(xmin) = v(xmax) = 0}. For the detailed definition of
Lebesgue, Sobolev and Bochner spaces we refer to the book [25]. Also note that the

results (2.15) can be extended in the sense of L2-norm and H1-norm, see [28].

In order to cast (OPP) in a weak sense we consider a test function v ∈ C∞
0 (Ω) and

multiply (2.21) by v. Since the space C∞
0 (Ω) is densely embedded in H1

0 (Ω), using
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integration by parts, we obtain

(2.25)
d

dt̂
(u, v) + (DR(u), v) = (IR(u), v) + (R, v) ∀ v ∈ H1

0 (Ω), a.e. t̂ ∈ (0, T )

with forms

(DR(u), v) =
σ2

2

∫

Ω

∂u

∂x

∂v

∂x
dx+

(
λκ+

σ2

2
− r

) ∫

Ω

∂u

∂x
v dx(2.26)

+ (r + λ)

∫

Ω

uv dx,

(IR(u), v) = λ

∫

Ω

(∫

R

ue(x + y, t̂)g(y) dy

)
v dx,(2.27)

(R, v) =

∫

Ω

R(x, t̂)v dx,(2.28)

where ue(t̂) denotes the zero extension of the function u(t̂) with support in Ω to all

of R, cf. (2.18).

Note that the logarithmic spatial coordinates and the bounded domain Ω guar-

antee the well-posedness of (2.26) and (2.27) in the space H1(Ω) and overcome the

undesirable degeneracy of (2.4) at the left endpoint S = 0, cf. the different treatment

via the weighted Sobolev spaces [1]. Now, we are ready to introduce the concept of

a weak solution.

Definition 2.1. The variational formulation of (OPP) reads:

Find u ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ;H−1(Ω)) such that the following conditions

are satisfied:

u− uD ∈ L2(0, T ;H1
0 (Ω)), where uD(t̂) ∈ H1(Ω) such that(2.29)

uD(t̂)
∣∣
x=xmin

= uL(t̂) and uD(t̂)
∣∣
x=xmax

= uU (t̂) a.e. t̂ ∈ (0, T ),
(∂u
∂t̂

(t̂), v
)
+ (DR(u(t̂)), v) = (IR(u(t̂)), v) + (R(t̂), v)(2.30)

∀ v ∈ H1
0 (Ω), a.e. t̂ ∈ (0, T ),

(u(0), v) = (û0, v) ∀ v ∈ H1
0 (Ω).(2.31)

Interested reader can consult, e.g., [15] and [28] for alternative definitions of the

variational formulation of PIDE associated with jump-diffusion models.

Theorem 2.1. Problem (2.29)–(2.31) has a unique weak solution.

P r o o f. The proof follows the same lines as in [28] and results from Theorem 2.3

and Theorem 3.4, introduced in that paper. �
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3. Discretization

Unlike the BS framework, pricing of options under jump-diffusion processes re-

quires solving various PIDEs. This is challenging since the integral part arising from

jumps leads to new theoretical and numerical issues. Moreover, the differential part

exhibits a convection-diffusion character that can be convection dominated depend-

ing on the choice of parameters of the problem. In such a situation, the problem

has to be carefully handled numerically and classical methods like the finite ele-

ment method and the finite difference method may have serious difficulties to solve

these problems correctly, since spurious oscillations may appear in the solution, see,

e.g., [34].

From this point of view, the DG method applied to (OPP) represents a very

promising numerical tool in these issues, compared to commonly used techniques.

This approach provides the numerical solution of the PIDE composed of piecewise

polynomial functions on the finite element mesh without any requirements on the

continuity of the solution between the particular elements, for a detailed overview

see [12] and [33]. Discontinuous approximations enable to apply natural upwind sta-

bilization in interelement communications well known from the finite volume method,

which allows the resulting method to solve (OPP) uniformly for a high range of pa-

rameters without any restrictions on the mesh size. On the other hand, the higher

polynomial degree approximations allow efficient solution of the underlying problem

due to higher convergence rates. DG approximations possess other benefits in com-

parison with the finite element method or the finite difference method which are even

more apparent for more difficult problems that may arise from the generalization of

(OPP), e.g., the method is simpler to parallelize or adaptive procedures are easier

to apply.

This section is organized as follows. We first introduce a partition of Ω and the

appropriate function spaces defined over this partition. The application of a method

of lines as a space semidiscretization technique on (OPP) is then discussed, coupled

with a two-stage implicit-explicit time stepping scheme. The important part is the

evaluation of the integral term. Finally, we summarize all the above into a solution

procedure consisting of several linear systems solved by the appropriate iterative

method.

3.1. Partitions and function spaces. Let Th (h > 0) be a family of partitions

of the closure Ω = [xmin, xmax] of the domain Ω into N closed subintervals Ik =

[xk−1, xk] with lengths hk := xk − xk−1. Then we set Th = {Ik, 1 6 k 6 N} with
the spatial step h = max

16k6N
hk and call the interval Ik an element. We additionally
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assume that the condition of a local quasi-uniformity is satisfied, which here means

that the lengths of two adjacent elements are not very different, see [12].

Over the fixed partition Th we define the so-called broken Sobolev space with
regularity given by the Sobolev index s > 1 as

(3.1) Hs(Ω, Th) ≡ {v ∈ L2(Ω): v|Ik ∈ Hs(Ik) ∀ Ik ∈ Th},

which plays an essential role in deriving the space semidiscretization, see [33]. Fur-

ther, the approximate solution of (OPP) is constructed as a discontinuous piecewise

polynomial function from the finite dimensional space associated with Th

(3.2) Sp
h ≡ Pp(Ω, Th) = {v ∈ L2(Ω): v|Ik ∈ Pp(Ik) ∀ Ik ∈ Th},

where Pp(Ik) denotes the space of all polynomials of order less than or equal to p

defined on Ik. Obviously, S
p
h ⊂ H1(Ω, Th).

Since the functions v ∈ Sp
h are discontinuous across partition nodes in general, we

introduce v(x+
k ) = lim

ε→0+
v(xk + ε) and v(x−

k ) = lim
ε→0+

v(xk − ε). Then we can define

the jump [v(xk)] and the mean value 〈v(xk)〉 of v at inner partition nodes xk ∈ Ω

by

(3.3) [v(xk)] = v(x−
k )− v(x+

k ), 〈v(xk)〉 = 1
2 (v(x

−
k ) + v(x+

k )).

By convention, we also extend the definition (3.3) to both endpoints of Ω, i.e.,

[v(x0)] = −v(x+
0 ), 〈v(x0)〉 = v(x+

0 ), [v(xN )] = v(x−
N ), and 〈v(xN )〉 = v(x−

N ).

3.2. Spatial semidiscretization. Since (OPP) is defined in the space-time do-

main, the development of the numerical scheme consists of two consecutive phases—

spatial semidiscretization and temporal discretization. Within the first phase we

employ the DG framework and construct the solution from the space Sp
h with con-

tinuous time running (the so-called method of lines).

Based on standard techniques, we proceed similarly to [18] and introduce the

semidiscrete variant of the differential part (2.26) as a bilinear form defined on Sp
h×Sp

h

and decomposed into

(3.4) Dh(u, v) = ah(u, v) + Jh(u, v) + bh(u, v) + ((r + λ)u, v),
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where

ah(u, v) =
σ2

2

N−1∑

k=0

∫ xk+1

xk

∂u

∂x

∂v

∂x
dx− σ2

2

N∑

k=0

〈∂u
∂x

(xk)
〉
[v(xk)](3.5)

+
σ2

2

N∑

k=0

〈∂v

∂x
(xk)

〉
[u(xk)],

Jh(u, v) =
σ2u(x+

0 )v(x
+
0 )

2h1
+

σ2

2

N−1∑

k=1

[u(xk)][v(xk)]

max(hk, hk+1)
+

σ2u(x−
N )v(x−

N )

2hN
,(3.6)

bh(u, v) =
(
r − λκ− σ2

2

)N−1∑

k=0

∫ xk+1

xk

u
∂v

∂x
dx+

N∑

k=0

H(u(x−
k ), u(x

+
k ))[v(xk)].(3.7)

More precisely, the presented DG approach represents the so-called non-symmetric

interior penalty Galerkin method ([33]), see the stabilization terms in (3.5) and

the penalty terms (3.6), which also impose the Dirichlet boundary conditions. The

essential role in the semidiscretization is played by the numerical flux H in (3.7),

based on the concept of the upwinding (see [12]), which guarantees the propagation

of the information through the partition nodes xk ∈ Ω in the positive or negative

direction consistent with the sign of λκ+ 1
2σ

2 − r as

(3.8) H
(
u(x−

k ), u(x
+
k )

)
=

{
(λκ+ 1

2σ
2 − r)u(x−

k ) if λκ+ 1
2σ

2 > r,

(λκ+ 1
2σ

2 − r)u(x+
k ) if λκ+ 1

2σ
2 < r,

where the choice of u(x−
0 ) and u(x+

N ) for boundary points xmin and xmax has to

satisfy the prescribed Dirichlet boundary conditions (2.23) and (2.24), respectively.

Since there is a source term in the pricing equation (2.30) and in order to enforce

the fulfillment of the boundary conditions, we introduce the linear form lh balancing

the boundary values in (3.5) and (3.6), i.e.,

lh(v)(t̂) = (R(t̂), v)(3.9)

+
σ2

2

(
−∂v

∂x
(x+

0 )uL(t̂) +
∂v

∂x
(x−

N )uU (t̂) +
uL(t̂)v(x

+
0 )

h1
+

uU (t̂)v(x
−
N )

hN

)
.

In contrast to the BS framework, we also introduce the semidiscrete variant

of (2.27), which formally remains the same as L2(Ω)-inner product with a convo-

lution integral due to the inclusion Sp
h ⊂ L2(Ω).
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Now, we are ready to introduce the semidiscrete formulation of (OPP), which

reads: Find uh ∈ H1(0, T ;Sp
h) such that the following conditions are satisfied:

(∂uh(t̂)

∂t̂
, vh

)
+Dh(uh(t̂), vh) = (IR(uh(t̂)), vh) + lh(vh)(t̂)(3.10)

∀ vh ∈ Sp
h ∀ t̂ ∈ (0, T ),

(uh(0), vh) = (û0, vh) ∀ vh ∈ Sp
h.(3.11)

The function uh is the semidiscrete solution of (OPP), which is characterized as

a solution of a system of ordinary differential equations (3.10) with the initial con-

dition (3.11). Moreover, to ensure that uh(0) ∈ H2(Ω, Th) it is sufficient that x = 0

is a partition node of Th, cf. (2.9).

3.3. Temporal discretization. The second phase of the discretization aims at

discretizing (OPP) on the time interval [0, T ] using the numerical scheme of a high

accuracy in time and with no restrictive condition on the length of the time step.

Let 0 = t̂0 < t̂1 < . . . < t̂M = T be a partition of the interval [0, T ] with the constant

time step τ = T/M (for simplicity) and denote by um
h ∈ Sp

h the approximation of

the solution uh(t̂) at time level t̂m ∈ [0, T ].

At first glance, one can directly propose to use the Crank-Nicolson method having

the formal second order accuracy in time, i.e., (3.10) is discretized as

(3.12) (um+1
h , vh) +

τ

2
Dh(u

m+1
h , vh)−

τ

2
(IR(um+1

h ), vh) = (um
h , vh)−

τ

2
Dh(u

m
h , vh)

+
τ

2
(IR(um

h ), vh) +
τ

2
(lh(vh)(t̂m+1) + lh(vh)(t̂m)) ∀ vh ∈ Sp

h.

The equation (3.12) becomes a linear algebraic problem at each time level with a sys-

tem matrix which is fully populated due to the nonlocal character of the integral term

(IR(·), ·). This fact significantly increases the complexity of the solution procedure.
On the other hand, it seems to be advantageous to evaluate the integral term in

(3.12) only at stage um
h in order to decrease the density of the system matrix. How-

ever, the drawback of this approach is that the resulting accuracy of the scheme is

only of the first order, which is not desirable.

Therefore, in what follows, we propose a scheme that retains the formal second

order accuracy in time and leads to a sparse linear system of equations. The basic

idea is to form the numerical scheme in two steps. Within the first step we use

a semi-implicit Euler method to compute an approximation ũm+1
h ≈ um+1

h , i.e.,

(3.13) (ũm+1
h , vh) + τDh(ũ

m+1
h , vh) = (um

h , vh) + τ(IR(um
h ), vh) + τlh(vh)(t̂m+1).
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Then, in the second step we employ the scheme (3.12) using the stage ũm+1
h instead

of um+1
h in the integral term. In this way we get a scheme that has the desired

properties, see Subsection 3.5 and Section 4.

Apart from this, the crucial item of the solution procedure is the evaluation of the

integral term. Commonly used direct approximations of this term are based on the

standard quadrature methods (see e.g. [3] and [15]) which suffer from a high com-

putational demandingness. To overcome this drawback it is possible to encompass

a wavelet transform as in [28] or the fast Fourier transform (FFT), see also [2], [11]

and [26]. Another alternative approach is presented in the forthcoming Subsec-

tion 3.4.

3.4. Integral term as an auxiliary problem. While the solutions of the differ-

ential part of (2.6) are frequently discussed in the literature and various methods have

been proposed, relatively little can be found for the integral part of (2.6), see [23].

Moreover, this dissimilarity is much more evident for advanced option pricing tech-

niques. In the following paragraphs we recall and modify the approach formulated for

the first time in [7] which characterizes the function IR(u) as a solution of a proper
partial differential equation.

First we make change of variables z = x+y, then using (2.3) in the definition (2.27)

leads to

(3.14) IR(u)(x, t̂) =
λ√
2πγ

∫

R

ue(z, t̂) exp
(
− (z − x− µ)2

2γ2

)
dz

= λ

∫

R

ue(z, t̂)F(x+ µ− z, 12γ
2) dz,

where F(x− z, t̃) is the fundamental solution of the heat equation

(3.15)
∂w

∂t̃
=

∂2w

∂x2
in R× (0, 12γ

2)

with the artificial time t̃ corresponding to the variance of the jump process. There-

fore, at any fixed time t̂, one can easily view the function IR(u)(x, t̂)/λ as a solution
of the heat equation (3.15) with the initial condition ue(x, t̂), which is evaluated at

t̃ = 1
2γ

2 and shifted by the amount µ, consequently.

Although the function IR(u) has a support in R, to speed up its evaluation process,
it is advantageous to use a numerical scheme similar to that in Subsection 3.3, solving

the equation (3.15) with the given initial data localized on the truncated domain Ω.

This is feasible since the equation (3.15) is invariant with respect to the shift x+ µ.

Therefore, one can argue that the spatial domain may remain the same as in the

case of (OPP) instead of the shifted one Ωµ = (xmin + µ, xmax + µ). In contrast, we
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use the shift x+µ only in the reformulation of the initial condition, which coincides

with the restriction of ue(x, t̂) on Ωµ.

Taking all the above mentioned into account means that at each time level t̂m we

solve the auxiliary initial-boundary value problem (AP) given by (3.15) restricted

to Ω with the shifted initial condition

(3.16) w(x, 0) = ue(x + µ, t̂m), x ∈ Ω,

and artificially set boundary conditions corresponding to (2.10) and (2.11), i.e.,

w(xmin, t̃) = 0,
∂w

∂x
(xmax, t̃) = exmax+µ, t̃ > 0 (call),(3.17)

∂w

∂x
(xmin, t̃) = −exmin+µ, w(xmax, t̃) = 0, t̃ > 0 (put).(3.18)

Then the exact solution of (AP) at t̃ = 1
2γ

2 defines the function

(3.19) ĨR(u)(x, t̂m) = λw(x, 1
2γ

2), x ∈ Ω,

which is an approximation of IR(u) on Ω in some sense, see Remark 3.2.

R em a r k 3.1. The way of the definition of (AP) is justified from the financial

point of view provided that ue|Ωµ
is relevant to the option type (call or put). This

is true, if |Ω| is sufficiently large compared to the value |µ| and the direction of the
shift reflects the zero extension of the initial condition. More precisely, Ω ∩ Ωµ 6= ∅
and µ 6 0 for calls or µ > 0 for puts. In the case of opposite option types with the

same shifts one can simply use the put-call parity (2.16) to transfer the prices from

the above-mentioned options. Therefore, without loss of generality, in the rest of the

paper it is possible to consider only call options with the positive shift (µ < 0) or

put options with the negative one (µ > 0).

R em a r k 3.2. The function ĨR(u) represents a reasonable approximation
of IR(u), since IR(u)|Ω is given by the solution w of problem (3.15) restricted

to Ω, where the boundary conditions (3.17) or (3.18) are replaced by the traces of w

on the boundary of Ω. It can be assumed for the domain Ω large enough that the

boundary conditions defining problem (AP) are close to the original traces of w on

the boundary of Ω. The approximation of IR(u) by ĨR(u) then follows from the
stability with respect to the boundary condition for the heat equation.

Since the spatial domain is identical to the one considered in (OPP), we can

here simply use the same function spaces and forms and schemes similar to those in

Subsections 3.1–3.3. Analogously to (3.10) the semidiscrete solution of (AP) satisfies

(3.20)
(∂wh(t̃)

∂t̃
, vh

)
+Ah(wh(t̃), vh) = l∗h(vh) ∀ vh ∈ Sp

h, ∀ t̃ ∈ (0, 12γ
2),
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where

Ah(w, v) =

N−1∑

k=0

∫ xk+1

xk

∂w

∂x

∂v

∂x
dx−

N−1∑

k=0

〈∂w
∂x

(xk)
〉
[v(xk)](3.21)

+

N−1∑

k=0

〈∂v
∂x

(xk)
〉
[w(xk)] +

w(x+
0 )v(x

+
0 )

h1
+

N−1∑

k=1

[w(xk)][v(xk)]

max(hk, hk+1)
,

l∗h(v) = exmax+µv(x−
N ).(3.22)

Without loss of generality, the forms (3.21) and (3.22) represent the case of call

options. Their generalization for put options is straightforward using (3.18) and it

is left to the reader.

Further, in a way similar to that in (3.12), we introduce the discrete solution of

(AP) as the function wm∗

h ≈ wh(t̃m∗) at time levels 0 = t̃0 < t̃1 < . . . < t̃M∗ = 1
2γ

2

with constant time step τ∗ as

(3.23) (wm∗+1
h , vh) +

τ∗

2
Ah(w

m∗+1
h , vh) = (wm∗

h , vh)−
τ∗

2
Ah(w

m∗

h , vh) + τ∗l∗h(vh)

∀ vh ∈ Sp
h, m∗ = 0, 1, . . . ,M∗ − 1.

Finally, note that taking the time step τ∗ in (AP) proportional to τ in (OPP), i.e.,

there exists a constant C > 0 such that τ∗ 6 Cτ , does not violate the formal second

order accuracy of the resulting numerical scheme, see Section 4.

3.5. Numerical scheme and its algebraic representation. Now we are ready

to introduce the concept of a discrete solution that is computed by a numerical

scheme based on a combination of the semi-implicit Euler method and the Crank-

Nicolson scheme, where the integral terms are evaluated as the approximate solutions

of the auxiliary initial-boundary value problems.

Definition 3.1. The discrete setting of (OPP) reads: Find um+1
h , ũm+1

h ∈ Sp
h,

m = 0, . . . ,M − 1 such that the following conditions are satisfied:

(ũm+1
h , vh) + τDh(ũ

m+1
h , vh)(3.24)

= (um
h , vh) + τ(Ĩh(um

h ), vh) + τlh(vh)(t̂m+1) ∀ vh ∈ Sp
h,

(um+1
h , vh) +

1
2τDh(u

m+1
h , vh)− 1

2τ(Ĩh(ũm+1
h ), vh)(3.25)

= (um
h , vh)− 1

2τDh(u
m
h , vh) +

1
2τ(Ĩh(um

h ), vh)

+ 1
2τ(lh(vh)(t̂m+1) + lh(vh)(t̂m)) ∀ vh ∈ Sp

h,

u0
h is the S

p
h-approximation of û0,(3.26)
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where Ĩh(um
h ) = λwM∗

h and Ĩh(ũm+1
h ) = λw̃M∗

h are scaled solutions of (AP) given by

the scheme (3.23) with the shifted starting data, defined by projections

(w0
h(x), vh) = (um,e

h (x+ µ), vh) ∀ vh ∈ Sp
h,(3.27)

(w̃0
h(x), vh) = (ũm+1,e

h (x+ µ), vh) ∀ vh ∈ Sp
h,(3.28)

and um,e
h , ũm+1,e

h stand for the zero extension of functions um
h , ũ

m+1
h , respectively.

Since the discrete problems (3.23)–(3.25) are equivalent to the systems of linear

algebraic equations at the corresponding time levels, we express them in matrix

forms as follows. Let B = {ϕj}DOF
j=1 denote the basis of the space S

p
h with dimension

DOF = N(p+1). Then the discrete solution of (OPP) at each time level t̂m ∈ [0, T ]

can be written in the form um
h =

DOF∑
j=1

αm
j ϕj and identified with the coefficient vector

Um = {αm
j }DOF

j=1 with respect to the basis B. Analogously, the discrete solution of

(AP) at each time level t̃m∗ ∈ [0, 12γ
2] can be seen as wm∗

h =
DOF∑
j=1

βm∗

j ϕj and the

vector Wm∗ = {βm∗

j }DOF
j=1 .

Then, (3.23) for (AP) reads

(3.29)
(
M+

τ∗

2
A

)
Wm∗+1 =

(
M− τ∗

2
A

)
Wm∗ + τ∗G

and (3.24)–(3.25) for (OPP) are rewritten as

(M + τD)Ũm+1 = MUm + τλMWM∗ + τFm+1,(3.30)
(
M+

τ

2
D

)
Um+1 =

(
M− τ

2
D

)
Um +

τλ

2
M(W̃M∗ +WM∗)(3.31)

+
τ

2
(Fm+1 + Fm),

where WM∗ and W̃M∗ are given by (3.29) with the initial vectorsW0 and W̃0 arising

from Um and Ũm+1 by (3.27) and (3.28), respectively.

The system matrices in (3.29)–(3.31) are compositions of the mass matrixM and

the matrix A arising from the bilinear form Ah or the matrix D from the form Dh,

defined as

(3.32) M = {(ϕj , ϕi)}DOF
i,j=1, A = {Ah(ϕj , ϕi)}DOF

i,j=1, D = {Dh(ϕj , ϕi)}DOF
i,j=1.

The right-hand sides of the linear problems above contain also vectors resulting from

the prescribed boundary conditions, i.e.,

(3.33) G = {l∗h(ϕj)}DOF
j=1 , Fm = {lh(ϕj)(t̂m)}DOF

j=1 , Fm+1 = {lh(ϕj)(t̂m+1)}DOF
j=1 .
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R em a r k 3.3. The shift in projections (3.27) and (3.28) is simply defined on

equally spaced partitions Th provided that xmin−µ (for calls) or xmax−µ (for puts)

are partition nodes. Then, it is enough to shift only components of vectors Um, Ũm+1

and the rest of them is defined as zeros.

Since Ah(w, v) 6= Ah(v, w), Dh(u, v) 6= Dh(v, u) and the supports of the basis

functions {ϕj}DOF
j=1 are small, the system matrices are non-symmetric and sparse

with a block structure. Therefore, we use a suitable iterative solver in practical com-

putations, see Subsection 5.1. The obtained solution vector uniquely determines the

approximate solution at each time level, whose existence and uniqueness correspond

with the solvability of these linear systems, see Remark 4.1 in Section 4.

Finally, for the sake of clarity, the whole numerical procedure for valuing of

European-style options under the Merton model can be summarized into the fol-

lowing processes:

(1) set the initial state u0
h according to the type of option (2.9)

for m = 0 to M − 1 do

(2) set the shifted initial state w0
h arising from um

h by projection (3.27)

(3) solve (AP) by scheme (3.29) and evaluate Ĩh(um
h ) = λwM∗

h

(4) solve (OPP) by scheme (3.30) to obtain ũm+1
h

(5) set the shifted initial state w̃0
h arising from ũm+1

h by projection (3.28)

(6) solve (AP) by scheme (3.29) and evaluate Ĩh(ũm+1
h ) = λw̃M∗

h

(7) solve (OPP) by scheme (3.31) to obtain um+1
h

endfor

4. A priori error estimates

The goal of this section is to present an a priori error analysis of the method

set up in Definition 3.1 with respect to the chosen discretization parameters h, p,

and τ . We neglect the effect of the truncation of the computational domain from R

to Ω in this analysis and we just assume that the domain Ω is taken large enough

so that all approximations coming from this truncation are negligible. To this end,

we investigate the error between the discrete solution uh and truncated solution uR

only. The error between the true solution û and uR is described by (2.15). For the

detailed discussion of the effect of the truncation on the numerical results see e.g. [9].

Let us assume for the purpose of the convergence analysis that the solution uR of

problem (2.12) satisfies

(4.1) uR ∈ W 3,∞(0, T, L2(Ω)) ∩W 1,∞(0, T,Hp+1(Ω)).
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Moreover, the sufficient smoothness of the solution w of problem (AP) is needed for

the analysis of the complete problem as well. Essentially, the regularity of w is inher-

ited from the smoothness of its initial condition, i.e., from uR(t̂), if the compatibility

conditions relating the initial condition and the boundary conditions are satisfied.

For the original problem without truncation to Ω such compatibility assumptions

are satisfied trivially. A different situation occurs for the truncated problem, where

the boundary conditions are determined from the asymptotic behavior of the solu-

tion, see (3.17) and (3.18). On the other hand, these artificial boundary conditions

are close to the correct ones, if the domain Ω is taken large enough. Therefore the

solution w is close to the smooth one, see Remark 3.2. To this end, we simplify the

next considerations by the assumption that the solution w satisfies regularity (4.1)

too.

According to [14] we define the energy norm corresponding to the form Dh(·, ·) as

(4.2) |||uh|||2 =
σ2

2

N∑

k=1

∥∥∥∂uh

∂x

∥∥∥
2

L2(Ik)
+ (r + λ)‖uh‖2 +

σ2

2
Jh(uh, uh)

+
1

2

∣∣∣r − λκ− σ2

2

∣∣∣
N∑

k=0

[uh(xk)]
2.

A generic constant C > 0 will be used in the following analysis, where the con-

stant C can depend on the data of the problem (e.g. λ, r, T , etc.), on the constant

describing the quasi-uniformity of the mesh, on the degree of the polynomial ap-

proximation p, on the constant C > 0 binding step sizes τ∗ and τ and on the norms

‖uR‖W 3,∞(0,T,L2(Ω)), ‖uR‖W 1,∞(0,T,Hp+1(Ω)), but the constant C is independent of

the mesh size h and step size τ .

Lemma 4.1. There exists a constants C > 0 such that

Dh(uh, vh) 6 C|||uh||||||vh||| ∀uh, vh ∈ Sp
h,(4.3)

Dh(uh, uh) = |||uh|||2 ∀uh ∈ Sp
h.(4.4)

Moreover, we define the Ritz projection Rh : H2(Ω, Th) → Sp
h such that

(4.5) Dh(Rhu− u, vh) = 0 ∀u ∈ H2(Ω, Th), vh ∈ Sp
h.

Then there exists a constant C > 0 such that

(4.6) ‖Rhu− u‖ 6 Chp|u|Hp+1(Ω) ∀u ∈ Hp+1(Ω).
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P r o o f. The proof of (4.3)–(4.4) and (4.6) can be found in [14]. The existence and

uniqueness of the Ritz projection Rh follow from (4.3)–(4.4) and the Lax-Milgram

lemma. �

R em a r k 4.1. According to Lemma 4.1, the matrices M + τD and M + 1
2τD

are positive definite. This yields the existence and uniqueness of the discrete solution

of problems (3.24) and (3.25).

Lemma 4.2. Let τ∗ 6 Cτ . Then there exists a constant C > 0 such that

(4.7) (Ĩh(uh), vh)− (IR(uR), vh) 6 C(hp + τ2 + ‖uh − uR‖)‖vh‖ ∀uh, vh ∈ Sp
h.

P r o o f. Since ‖IR(uR) − Ĩh(uh)‖ = λ‖w(12γ2) − wM∗

h ‖, where w is the solution
of problem (AP) and wh is the solution given by (3.23), it is sufficient to estimate

w(12γ
2)− wM∗

h only. The estimate

(4.8) ‖w(12γ2)− wM∗

h ‖ 6 C(hp + (τ∗)2 + ‖uh − uR‖)

can be derived by the standard a priori error estimates technique for the heat equation

discretized by the discontinuous Galerkin method in space and by the Crank-Nicolson

method in time, see e.g. [12] and [35]. Finally, the estimate (4.7) follows from the

assumption τ∗ 6 Cτ . �

Lemma 4.3. Let vh ∈ Sp
h. Then there exists a constant C > 0 such that

(τ
2

∂uR

∂t̂
(t̂m+1) +

τ

2

∂uR

∂t̂
(t̂m)− uR(t̂m+1) + uR(t̂m), vh

)
6 Cτ3‖vh‖,(4.9)

(
τ
∂uR

∂t̂
(t̂m+1)− uR(t̂m+1) + uR(t̂m), vh

)
6 Cτ2‖vh‖,(4.10)

((RhuR − uR)(t̂m+1)− (RhuR − uR)(t̂m), vh) 6 Cτhp‖vh‖.(4.11)

P r o o f. The proof can be done similarly to [13]. �

We are ready to formulate the main convergence theorem.

Theorem 4.1. Let uR be the solution of problem (2.12) satisfying (4.1) and let

{um
h }Mm=1 ⊂ Sp

h be the discrete solutions given by (3.24) and (3.25), where τ∗ 6 Cτ .

Then there exist constants c∗, C > 0 such that τ 6 c∗ implies

(4.12) max
m=1,...,M

‖um
h − uR(t̂m)‖ 6 C(hp + τ2).
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P r o o f. We divide the error setting um
h − uR(t̂m) = ξm + ηm, where ξm = um

h −
RhuR(t̂m) ∈ Sp

h and ηm = RhuR(t̂m) − uR(t̂m). Since ‖ηm‖ can be estimated by
Lemma 4.1, it is sufficient to estimate ξm only. The term ξm+1 satisfies the error

equation

(4.13) (ξm+1 − ξm, vh) +
τ

2
Dh(ξ

m+1 + ξm, vh) =
τ

2
(Ĩh(ũm+1

h )− ĨR(uR(t̂m+1)), vh)

+
τ

2
(Ĩh(um

h )− ĨR(uR(t̂m)), vh)− (ηm+1 − ηm, vh)

+
(τ
2

∂uR

∂t̂
(t̂m+1) +

τ

2

∂uR

∂t̂
(t̂m)− uR(t̂m+1) + uR(t̂m), vh

)
.

Applying Lemma 4.2 and Lemma 4.3, we get

(4.14) (ξm+1 − ξm, vh) +
τ

2
Dh(ξ

m+1 + ξm, vh)

6 Cτ(hp + τ2 + ‖ũm+1
h − uR(t̂m+1)‖+ ‖um

h − uR(t̂m)‖)‖vh‖,

where ‖um
h − uR(t̂m)‖ 6 Chp + ‖ξm‖. The next step is the estimation of the norm

‖ũm+1
h − uR(t̂m+1)‖. We again divide the error as ũm+1

h −uR(t̂m+1) = ξ̃m+1+ηm+1,

where ξ̃m+1 = ũm+1
h −RhuR(t̂m+1) ∈ Sp

h. Then the term ξ̃m+1 satisfies

(4.15) (ξ̃m+1 − ξm, vh) + τDh(ξ̃
m+1, vh) = τ(Ĩh(um

h )− ĨR(uR(t̂m)), vh)

− (ηm+1 − ηm, vh) +
(
τ
∂uR

∂t̂
(t̂m+1)− uR(t̂m+1) + uR(t̂m), vh

)
.

Applying Lemma 4.2 and Lemma 4.3, we get

(4.16) (ξ̃m+1 − ξm, vh) + τDh(ξ̃
m+1, vh) 6 Cτ(hp + τ + ‖ξm‖)‖vh‖.

Setting vh = ξ̃m+1 in (4.16) and applying the positivity of the form Dh(·, ·), see
Lemma 4.1, we get

(4.17) ‖ξ̃m+1‖2 6 ‖ξm‖‖ξ̃m+1‖+ Cτ(hp + τ + ‖ξm‖)‖ξ̃m+1‖.

Dividing the relation (4.17) by ‖ξ̃m+1‖, we get

(4.18) ‖ξ̃m+1‖ 6 C‖ξm‖+ C(hp + τ2).

Now, we can insert the estimate (4.18) into (4.14) to obtain

(4.19) (ξm+1 − ξm, vh) +
τ

2
Dh(ξ

m+1 + ξm, vh) 6 Cτ(hp + τ2 + ‖ξm‖)‖vh‖.
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Setting vh = ξm+1 + ξm and applying the positivity of the form Dh(·, ·), see
Lemma 4.1, and Young’s inequality, we get

(4.20) ‖ξm+1‖2 − ‖ξm‖2 6 Cτ(hp + τ2 + ‖ξm‖)(‖ξm+1‖+ ‖ξm‖)
6 τ‖ξm+1‖2 + τ‖ξm‖2 + Cτ(h2p + τ4 + ‖ξm‖2).

Finally, the desired estimate (4.12) follows from the discrete Gronwall’s lemma under

the assumption τ 6 1
2 = c∗. �

R em a r k 4.2. The assumption τ 6 c∗ is not necessary for deriving the esti-

mate (4.12). It just simplifies the use of the discrete Gronwall’s lemma. A modifica-

tion of the technique of the proof without this assumption can be found in [36].

R em a r k 4.3. The order of convergence in the L2-norm derived in Theorem 4.1

is O(hp + τ2), although the expected order for approximation with polynomials of

degree p is O(hp+1 + τ2). This suboptimality is caused by the non-symmetric DG

discretization, where only the order O(hp) is proved, see e.g. [12]. Nevertheless, the

optimal order is often observed in computations, if the order p is an odd number.

The general proof of the optimal order of convergence for the non-symmetric DG

discretization with odd polynomial degree p is an open problem in the DG analysis.

5. Numerical experiments

In this section, we present numerical experiments on the standard benchmark of

the Merton model in order to illustrate the usage and convergence of the proposed

numerical scheme. Initially, we present the model parameters and mention some im-

plementation aspects. Then, we numerically price European options with respect to

the different parameters h and τ as well as the polynomial orders of approximation p

and the length of the computational domain |Ω|. From the practical point of view we
evaluate the options at several underlying nodes and compare these values to the ref-

erence and analytical ones. Next, we investigate the convergence property and orders

of the discretization scheme. Finally, we append a simple sensitivity measurement

to outline one of the possible ways of further analysis.

5.1. Parameter settings. The numerical benchmark is performed on the refer-

ence data from [11] and [26], where the European call and put option prices under

the Merton model are evaluated using a finite difference method. More specifically,

the paper [11] presents a fixed point iteration scheme with incorporated FFT method

for the rapid evaluation of the integral term. In [26], authors construct a numerical
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method, where the composite trapezoidal rule approximates the integral term on the

bounded region and again FFT algorithm is employed.

In all cases, we consider a call option with the data

(5.1) T = 0.25, K = 100, σ = 0.15, r = 0.05, λ = 0.1, µ = −0.90, γ = 0.45,

which are the representatives of parameter values of practical significance. From the

financial point of view, we can expect that σ, r, λ, γ ∈ (0.01, 1) and |µ| 6 1.

The whole implementation of the proposed numerical scheme is done in the solver

freefem++, for more details see [17]. Taking the properties of matrices (3.32) into

account, GMRES solver is employed and it uses the solution from the previous

time level as an initial guess. Since these linear systems are relatively small (i.e.,

DOF < 104), no preconditioner is needed.

According to the localization error (2.15), the actual convergence properties of

the scheme (3.23)–(3.25) cannot be observed near the boundary ∂Ω. Therefore, we

investigate pricing errors due to localization and spatial and temporal discretizations

on a zone of financial interest Ω∗ ⊂ Ω, that is appropriately located with respect

to ∂Ω, for more details, see [15]. In order to indicate the convergence of option prices

and to determine the orders of convergence, we consider piecewise linear (p = 1)

and quadratic (p = 2) approximations on the uniformly partitioned (consecutively

refined) grids with halving the number of time steps.

5.2. Point-wise errors. Within the first part of a numerical verification of the

scheme derived, we analyze its point-wise behaviour. This approach is the most

common from the practical point of view, when options are numerically priced.

At the beginning, we start with the proper setting of the length of the com-

putational domain Ω = (−xmax, xmax) within the localization errors and investi-

gate the effect of the localization in Merton-type models. Therefore, we compute

the numerical solutions on a sequence of the consecutively expanding grids with

fixed (sufficiently small) spatial and temporal parameters h = 10−3 and τ = T/800

that suppress the influence of these discretizations on the resulting errors. The

zone of financial interest is set in consistency with the experimental study from [15]

as Ω∗ = [ln(0.8), ln(1.2)] to cover interval [80, 120] in the original underlying asset

prices.

The comparative results are evaluated at underlying prices Sref ∈ {90, 100, 110}
at time state t̂ = T , see Table 1. The results obtained are associated with the

analytical values, since the problem (2.4) has an analytical solution given by Merton’s

formula [30].
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Assuming constant model parameters, under the Merton model the European

option price can be expressed as an infinite sum

(5.2) VMer(S, t) =

∞∑

n=0

e−λ′(T−t)(λ′(T − t))n

n!
VBS(S, t,K, σn, rn),

where

λ′ = λ(κ+ 1), σ2
n = σ2 +

nγ2

T − t
, rn = r − λκ+

n ln(κ+ 1)

T − t

and VBS is the classical Black-Scholes formula [16]

(5.3) VBS(S, t,K, σ, r) =

{
SΦ(d1)−Ke−r(T−t)Φ(d2), for a call,

−SΦ(−d1) +Ke−r(T−t)Φ(−d2), for a put

with

d1 =
ln(S/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t.

For the purpose of the comparison it is sufficient to evaluate only the first five terms

in the sum (5.2) to provide accuracy of 6 digits after the decimal point.

Moreover, in Table 1, we add errors in the discrete l∞-norm that are very impor-

tant in financial engineering as the worst-case pricing scenario, i.e.,

(5.4) eMh,∞(Pp) = max
xi∈Th

|KuM
h (xi)− VMer(Kexi , 0)|,

where xi are all nodes lying in the zone of financial interest, associated with degrees

of freedom, and VMer is given by (5.2).

DG(Pp) xmax S = 90 S = 100 S = 110 eMh,∞(Pp)

0.5 0.892979 5.022568 13.644522 1.8335e− 00

1.0 0.552374 4.442992 12.740900 2.2623e− 01

1.5 0.528353 4.393021 12.647550 1.2433e− 02

p = 1 2.0 0.527655 4.391220 12.643473 2.5531e− 04

2.5 0.527648 4.391198 12.643412 6.3301e− 05

3.0 0.527648 4.391198 12.643412 6.3301e− 05

p = 2 3.0 0.527637 4.391147 12.643406 9.5689e− 05

analytical value [30] 0.527638 4.391246 12.643406 —

Table 1. Comparison of the approximate option values with the analytical results at three
reference nodes for different lengths of the computational domain Ω.

From the results listed in Table 1, one can conclude that the numerical option

prices are of higher accuracy as the length of the computational domain Ω increases
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with respect to the fixed zone of financial interest Ω∗. These observations are in

a quite good agreement with the theoretical estimates of localization errors (2.15).

Further, the last column in Table 1 indicates for this experimental study that the

restriction to the computational domain Ω = (−3, 3) is sufficient and taking an-

other larger domains does not improve the results significantly, if the time-space grid

is no longer finer. Therefore, for the forthcoming experiments, we always assume

Ω = (−3, 3).

The next set of experiments investigates the behaviour of point-wise errors with

respect to the discretization parameters h and τ . The time-space grids are designed

to ensure the highest consistency with refereed experiments from [11] and [26].

The results are recorded in Table 2, which has the format similar to that in the

preceding experiments. One can easily observe that numerical option prices are of

higher accuracy as the time-space mesh is finer. The last column of this table indi-

cates the ratio of the error in the l∞-norm to the error in the previous computational

domain. The level of the finest setting corresponds with reference values from [11]

and [26]. From this point of view the results obtained are quite comparable with

reference ones and are also close to the analytical values with almost 5 digits of

accuracy. The results thus meet the expectations of financial practitioners.

DG(Pp) M N S = 90 S = 100 S = 110 eMh,∞(Pp) ratio

25 128 0.531863 4.349031 12.609051 1.0996e− 01 —

50 256 0.535127 4.380516 12.636871 2.8337e− 02 3.881

100 512 0.524578 4.388452 12.642699 7.0826e− 03 4.001

p = 1 200 1024 0.526917 4.390482 12.643580 1.7872e− 03 3.963

400 2048 0.527479 4.391035 12.643508 4.5708e− 04 3.910

800 4096 0.527608 4.391192 12.643380 1.2380e− 04 3.692

25 128 0.529053 4.381145 12.646109 1.0739e− 02 —

50 256 0.527328 4.388380 12.644153 3.0157e− 03 3.561

100 512 0.527562 4.390356 12.643588 8.8569e− 04 3.405

p = 2 200 1024 0.527619 4.390891 12.643447 3.5569e− 04 2.490

400 2048 0.527633 4.391082 12.643414 1.6569e− 04 2.148

800 4096 0.527637 4.391181 12.643407 1.4244e− 04 1.163

reference value [11] 0.527637 4.391243 12.643404 — —

reference value [26] 0.527636 4.391211 12.643397 — —

analytical value [30] 0.527638 4.391246 12.643406 — —

Table 2. Comparison of the approximate option values with the reference and analytical
values at three reference nodes for different mesh sizes, time steps and polynomial
orders.
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5.3. L2-convergence. The second part aims at determining the experimental

orders of convergence (EOC) with respect to the L2-norm. The convergence property

is investigated on a zone of financial interest Ω∗ = (−3, ln 2) that covers a domain

up to the double strike price K and is sufficient from a practical standpoint.
At the final state t̂ = T , for piecewise linear (P1) and quadratic (P2) polynomial

approximations, we compute the relative errors

(5.5) eMh,2(Pp) =
‖KuM

h (x) − VMer(Kex, 0)‖L2(Ω∗)

‖VMer(Kex, 0)‖L2(Ω∗)
, p = 1, 2.

According to a priori error estimates, the errors (5.5) behave asO(hp+τ2), see The-

orem 4.1, or O(hp+1 + τ2), see Remark 4.3. To this end we can expect the second

order of convergence for p = 1 and p = 2. Considering a sequence of meshes with

halving h = |Ω|/N and τ = T/M parameters, the experimental order of convergence

is defined by

(5.6) EOC = log2(e
M
h,2(Pp)/e

2M
h/2,2(Pp)), p = 1, 2.

In contrast to [15], we would like to illustrate also the robustness of the scheme with

respect to the model parameters which determines the convection-diffusion character

of the pricing equation (2.21).

The setting (5.1) corresponds approximately to the ratio convection
diffusion ∼ 10, see the

differential part (2.7). To obtain the convection dominated problem within the pa-

rameters of practical significance, we further consider a less volatile market with

σ = 0.01 that is close to the pure jump model. The rest of parameters in (5.1) re-

mains unchanged. This case leads to the problem with ratio convection
diffusion ∼ 103, which

is difficult to solve without stabilization mechanism by finite element methods as

in [15] or without upwinding techniques in finite difference schemes as in [26]. This

is not a case of the presented scheme that already has incorporated the upwind to

be sufficiently robust for the convection dominated problems, see (3.7)–(3.8).

The results of the experimental analysis for both values of σ are recorded in Ta-

ble 3. This table is divided into two panels corresponding to the particular polynomial

order of approximation and shows the relative errors and the corresponding EOCs.

As in the preceding experiments, the obtained errors are small for higher polynomial

orders. Furthermore, for piecewise linear (P1) approximations, we observe that the

relative errors indicate a better behavior of EOC, which is expected to be asymptot-

ically O(h2 + τ2), cf. Remark 4.3. On the other hand, for piecewise quadratic (P2)

approximations, the results for EOC are in a quite good agreement with the derived

theoretical estimates of order O(h2 + τ2), see Theorem 4.1.
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σ M N eMh,2(P1) EOC eMh,2(P2) EOC

25 32 1.0809e− 02 — 1.9396e− 03 —

50 64 2.8993e− 03 1.898 3.7858e− 04 2.357

100 128 7.3792e− 04 1.974 9.4999e− 05 1.995

0.15 200 256 1.8625e− 04 1.986 2.4025e− 05 1.983

400 512 4.6977e− 05 1.987 6.0775e− 06 1.983

800 1024 1.2125e− 05 1.954 1.7688e− 06 1.781

25 32 1.1160e− 02 — 5.0132e− 03 —

50 64 5.2351e− 03 1.092 2.4678e− 03 1.022

100 128 2.3360e− 03 1.164 7.3282e− 04 1.752

0.01 200 256 4.9604e− 04 2.236 1.5149e− 04 2.275

400 512 1.6437e− 04 1.593 3.5482e− 05 2.094

800 1024 3.6928e− 05 2.154 9.9957e− 06 1.828

Table 3. Relative errors in L
2-norm and experimental orders of convergence for P1 and P2

approximations on the sequences of meshes.

These facts confirm that the DG method combined with the two-stage implicit-

explicit scheme is very efficient. In comparison with the approach from [7], where

the evaluation of the integral term at the current time step is overcome by Picard

iterations, the proposed scheme has the same order of convergence, but needs fewer

operations to pass to the next time level. The same conclusions can be stated also

for a fixed-point iteration method from [11].

5.4. Greeks. To conclude this section, we show also the robustness of the pro-

posed numerical scheme within a simple sensitivity measurement (commonly called

Greeks of an option). The basic sensitivity measures are the first and second deriva-

tives of an option value with respect to the underlying asset, called Delta (i.e.,

∂V/∂S) and Gamma (i.e., ∂2V/∂S2), respectively. Delta values are particularly

important in hedging portfolios consisting of options while Gamma values play an

important role in the corrections for the convexity of an option value.

Considering the quadratic polynomial approximation, the approximate Delta and

Gamma values can be directly computed from the derivatives of the basis functions

{ϕ′
j}DOF

j=1 and {ϕ′′
j }DOF

j=1 using the relation (2.5). Figure 1 records these values to-

gether with the option prices at the last time level with a particular choice of grid

steps. One can easily observe that these plots are of good quality without spurious

oscillations, just the non-smooth character in the graph of Gamma values is caused

by the piecewise constant basis {ϕ′′
j }DOF

j=1 .
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Figure 1. The approximate option values (left), Delta values (middle) and Gamma values
(right) evaluated at t̂ = T for grid steps M = 200 and N = 256 (σ = 0.15).

From this point of view, the depicted values reflect a realistic expectation and re-

veal the robustness of the presented approach. The detailed error analysis of selected

sensitivity measures within the DG method will be the subject of future research.

6. Conclusion

Option pricing methods lead to the analytical solution only under specific cir-

cumstances. In other cases, a suitable numerical approximation must be adopted.

In this contribution we have developed the DG scheme for the case of the Merton

jump-diffusion model considering plain vanilla options. The experimental study pro-

vides a quite good convergence and shows that the DG approach is promising even

when Lévy models with finite activity of jumps are considered. Obviously, the pric-

ing scheme could be further analyzed within the sensitivity measurement and also

extended to options with more complex payoff functions.
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