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Abstract. The present study develops the Clifford algebra Cl5,0 within a dermatological
task to diagnose skin melanoma using images of skin lesions, which are modeled here by
means of 5D lesion feature vectors (LFVs). The LFV is a numerical approximation of the
most used clinical rule for melanoma diagnosis - ABCD. To generate the Cl5,0 we develop a
new formula that uses the entries of a 5D vector to calculate the entries of a 32D multivector.
This vector provides a natural mapping of the original 5D vector onto the 2-, 3-, 4-vector
Cl5,0 subspaces. We use a sample set of 112 5D LFVs and apply the new formula to
calculate 112 32D multivectors in the Cl5,0. Next we map the 5D LFVs onto the 2-, 3-, 4-
vector subspaces of the Cl5,0. In every subspace we apply a binary support vector machine
to classify the mapped 112 LFVs. With the obtained results we calculate six metrics and
evaluate the effectiveness of the diagnosis in every subspace. At the end of the paper we
compare the classification results, obtained in every subspace, with the results obtained by
the four diagnosing rules most used in clinical practice and contemporary machine learning
methods. This way we reveal the potential of using Clifford algebras in the analysis and
classification of medical images.
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1. Introduction

Lately, the rate of melanoma, the deadliest skin cancer, has been expanding [5].

In the US, 1 of every 50 people will develop malignant skin cancer (melanoma)

and approximately every 6th one of the cases will be fatal [2], bringing the number

of such cases to 9 000 per year in the US alone [11]. Luckily, in its early stages,
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melanoma is fully curable and making a complete examination of the human body,

with a dermoscope or other visual devices, is the most common clinical screening for

melanoma diagnosis. Furthermore, the economical effect of melanoma is significant.

The minimal treatment cost for stage I is about $ 2 100 while the minimum cost

for stage IV is about $ 34 000 and could rise to $ 154 000, see [10]. This is why the

problem of early melanoma detection attracts the attention of a number of researchers

who delivered a plethora of papers raging from features extraction to skin lesion

automated classification [12], [16], [22], [23].

Korotkov [13] proposed an extended categorization of pigmented skin lesion feature

descriptors, associating them with automated methods for diagnosing melanoma and

classifying clinical and dermoscopic images. Dermoscopy image analysis (DIA) is

a developing field. A recent survey investigated the features that have been used

in DIA [5]. The study distinguished between skin lesion description features with

clinical meaning and features extracted by deep learning techniques.

Image-based computer aided diagnosis systems have huge potential for screening

and early recognition of malignant melanoma. The state of the art in these sys-

tems and an examination of the current practices, problems, and prospects of image

acquisition, preprocessing, segmentation, feature extraction, feature selection, and

classification of dermoscopic images have been discussed in [5], [13], [15].

Hermann Günther Grassmann (1809–1877) defined exterior algebra, or Grassmann

algebra whose product is the exterior. William Rowan Hamilton (1805–1865) discov-

ered the quaternion algebra to represent the 3-dimensional (3D) rotation. William

Kingdon Clifford (1845–1879) merged the above systems to develop the geometric

algebra [25]. It is known that Clifford algebra (CA) can be expressed as direct sums

of quaternion algebras. Hence, quaternion algebras (Cl0,2) can be considered as

a special case of the CA. Multivectors are CA structures which map an nD vector

to a 2nD vector [14], [20]. The CA basis, introduced with (2.3), could be used to

define two 1D and (n− 1) real value subspaces whose dimensions range from nD to(
n

n/2

)
D for n even and

(
n

(n−1)/2

)
D for n odd. The multivector provides a mapping of

the original nD vector onto the CA subspaces.

Given that, extending the dimensionality of a set of vectors leads to an increase

of their separability that motivated us to map LFVs to higher dimension subspaces

defined by CA multivectors.

Hence, using the 5D LFVs from [23], we define the CA Cl5,0 multivectors develo-

ping a new formula to calculate their coefficients (entries). We use them to determine

the image of every 5D LFV in the Cl5,0 2-, 3-, 4-vector subspaces. In each subspace

a binary support vector machine (SVM) classifies the images as malignant or benign.

Hence, the novelties of the present study are:

1. We develop a formula to calculate Cl5,0 multivector coefficients (Section 4).
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2. The Cl5,0 multivector defines mappings from R
5 onto the 2-, 3-, 4-vector CA

subspaces with dimensions 10 and 5, respectively. Also, using Clifford product we

define a mapping from R
5 onto 11D CA subspace (Section 3).

To validate the theoretical concepts we use a set of 54 malignant melanoma and 58

benign skin lesion images from [4] diagnosed upon the agreement of three dermatol-

ogists. The original images, from which the 5D LFVs are extracted [16], [17], [23],

have the size of 768× 512 pixels and are obtained under the same light conditions.

The remainder of the paper is organized as follows: Section 2.1 is a survey on con-

temporary classification methods and defines the 5D LFVs; Section 2.2 introduces

the basics of the multivectors of the CA Clr,s; Section 3 creates the CA Cl5,0 and

its 11D subspace; Section 4 develops a new formula to calculate the Cl5,0 multivector

and defines its mappings onto the Cl5,0 2-, 3-, 4-vector subspaces; Section 5 presents

experimental results and their statistical evaluation; the last section discusses the

contributions, the advantages and the bottlenecks of the present approach, and com-

pares it with recent machine learning methods and rules for clinical diagnosis of

melanoma, Appendix calculates the confidence intervals.

2. Background of the study

2.1. Skin lesion classification. Papers [13], [15], [16] presented a number of

binary classifiers applied to automatically diagnose a skin lesion as benign or ma-

lignant: nearest neighbor, decision tree, neural network (NN), Bayesian learning,

SVMs, mean shift, and random forest. The review presented in [15] claimed that

SVM classifiers are commonly able to outperform NNs.

In [22] Singh and Gupta studied computer-aided diagnosis methods to estimate

the melanoma risk in early screening. Also, the paper introduced the state of the art

of smartphone-based methods for skin lesion screening.

Wahba et al. [26] developed a novel technique to determinate four pre-defined skin

lesion classes. The asymmetry, border irregularity, number of color regions and dots

(some dermatologists use lesion diameter) are summed up as the ABCD rule, the

most used one in clinical practice to separate melanoma from benign lesions [19].

The method in [26] improved the ABCD rule to also classify basal cell carcinoma

and pigmented benign keratoses.

In recent years, the NN methodology gained momentum and a number of papers

have been published on the subject [11], [12], [24]. A convolutional NN (CNN) with

discriminative regularization is presented in [24]. The CNN classified 170 images

with clinical ground truth. It used 75% of them for training and 25% for testing,

and received 77.1% accuracy.
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Yu et al. [27] presented a novel framework for dermoscopy image recognition via

a deep learning method and a local descriptor encoding strategy. The deep represen-

tations of rescaled dermoscopy images are first extracted via very deep residual NN,

pre-trained on a large natural image dataset. The method in [27] generated a number

of discriminative features to deal with the variations within melanoma classes and

the variations between melanoma and non-melanoma classes.

In [23] the authors automatically extracted 11 skin lesion features (LFs) and cre-

ated an 11D LFV that annotates the skin lesion image. They studied the problem

of feature selection with respect to the melanoma classication and applied the SVM

Recursive Feature Elimination, Information Gain, and Correlation-Based Feature

Subset Selection methods on 52 malignant and 50 benign lesion images [23] with

a ground truth. As a consequence, the authors determined that the most significant

LFs for automatic melanoma classification are:

AM
B—the lesion boundary asymmetry about its major axis;

AM
C —asymmetry of the union of skin lesion color regions about its major axis;

C—the number of skin lesion color regions;

B—the lesion abrupt boundary;

D—the number of dots and globules present in the lesion.

Hence [23] described a skin lesion image as an 5D LFV: (AM
B , AM

C , B, C,D), whose

entries are similar to those used by the ABCD rule [4], [19]. Analogous findings have

been presented in the recent survey [5]. It states that the “hand-crafted features”

most important in clinical use are: shape symmetry; color and structure symmetry;

boundary features; and color features. Further, [5] determined that dots and globules

are important clinical features as well.

Paper [23] applied the binary SVM from [16] and classified 52 malignant and 50

benign 5D LFVs. Paper [23] reported 100% model F-measure, and 88.29% leave one

out, and 10-fold cross validation F-measures. In [17] the authors designed a ternary

SVM and classified 54 malignant, 38 dysplastic nevi and 20 benign skin LFVs. Con-

sidering melanoma as a positive class, dysplastic nevi and benign skin lesions as

a negative one, the ternary SVM classified the 112 skin LFVs with the accuracy of

84%.

In the present study we explore CA properties like geometric products and sub-

spaces, where we project the original 5D LFVs. In every subspace we define a binary

SVM and automatically classify the mappings of the original 5D LFVs.

2.2. Clifford algebra subspaces. This section introduces CA definitions and

concepts we apply to develop a new formula for multivector coefficients calculation.
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Definition 2.1. The real CA Clr,s is the algebra generated by the orthonormal

basis {e1, e2, . . . , en} in R
n where r + s = n with (cf. [14], [18], [20], [21]):

e2i = 1, i = 1, . . . , r, e2i = −1, i = r + 1, . . . , n,(2.1)

eiej = −ejei, i, j = 1, . . . , n, i 6= j.(2.2)

The CA Clr,s, where r + s = n, is itself a vector space of dimension
n∑

p=0

(
n
p

)
= 2n

with the basis

(2.3) {1, e1, . . . , en, e1e2, . . . , en−1en, . . . , e1e2 . . . en}.

The elements of the CA Clr,s are named multivectors and defined as

(2.4) A = A01+A11e1+. . .+A1ien+A21e1e2+. . .+A2ien−1en+. . .+An1e1e2 . . . en,

where i =
(
n
p

)
, p = 0, 1, 2, . . . , n, for the coefficients Api, which are just notations

in (2.4). It follows that the total number of coefficients in (2.4) is
(
n
0

)
+
(
n
1

)
+
(
n
2

)
+. . .+(

n
n

)
= 2n. Consequently, the vector space Clr,s can be decomposed to n+1 subspaces

of dimensions
(
n
p

)
:

(2.5) Clr,s = Λ0
R

n ⊕ Λ1
R

n ⊕ . . .⊕ Λn
R

n.

The elements of the subspace Λp
R

n are called p-vectors, p = 0, 1, 2 . . . , n. In par-

ticular, 0-vectors are real numbers and dim(Λ0
R

n) = 1. The subspace Λ1
R

n has the

basis {e1, e2, . . . , en} and dim(Λ
1
R

n) = n. Its elements are named 1-vectors and are

equal to the original vectors. The subspace Λ2
R

n has the basis {e1e2, e1e3, . . . ,

en−1en}, dim(Λ
2
R

n) =
(
n
2

)
and its elements are 2-vectors (bivectors). Finally,

dim(Λn
R

n) = 1, and its basis is the single vector {e1e2 . . . en}. The elements of

Λn
R

n are n-vectors (pseudoscalars), see [3], [6], [14].

The decomposition of the vector space Clr,s, as given by (2.5), allows for the

multivector A to be written in the form

(2.6) A = 〈A〉0 + 〈A〉1 + . . .+ 〈A〉n.

In (2.6), 〈A〉p is the p-vector of the multivector A and denotes the projection of

A ∈ Clr,s onto the subspace Λ
p
R

n, see [3], [14], [20].

Definition 2.2. The Clifford product or geometric product of two vectors a and b

is denoted by ab and can be expressed as a sum of its symmetric and antisymmetric

parts:

(2.7) ab = a · b+ a ∧ b,

where a · b is the inner product while a ∧ b is the outer or wedge product.
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3. The Clifford algebra Cl5,0

Recall the authors in [16] and [23] developed the 5D LFV (AM
B , AM

C , B, C,D) to

describe a skin lesion in an image. Thus, we construct the CA Cl5,0 of R
5 with an

orthonormal basis {e1, e2, e3, e4, e5} which satisfies the relations

(3.1) e21 = e22 = e23 = e24 = e25 = 1 and eiej = −ejei for i 6= j.

It follows from Section 2.2, that the Cl5,0 is a 2
5-dimensional algebra with the basis [6]

scalar 1,(3.2)

1-vectors e1, e2, e3, e4, e5,

bivectors e12, e13, e14, e15, e23, e24, e25, e34, e35, e45,

3-vectors e123, e124, e125, e134, e135, e145, e234, e235, e245, e345,

4-vectors e1234, e1235, e1245, e1345, e2345,

pseudoscalar e12345.

In (3.2) we use the notation eij = eiej, eijk = eiejek, eijkt = eiejeket, e12345 =

e1e2e3e4e5 [14].

Assume that a skin lesion, in an image, is annotated with the 5D LFV U =

(u1, u2, u3, u4, u5) ∈ R
5 in the basis {e1, e2, e3, e4, e5}. According to (3.2),

Cl5,0 = span{1, e1, e2, e3, e4, e5, e12, e13, e14, e15, e23, e24, e25, e34, e35, e45, e123,

e124, e125, e134, e135, e145, e234, e235, e245, e345, e1234, e1235, e1245, e1345,

e2345, e12345}.

Using the basis in (3.2) and applying the multivector definition, equation (2.4), we

receive the Cl5,0 multivector

(3.3) AU = A0 +A1e1 +A2e2 +A3e3 +A4e4 +A5e5 + A6e12 +A7e13

+A8e14 +A9e15 +A10e23 +A11e24 +A12e25 +A13e34 +A14e35

+A15e45 +A16e123 +A17e124 +A18e125 +A19e134 +A20e135

+A21e145 +A22e234 +A23e235 +A24e245 +A25e345 +A26e1234

+A27e1235 +A28e1245 +A29e1345 +A30e2345 +A31e12345 ∈ Cl5,0.

In (3.3), for the purpose of simplicity, we switch to a consecutive indexing of the

coefficients, while in (2.4) we use a subspace related indexing. Applying the Clifford
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product and (2.7) and (3.1), we calculate the norm of AU ∈ Cl5,0 [14]:

(3.4) |AU |
2 = |A0|

2 + |A1|
2 + |A2|

2 + |A3|
2 + |A4|

2 + |A5|
2 + |A6|

2 + |A7|
2

+ |A8|
2 + |A9|

2 + |A10|
2 + |A11|

2 + |A12|
2 + |A13|

2 + |A14|
2

+ |A15|
2 + |A16|

2 + |A17|
2 + |A18|

2 + |A19|
2 + |A20|

2 + |A21|
2

+ |A22|
2 + |A23|

2 + |A24|
2 + |A25|

2 + |A26|
2 + |A27|

2 + |A28|
2

+ |A29|
2 + |A30|

2 + |A31|
2.

According to (2.5), (2.6), (3.2) and (3.3), A0 ∈ Λ0
R

5, the vector (A1, . . . , A5) ∈ Λ1
R

5

is the 1-vector subspace of the original vectors, the vector (A6, . . . , A15) ∈ Λ2
R

5 is

the image of AU onto the subspace of the bivectors, the vector (A16, . . . , A25) ∈

Λ3
R

5 is the projection of AU onto the Cl5,0 subspace defined by the 3-vectors, while

(A26, . . . , A30) ∈ Λ4
R

5 is the projection of AU onto the 4-vector subspace, and A31 ∈

Λ5
R

5. It follows that, in order to find the projections of a 5D LFV onto the CA

subspaces we have to develop a formula to calculate the multivector coefficients

A0, . . . , A31.

Assume w = (w1, w2, w3, w4, w5) = w1e1 +w2e2 +w3e3 +w4e4 +w5e5 ∈ R
5, and

U = (u1, u2, u3, u4, u5) = u1e1 + u2e2 + u3e3 + u4e4 + u5e5 ∈ R
5. Applying (2.7),

we calculate the Clifford product wU considering that it is non-commutative, but is

associative and distributive over addition:

wU = (w1e1 + w2e2 + w3e3 + w4e4 + w5e5)(u1e1 + u2e2 + u3e3 + u4e4 + u5e5)

= (w1u1)e1e1 + (w1u2)e1e2 + (w1u3)e1e3 + (w1u4)e1e4 + (w1u5)e1e5

+ (w2u1)e2e1 + (w2u2)e2e2 + (w2u3)e2e3 + (w2u4)e2e4 + (w2u5)e2e5

+ (w3u1)e3e1 + (w3u2)e3e2 + (w3u3)e3e3 + (w3u4)e3e4 + (w3u5)e3e5

+ (w4u1)e4e1 + (w4u2)e4e2 + (w4u3)e4e3 + (w4u4)e4e4 + (w4u5)e4e5

+ (w5u1)e5e1 + (w5u2)e5e2 + (w5u3)e5e3 + (w5u4)e5e4 + (w5u5)e5e5.

Applying (3.1) and (3.2) to the above expression, we arrived at

(3.5) wU = (w1u1 + w2u2 + w3u3 + w4u4 + w5u5)1

+ (w1u2 − w2u1)e12 + (w1u3 − w3u1)e13

+ (w1u4 − w4u1)e14 + (w1u5 − w5u1)e15

+ (w2u3 − w3u2)e23 + (w2u4 − w4u2)e24

+ (w2u5 − w5u2)e25 + (w3u4 − w4u3)e34

+ (w3u5 − w5u3)e35 + (w4u5 − w5u4)e45 ∈ Cl5,0.

Consider U in (3.5) as a 5D LFV and select w = [1.3, 1.3, 0.5, 0.1, 0.5] to be a vector

of weights, which is the same for every LFV from the sample space. Thus, (3.5) maps
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every 5D skin LFV to an 11D vector. Note, that the values in w are the same as

the weights adopted by the ABCD rule, the most commonly used rule for melanoma

diagnosis in clinical practice [4], [19], [26].

4. Calculations of the Cl5,0 multivectors

In the present section we propose a new approach to calculating the coefficients

of the multivector AU defined in the Cl5,0 by (3.3). We consider the vector U =

(u1, u2, u3, u4, u5) ∈ R
5 in the basis {e1, e2, e3, e4, e5} and construct the table below

by filling up the 1st column with uiei, i = {1, . . . , 4}, and the upper row with ujej ,

j = {2, . . . , 5}, as shown below. To fill up the lower right part of the table we

calculate the Clifford products uieiujej for i < j.

u2e2 u3e3 u4e4 u5e5
u1e1 u1u2e12 u1u3e13 u1u4e14 u1u5e15
u2e2 u2u3e23 u2u4e24 u2u5e25
u3e3 u3u4e34 u3u5e35
u4e4 u4u5e45

Further, we construct a second table, where the 1st column contains ukek, k ∈

{1, 2, 3}, while the upper row consists of the terms uiujeij , where the pair ij ∈

{23, 24, 25, 34, 35, 45}. Next, we fill up the lower right part of the 2nd table conduct-

ing right multiplication, such that k < i < j, in the subscript triplets kij.

u2u3e23 u2u4e24 u2u5e25 u3u4e34 u3u5e35 u4u5e45
u1e1 u1u2u3e123 u1u2u4e124 u1u2u5e125 u1u3u4e134 u1u3u5e135 u1u4u5e145
u2e2 u2u3u4e234 u2u3u5e235 u2u4u5e245
u3e3 u3u4u5e345

Following the above concepts and rules we construct two new tables as shown below.

u2u3u4e234 u2u3u5e235 u2u4u5e245 u3u4u5e345
u1e1 u1u2u3u4e1234 u1u2u3u5e1235 u1u2u4u5e1245 u1u3u4u5e1345
u2e2 u2u3u4u5e2345

u2u3u4u5e2345
u1e1 u1u2u3u4u5e12345

Now, we add together the 26 terms from the lower right parts of the above four

tables along with the sum 1+ u1e1 + u2e2 + u3e3 + u4e4 + u5e5. Hence, we arrive at
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the following expression for the multivector AU :

(4.1) AU = 1 + u1e1 + u2e2 + u3e3 + u4e4 + u5e5 + u12e12 + u13e13

+ u14e14 + u15e15 + u23e23 + u24e24 + u25e25 + u34e34 + u35e35

+ u45e45 + u123e123 + u124e124 + u125e125 + u134e134 + u135e135

+ u145e145 + u234e234 + u235e235 + u245e245 + u345e345 + u1234e1234

+ u1235e1235 + u1245e1245 + u1345e1345 + u2345e2345 + u12345e12345.

Now, we compare the coefficients of the basis vectors in (3.3) and (4.1) and receive:

(4.2) A0 = 1, A1 = u1, A2 = u2, A3 = u3, A4 = u4, A5 = u5, A6 = u1u2,

A7 = u1u3, A8 = u1u4, A9 = u1u5, A10 = u2u3, A11 = u2u4,

A12 = u2u5, A13 = u3u4, A14 = u3u5, A15 = u4u5,

A16 = u1u2u3, A17 = u1u2u4, A18 = u1u2u5, A19 = u1u3u4,

A20 = u1u3u5, A21 = u1u4u5, A22 = u2u3u4, A23 = u2u3u5,

A24 = u2u4u5, A25 = u3u4u5, A26 = u1u2u3u4,

A27 = u1u2u3u5, A28 = u1u2u4u5, A29 = u1u3u4u5,

A30 = u2u3u4u5, A31 = u1u2u3u4u5.

Equation (4.2) is a new formula to calculate the coefficients of the multivector

AU ∈ Cl5,0 that corresponds to an original vector U ∈ R
5. According to (2.5)

and (2.6) A0 is a scalar, while A31 is a pseudoscalar coefficient. Note that the

vectors U = (u1, u2, u3, u4, u5) = (A1, . . . , A5)U = 〈AU 〉1 ∈ Λ1
R

5, (A6, . . . , A15)U =

〈AU 〉2 ∈ Λ2
R

5, (A16, . . . , A25)U = 〈AU 〉3 ∈ Λ3
R

5, while (A26, . . . , A30)U = 〈AU 〉4 ∈

Λ4
R

5. Equations (2.6), (3.3) and (4.2) imply that 〈AU 〉1 = U , while 〈AU 〉2, 〈AU 〉3,

〈AU 〉4 are projections of U onto the 2-, 3-, 4-vector subspaces of the Cl5,0.

5. Experimental results

To measure the effectiveness of classification in the CA Cl5,0 subspaces we use

a dataset of 5D LFVs (AM
B , AM

C , B, C,D) = Ui (i = 1, . . . , 112) from [17]. The LFVs

are extracted from the 54 malignant melanoma and 58 benign skin lesion images

from [4], diagnosed upon the agreement of three dermatologists. All images are

obtained under same light conditions and have the size of 768× 512 pixels.

The present study calculates a 32D multivector AUi
for every 5D LFV Ui apply-

ing (4.2) and projects AUi
onto the Cl5,0 2-, 3-, 4-vector subspaces. The calculations

are coded in MATLAB.
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In Fig. 1 we show two examples of skin lesion images from our collection of 112.

The masks of the color regions extracted from the left image are presented as well.

Figure 1. First row: skin lesion images. Second row from left to right: masks of the dark-
brown, red, blue-gray, and light-brown color regions extracted from the skin lesion
4023d.

E x am p l e 5.1. The LFV U1 = (0.848, 0.811, 4, 4, 0.5) ∈ R
5 is calculated using

the methods of [16], [17], [23] from the lesion image 4023d shown in Fig. 1. Apply-

ing (4.2) we calculate the Cl5,0 multivector

AU1
= {1, scalar,

0.848, 0.811, 4, 4, 0.5, original vector, 1-vector,

0.688, 3.393, 3.393, 0.424, 3.244, 3.244, 0.405, 16, 2, 2, bivector,

2.752, 2.752, 0.344, 13.574, 1.696, 1.696, 12.976, 1.622, 1.622, 8, 3-vector,

11.009, 1.376, 1.376, 6.787, 6.488, 4-vector,

5.504, pseudoscalar} ∈ Cl5,0.

As we did in Example 5.1, for every LFV Ui (i = 1, . . . , 112) we calculate a multi-

vector AUi
∈ Cl5,0. According to Section 4, the projection of AUi

onto the: 1-vector

subspace Λ1
R

5 is Ui (Note: Classification in this subspace is the same as classifi-

cation of the original LFVs.); bivector subspace Λ2
R

5 is (A6, . . . , A15)Ui
; 3-vector

subspace Λ3
R

5 is (A16, . . . , A25)Ui
; 4-vector subspace Λ4

R
5 is (A26, . . . , A30)Ui

for

i = 1, . . . , 112. Hence, we map the original sample set of LFVs onto the above Cl5,0
subspaces. In every subspace we apply ν-SVM. The parameter ν ∈ [0, 1] favors the

positive samples (malignant) if ν > 0.5 (produces higher sensitivity) while it favors

the negative (benign) samples otherwise (produces higher specificity). Also, we ap-

ply the ν-SVM with three different kernels (Gaussian, RBF, degree 2 polynomial)

and report the results in Tables 1 and 2. The six metrics accuracy (AC), sensitivity
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(SE), specificity (SP), precision (PR), recall (RE), and F-measure (F) are calculated

for every kernel using 1000 classification experiments.

Kernel Hold 5D 4-vector 10D bivector 10D 3-vector

Out % AC/SE=RE/SP/PR/F AC/SE=RE/SP/PR/F AC/SE=RE/SP/PR/F

Gaussian 10 70.7/71.3/69.9/77.6/74.3 79.1/77.6/81.4/86.7/81.9 75.9/76.0/75.9/81.8/78.8

RBF 10 70.3/70.9/69.5/77.4/74.0 78.2/76.9/80.3/85.9/81.1 76.2/76.4/76.0/81.6/78.9

Polynomial, 10 68.4/69.9/66.4/74.0/71.9 77.9/77.2/79.0/84.5/80.7 76.2/76.8/75.5/80.9/78.8

d = 2

Table 1. Classification results in percent in 2-, 3-, 4-vector Cl5,0 subspaces.

Kernel Hold 5D 1-vector 11D, [1.3 1.3 0.5 0.1 0.5]

Out % AC/SE=RE/SP/PR/F AC/SE=RE/SP/PR/F

Gaussian 10 82.4/ 81.3/84.0/ 88.0/ 84.5 78.8/78.6/79.1/84.0/81.2

RBF 10 83.0/81.6/84.9/88.8/85.1 78.4/78.1/78.8/83.9/80.9

Polynomial, 10 82.3/81.8/82.8/86.7/84.2 77.7/78.3/76.7/81.6/79.9

d = 2

Table 2. Classification results in percent in 1-vector (original 5D LFVs) and 11D subspaces.

The experiment is called a SVM classification using x% of samples to train the

SVM and (100 − x)% of samples to classify with the trained SVM. Note that the

repeatability of the SVM classification is not constant if a number of experiments

are performed with one and the same dataset and set of parameters. Therefore,

the average of all experiments is a reasonable measure to determine the TP (true

positive), TN (true negative), FP (false positive), and FN (false negative). The

number of experiments under the above settings is called a trail. In the present

study we use: trails with 1000 experiments, because the variability of the results is

in the order of 0.1% between every two trails; ν = 0.4, because the dermatologists

are interested in less FP:

SE =
TP

TP + FN
, SP =

TN

TN + FP
, AC =

TP + TN

TP + FP + FN + TN
,

PR =
TP

TP + FP
, RE =

TP

TP + FN
, F = 2×

PR×RE

PR+RE
.

In the first set of trails we use 90% (101) of the LFVs to train the ν-SVM and

10% (11) LFVs to test the trained SVM. We report the results in Tables 1 and 2

in percent. One may tell from this, that the highest values for all the six metrics

are obtained by the classification of the original 5D LFVs (1-vectors), while the 2nd

highest values are from the classification in the 2-vector subspace. This is due to

the fact that the 3rd and 4th entries in the original 5D LFVs are in the range of

591



[0, 6] and [0, 8], respectively (see Example 5.1) [16], [17], [23]. On the other hand,

the 1st, 2nd and 5th entries attain the values in [0, 1]. Thus, the contribution of each

entry is different for the classification outcome. Moreover, the new (4.2), developed

to calculate the Cl5,0 multivector coefficients, implies that this difference further

increases in the bivector, 3-vector and 4-vector subspaces. For example, the 14th

entry A13 in (4.2) (the 8th one in the bivector from Example 5.1) is formed by

u3u4. Therefore A13 ∈ [0, 48]. It follows that the multivector projection onto the 2-,

3-, 4-vector subspaces significantly increases the distances among vectors on some

coordinate axes, while the distances become very small on other axes. Therefore, the

SVM does not accurately split melanoma from benign vectors. As a consequence the

classification rates drop in CA Cl5,0 subspaces, as witnessed in Tables 1 and 2.

To remedy the problem we normalize the 3rd (dividing by 6) and 4th (dividing

by 8) entry of the original 5D vectors (Example 5.1). Hence we map the values from

the 3rd and 4th entries onto [0, 1] (Example 5.2).

E x am p l e 5.2. The normalized version of the LFV U1 is UN1
= (0.8484, 0.8111,

0.6667, 0.5, 0.5) ∈ R
5. The Cl5,0 multivector calculated from UN1

by applying (4.2)

is

AUN1
= {1, scalar,

0.848, 0.811, 0.667, 0.5, 0.5, original vector, 1-vector,

0.688, 0.565, 0.424, 0.424, 0.540, 0.405, 0.405, 0.333, 0.333, 0.25, bivector,

0.458, 0.344, 0.344, 0.282, 0.282, 0.212, 0.270, 0.270, 0.202, 0.166, 3-vector,

0.229, 0.229, 0.172, 0.141, 0.135, 4-vector,

0.114, pseudoscalar} ∈ Cl5,0.

We conduct a trail of experiments applying every kernel on the normalized LFVs

UNi
, i = 1, . . . , 112, and their projections onto the 2-, 3-, 4-vector Cl5,0 subspaces.

We select 2% (2) of the vectors to test and 98% (110) of the vectors to train the

ν-SVM and report the results in percent in Tables 3 and 4. One may say that the

values increased there according to Tables 1 and 2. Hence the highest accuracy of

84.7%, specificity of 87.2% and sensitivity of 82.4% in Table 4 are higher then the

maximal values in Table 2: 83% accuracy, 84.9% specificity and 81.8% sensitivity.

Kernel Hold 5D 4-vector 10D Bivector 10D 3-vector

Out % AC/SE=RE/SP/PR/F AC/SE=RE/SP/PR/F AC/SE=RE/SP/PR/F

Gaussian 2 72.7 / 67.7 /77.2/82/79.5 80.3/ 75.8/ 84.3/ 86.5/ 80.8 77.8/ 74/ 80.8/ 83/ 78

RBF 2 71.8 / 67.2/ 75.4/80/77.6 81.9/ 76.1/ 85.3/ 87.5/ 81.4 77/ 72.5/ 81.4/ 72.5/78

Polynomial, 2 71.2/ 66.3 / 75.6/81/73 81.1 / 79.3/ 82.2/83.1/ 81.1 79 / 76.6/ 81/ 82.7/ 79.5

d = 2

Table 3. Classification results with the normalized sample set in the 2-, 3-, 4-vector Cl5,0
subspaces.
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Kernel Hold 5D 1-vector 11D, [1.3, 1.3, 0.5, 0.1, 0.5]

Out % AC/SE=RE/SP/PR/F AC/SE=RE/SP/PR/F

Gaussian 2 81.8 / 79.1 / 84.1/85.4/ 82.1 81.8/ 75/ 85 / 88/ 81.1

RBF 2 82.5 / 79.8 / 84.5/85.7/ 82.6 81.5/ 77/ 85.9/ 88/ 82

Polynomial, 2 84.7/ 82.4/ 86.4/87.2/ 84.7 84 / 79 / 87.2/ 88.8/ 83.6

d = 2

Table 4. Classification results with the normalized sample set in 1-vector (normalizes orig-
inal 5D LFVs) and 11D Cl5,0 subspace.

Note that the highest precision of 88.8% in Table 4 is obtained in the 11D Cl5,0
subspace. The next largest precision of 87.5% (Table 3) comes in the bivector sub-

space and it is larger than the maximal precision of 87.2% reached with the original

5D LFVs in the 1-vector subspace. Also, the specificity of 87.2% in the 11D sub-

space is higher than the largest specificity of 86.4% obtained with the original 5D

LFVs. These results validate the higher potential of classification in CA subspaces

as compared to classification in real valued vector spaces.

Applying (7.1)–(7.3) (see Appendix) we calculate the CIs for the maximal accu-

racy, sensitivity and specificity from Tables 3 and 4, and report the results in Table 5.

Note that the reported CIs are narrow, which is an important statistical feature. We

do not show the CI for the non-normalized data, because its classification results are

weaker than the results with the normalized sample set.

Subspace Max CI

1-vector AC=84.7 ÂC ∈ [83, 86.4]

1-vector SE=82.4 ŜE ∈ [80, 84.7]

11D SP=87.2 ŜP ∈ [85, 89.4]

Table 5. In Appendix we calculate the CI for the AC, SE and SP of the entire population
using the maximal values from Tables 3 and 4.

6. Conclusion

Theoretical contributions of the present study include developing (4.2) to calculate

the Cl5,0 multivector coefficients, which define a mapping from R
5 onto the 2-, 3-,

4-vector CA 10D and 5D subspaces, respectively. Also, using Clifford product we

develop (3.5) to map any vector from R
5 onto 11D CA subspace. In this subspace

the classification of 112 skin LFVs demonstrates superior precision 88.8% (Table 4)

as compared to the classification of the original 5D LFVs in the 1-vector subspace

(Tables 2, 4), and superior specificity as compared to the four diagnosing rules most

used by dermatologists (Table 6).
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Recall, to validate the theoretical concepts and derive the above conclusions we

conducted experiments with 112 5D LFVs extracted from 112 images with ground

truth provided by three dermatologists [4]. Applying the new (4.2) we calculated

112 32D lesion feature multivectors and mapped them onto the 2-, 3-, 4-vector CA

subspaces where we conducted SVM binary classification.

As we noted in the introduction NNs gained popularity in the classification com-

munity and found significant application in skin lesion image classification to benign

and malignant [11], [24]. A main drawback of the NNs is the need of large amount

of training data to receive high statistical metrics and narrow CIs. For example,

in [9] the authors applied the GoogLeNet Inception V3 CNN on about 129 450 skin

lesion images to train the NN and on 1942 biopsy labeled images to test the NN.

They validated the effectiveness of the algorithm through the classification of the

three classes: benign, malignant and non-neoplastic [9]. Hence, the NN provided an

overall accuracy of 72.1%, a way lower that the accuracy of 84% in the Cl5,0 11D

subspace. Also, the CNN accuracy is lower than the 81.9% accuracy obtained in the

bivectors subspace (Table 3).

Another example that supports the claim that NNs need a large training set is

found in [24]. Using 170 skin lesion images in ratio 25%/75% for testing/training,

the authors received 77.1% accuracy of classification. While using 2000 images for

training and 600 for testing from the ISBI2017 challenge dataset [7], they received

an accuracy of 83.2%. The best accuracy ever achieved with the NN from [24] is

87.2% but the authors extended the training set by adding other publicly available

skin lesion image datasets, bringing the training set to tens of thousands.

Paper [8] reports two statistics of diagnoses conducted by 61 dermatologists on 40

melanoma images. The dermatologists applied the 4 most commonly used rules for

melanoma diagnosis in clinical practice: ABCD rule [4, 19], Menzies rule, 7-points

checklist, and pattern analysis [8] (Table 6).

Note, that paper [17] used the same sample set as we did in the present study, but

applied a ternary SVM, which classified the 112 skin LFVs to three classes: benign,

dysplastic nevi and malignant. Considering benign and dysplastic nevi as negative

and malignant as positive the ternary SVM achieved AC = 84% [17].

Table 6 shows that the highest 1st and 2nd diagnosing accuracies are obtained with

the original 5D LFVs (1-vectors) and 11D Cl5,0 subspaces; the highest sensitivity

comes with the Menzies rule [8]; the highest specificity comes with the ternary SVM

98%, while the 2nd highest specificity is obtained in the 11D Clifford subspace.

However we would like to note that the very high specificity obtained by the

ternary SVM may come on the expense of using three binary SVMs that compose

the ternary SVM and the use of ν = 0.2 [17]. On the other hand a single binary

SVM is applied in the 11D Clifford subspace and ν = 0.4.
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train/test AC SE SP

1-vector Cl5,0 subspace 110/2 84.7 82.4 86.4
bivector Cl5,0 subspace 110/2 81.9 79.3 85.3
3-vector Cl5,0 subspace 110/2 79 76.6 81.4
4-vector Cl5,0 subspace 110/2 72.7 67.7 77.2
11D vectors Cl5,0 subspace 110/2 84 79 87.2
[17] Ternary SVM 111/1 84 76 98

[8] ABCD rule 0/40 N/A 77 80
[8] Menzies rule 0/40 N/A 86 77.7
[8] Pattern analysis 0/40 N/A 60.9 85.5
[8] 7-point checklist 0/40 N/A 81 73

[9] CNN 129450/1942 72.1 N/A N/A
[24] CNN 2000/600 83.2 N/A N/A

Table 6. Classification in 1-, 2-, 3-, 4-vector 11D Clifford subspaces and the ternary SVM
are conducted on the same set of 112 LFVs. Train means the number of sam-
ples used for training the SVM, while test shows the number of samples used for
classification.

Note Menzies rule uses negative and positive skin LFs. The forward set consists

of the symmetry of lesion structures and single color. The positive set includes

brown dots; peripheral black dots/globules; blue gray dots; 5 or 6 colors; broadened

networks; scare-like depigmentation; radial streaming and pseudopods. A lesion is

diagnosed as melanoma if none of the negative and at least one of the positive features

is present.

Equation (4.2) shows that a zero entry in an original LFV Ui generates several

zero entries in the multivector AUi
. Hence, the distances among the vectors in the

corresponding Cl5,0 subspace decrease. It follows that the separability of the vectors

decreases as well, leading to a lower accuracy of classification.

Note that a number of LFVs Ui have a 0 as an entry in the original 5D sample

set of 112 LFVs. Equation (4.2) states that a 0 in an entry of Ui spreads to four 0s

in the 4- and 2-vectors 〈AU 〉4 and 〈AU 〉2 respectively, while the 3-vector 〈AU 〉3 will

have six 0s. Recall that the 4-vector is a 4D vector, while the 2-vector and 3-vector

are 10D vectors. It follows that the 4-vector has the highest ratio between zero and

non zero entries, which leads to the expectation that the 4-vector subspace will give

the lowest classification rates. This conclusion is confirmed by the results reported

in Tables 1 to 4.

Equation (3.5) implies that a 0 in the original 5D vector (1-vector) will not spread

among the 11D vector entries. This fact and the vector larger dimension provide the

highest rates of classification in the 11D Cl5,0 subspace as compared to the 2-, 3-,

4-subspaces (Tables 3–6).
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The results presented in this paper reveal the high potential of using CAs and

their subspaces in the analysis and classification of medical images. Hence, our

future study continues with the development of Clifford SVM and Clifford NN.

7. Appendix

To estimate the accuracy, specificity and sensitivity of classification in the entire

population we calculate the confidence intervals (CIs) applying the formulae [1]

AC − Zα/2

√
AC(1−AC)

n
< ÂC < AC + Zα/2

√
AC(1 −AC)

n
,(7.1)

SP − Zα/2

√
SP (1− SP )

n
< ŜP < SP + Zα/2

√
SP (1− SP )

n
,(7.2)

SE − Zα/2

√
SE(1− SE)

n
< ŜE < SE + Zα/2

√
SE(1− SE)

n
.(7.3)

In (7.1), AC denotes the accuracy of success in a set of n samples, ÂC the accuracy

in the entire population, while Zα/2 is a constant given by a statistical table [1]. We

use in this paper α = 0.05, construct CIs with confidence 100(1−0.05)%, and in this

case Zα/2 = 1.96. Further, we use n = 2000, because the results reported in Tables 3

and 4 are obtained from 1000 experiments and in each of them we hold out 2% (2)

of the samples for testing.

In (7.2), SP denotes the specificity of binary classification in the sample set of n

samples, while ŜP is the specificity of classification in the entire population. Same

holds for SE and ŜE sensitivity in (7.3).
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