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On the integral representation

of finely superharmonic functions

Abderrahim Aslimani, Imad El Ghazi, Mohamed El Kadiri

Abstract. In the present paper we study the integral representation of nonneg-
ative finely superharmonic functions in a fine domain subset U of a Brelot P-
harmonic space Ω with countable base of open subsets and satisfying the ax-
iom D. When Ω satisfies the hypothesis of uniqueness, we define the Martin
boundary of U and the Martin kernel K and we obtain the integral represen-
tation of invariant functions by using the kernel K. As an application of the
integral representation we extend to the cone S(U) of nonnegative finely super-
harmonic functions in U a partition theorem of Brelot. We also establish an
approximation result of invariant functions by finely harmonic functions in the
case where the minimal invariant functions are finely harmonic.

Keywords: finely harmonic function; finely superharmonic function; fine poten-
tial; fine Green kernel; integral representation; Martin boundary; fine Riesz-
Martin kernel

Classification: 31D05, 31C35, 31C40

1. Introduction

Let Ω be the space Rn if n ≥ 3, or a domain of R2 with non-polar complement,
and U a fine domain subset of Ω, that is, a domain in the sense of the fine topology
on Ω (the smallest one making continuous the superharmonic functions on Ω).
The problem of the integral representation of fine potentials on U was studied by
B. Fuglede in [21], [22]. We denote by GU the fine Green kernel of U defined by

GU (·, y) = G(·, y)− R̂∁U
G(·,y),

on U r {y} and extended by fine continuity at the point y, where G is the Green
kernel of Ω. The result of B. Fuglede states that for any fine potential p on U ,
there is a unique Borel measure µ ≥ 0 on U as topological space endowed with
the trace of the initial on it such that

p(x) =

∫
GU (x, y) dµ(y)

for any x ∈ U .
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Let us denote by S(U) the cone of nonnegative finely superharmonic functions
on U . A function h ∈ S(U) is said to be invariant if it belongs to the orthogonal
band to the band P(U) of fine potentials on U , in the specific order in S(U) (that
is, the order on S(U) defined by S(U)), of the band P(U) of the fine potentials
on U . The invariant functions are characterized by the fact that they are in-
variant under the sweeping on the complements of some finely open subsets Vn,
n ∈ N, such that

⋃
n Vn = U and V n ⊂ U for any n, cf. [22, Theorem 4.4] and

[21, Theorem, page 130]. In particular, an invariant function is, following [19,
Theorem 11.13, page 127], finely harmonic in the complement of the polar set
where it takes the value ∞.

Every nonnegative finely superharmonic function s on U can be uniquely writ-
ten as the sum of an invariant function and a fine potential in U (Riesz decom-
position). As a consequence, for every function s ∈ S(U) we can find a unique
Borel measure µ ≥ 0 in U and a unique invariant function h on U such that

s =

∫
GU (·, y) dµ(y) + h.

We deduce from this fact that the invariant functions play the role of nonnegative
harmonic functions in the Riesz decomposition of the nonnegative superharmonic
functions in a Euclidean domain subset of Rn.

In [12] we defined a topology on the cone S(U) of nonnegative finely superhar-
monic functions in U in order to obtain, by using Choquet’s method, the result of
B. Fuglede of the integral representation of fine potentials and the integral repre-
sentation of invariant functions by means of extremal invariant functions, called
also minimal invariant functions.

The minimal invariant functions can be finite everywhere, that is finely har-
monic on U , or they may be infinite at some points (forming a polar set) of U ,
according to a recent result of S. J. Gardiner and W. Hansen in [24]. These au-
thors have indeed shown the existence of a fine domain U of Rn of the form
U = D ∪ ∂iD, where D is a non regular domain subset of Rn, n ≥ 3, and where
∂iD is the set of irregular points of ∂D, and of a minimal invariant function not
finely harmonic on U . This answered in the negative two old questions posed by
B. Fuglede, namely:

1. Is every invariant function on a fine domain U the sum of a sequence of
nonnegative finely harmonic functions on U (or, equivalently, the upper
envelope of its nonnegative minorants finely harmonic)?

2. If D is a non regular Green domain subset of Rn and if s is a minimal
harmonic function in D with fine limit f-limx→z h(x) = ∞ at a non regular
point z of ∂D, do we have h = αGU (·, z) for some α ≥ 0, where U =
D ∪ ∂iD is the smallest finely regular domain containing D?

In the present work we shall consider the question of the integral representation
in S(U) in the more general framework of a fine domain U of a Brelot space with
countable base of open sets, satisfying the axiom D, admitting a Green kernel
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and a base of completely determining open subsets whose adjoint harmonic space
satisfies the axiom D and in which the adjoint fine topology is finer than the fine
topology and the adjoint base of a set contains the fine interior of that set. These
hypothesis are of course weaker than those of [22]. The method is based as in
[12] on Choquet’s theorem of integral representation in the cones with compact
base. We define in particular the Martin boundary ∆(U) of U , the corresponding
Martin kernel on ∆(U)×U and obtain the integral representation of the invariant
functions on U .

As an application of the integral representation of invariant functions, we show
that if any minimal invariant function is finely harmonic, then every invariant
function can be approximated in the sense of the topology of the cone S(U) (the
natural topology) by nonnegative finely harmonic functions in U . Finally, using
a simple property of the extremal functions of S(U) to be selfreduced on A or on
U r A for any subset A of U (Lemma 6.1 below), we extend to the nonnegative
finely superharmonic functions a partition theorem of M. Brelot in [6].

The interest in the general context of a Brelot space is to obtain general results
that may apply to an open subset of the more general potential theory defined by
an elliptic operator on an open subset of Rn or on a Riemannian manifold (with
potential greater than 0).

The Sections 2 and 3 and a part of Section 4 are trivial generalizations of the
same results obtained in the classical case by M. El Kadiri and B. Fuglede in [14],
[15], [16]. However, the extension of the crucial Corollary 3.5 of Theorem 3.2 does
not seem to be evident. There are also some new results on the fine Green kernel
in Section 4.

Notation and definitions: If Ω is a Brelot harmonic space and U is a fine
domain of Ω, we denote by S(U) the convex cone of nonnegative finely super-
harmonic functions on U in the sense of [17]. The cone of fine potentials on U
(that is the functions of S(U) without nonnegative finely subharmonic minorant
is denoted by P(U), it is a band of S(U). The topology of Ω and that induced by
this topology on U will be called the initial topology. We denote by B+(U) the
cone of Borel functions (relative to the initial topology) on U (taking values in
[0,∞]). The coarsest topology on Ω which is finer than the initial topology and
which makes continuous all functions of S(Ω) will be called the fine topology. The
induced topology on U by the fine topology on Ω is also called the fine topology

on U . If f : U → [0,∞] we denote, without distinction, by Rf or by R̂f , respec-
tively, the reduced or the swept out function, respectively, of f on A with respect
to U or Ω (in the case of U cf. [17, Section 11] for this notion). If u ∈ S(U) and

A ⊂ U we can write R̂A
u for R̂f with f := 1Au. However, we also often denote it

by U R̂A
u to distinguish it from the swept out of u in Ω. For any subset A ⊂ Ω we

denote by Ã the fine closure of A in Ω, and b(A) or b∗(A), respectively, the base
or the adjoint base, respectively, when it is defined, of A in Ω, that is, the set of
points of Ω where A is not thin or not adjoint thin, respectively.



326 A. Aslimani, I. El Ghazi, M. El Kadiri

If E is a locally convex topological vector space (l.c.t.v.s. in abbreviated form),
and if K is a convex compact of E and µ is a probability measure on K, we
denote by b(µ) the barycenter of µ and we write b(µ) =

∫
K
k dµ(k), which means

that for any continuous affine form l on K, we have l(b(µ)) =
∫
l(k) dµ(k); the

set of extreme points of K is denoted by Ext(K).

2. Construction of a resolvent associated with the cone of nonnegative

finely superharmonic functions in a fine domain

Let Ω be a Brelot harmonic space with countable base of open subsets, satis-
fying the domination axiom D and admitting a potential greater than 0, and U
a fine domain of Ω, that is, a domain subset in the sense of fine topology of Ω.
Recall that the fine topology on Ω is the coarsest topology that makes continuous
the superharmonic functions in Ω. For the main properties of this topology we
refer to [17, Chapter 1, Section 3]. We assume that the constant functions are
superharmonic in Ω (this is not really a restriction because we can always reduce
the study of superharmonic and finely superharmonic functions to this case by
considering the f -harmonic functions, where f is a suitable continuous finite func-
tion and greater than 0 on Ω). We denote by S(U) the cone of nonnegative finely
superharmonic functions in U and U+(U) = S(U)∪ {∞} the cone of nonnegative
finely hyperharmonic functions in U .

The set ∂iU of all irregular points of the fine boundary ∂fU of U is polar and
the set r(U) = U ∪ ∂iU is a fine domain subset of Ω, it is the smallest regular
fine domain of Ω which contains U , see [17, page 10]. Furthermore, any function
of U+(U) has a unique extension to a function of U+(r(U)) according to [17,
Theorem 9.14, page 96]. This allows us to assume throughout this paper that U
is regular.

Let p be a strict continuous and bounded potential greater than 0 on Ω. Then
it is well known from [29, Theorem 2, page 362] that there exists a unique Borel
kernel V on Ω such that

1. V 1 = p.
2. For every continuous function ϕ ∈ C+

c (Ω), V ϕ is a finite and continuous
potential and harmonic in the complement of the support of ϕ.

The kernel V is associated with a resolvent (Vλ)λ>0 of Borel kernels on Ω of which
the cone of excessive functions is U+(Ω). Since the excessive functions of (Vλ) are
l.s.c., it follows from [10, Chapter XII, no. 41] that there is a bounded Radon
measure τ ≥ 0 on Ω such that the resolvent (Vλ) is absolutely continuous with
respect to τ (that is for each x ∈ Ω and λ > 0, the measure Vλ(x, ·) is absolutely
continuous with respect to τ). The measure τ does not charge the polar sets,
and the cone S(Ω) is exactly the cone of excessive functions of the resolvent (Vλ)
which are finite τ -a.e. (we also say that they are finite (Vλ)-a.e.). Moreover,
τ charges all nonempty finely open subsets. Indeed, if ω is a nonempty finely
open subset of Ω such that τ(ω) = 0, then τ(r(ω)) = 0 since r(ω) \ ω is polar,
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hence τ -negligible, where r(ω) = ω∪∂iω. Then we have R̂∁ω
p = p τ -a.e. Therefore

λVλ(R̂
∁ω
p ) = λVλ(p) for any λ > 0. By letting λ → ∞, we obtain R̂∁ω

p = p
everywhere, which is absurd because p is strict and ω is not empty. We deduce in
particular that two superharmonic functions equal τ -a.e. are equal everywhere.

According to [9, Proposition 10.2.2, page 248], the cone of excessive functions
of the resolvent (Vλ) is the cone U+(Ω) = S(Ω) ∪ {∞} (and hence S(Ω) is the
cone of excessive functions of (Vλ) which are finite (Vλ)-a.e.). It follows then from
[5, Theorem 4.4.6, page 136] that S(Ω) is a H-cone standard of functions. Define
a kernel W on U by

Wf = Vf − R̂∁U
Vf

(restricted to U) for any Borel measurable function f ≥ 0 on U , where f denotes
the extension of f to Ω equal to 0 in ∁U . Then by [4, Theorem 2.5] there exists
a unique resolvent family (Wλ) of Borel measurable kernels with the potential
kernel W .

We now proceed to determine the excessive functions of the resolvent (Wλ).
We need to recall the following approximation theorem [20, Theorem 3, page 68]:

Theorem 2.1. Let s ∈ S(U). Then we can find a sequence (sn) of nonnegative

superharmonic functions on Ω, such that the sequence
(
sn − R̂∁U

sn

)
is increasing

and

s = sup
n

(
sn − R̂∁U

sn

)
.

Lemma 2.2. For any function s ∈ S(Ω), the function s − R̂∁U
s is excessive for

the resolvent (Wλ).

Proof: The function s is excessive for the resolvent (Vλ), then according to [10,
Theorem 17, page 11], we can find an increasing sequence (fn) of bounded Borel

functions on Ω such that s = supn V (fn). Then we have s− R̂∁U
s = supn W (gn)

where gn is the restriction of fn to U . Hence s− R̂∁U
s is excessive for (Wλ). �

Theorem 2.3. The cone of excessive functions of the resolvent (Wλ) is identical
to the cone U+(U).

Proof: Let E(U) be the cone of excessive functions of the resolvent (Wλ). The
inclusion S(U) ⊂ E(U) follows easily from Theorem 2.1 and Lemma 2.2. Since
every function u ∈ U+(U) is the supremum of an increasing sequence (sn) of
functions of S(U) (it suffices to take sn = s ∧ n for any integer n), it follows
that U+(U) ⊂ E(U). Let us prove the opposite inclusion. Let s ∈ E(U), then,
according to [10, Theorem 17, page 11], s is the supremum of an increasing se-
quence (W (fn)), where (fn) is an increasing sequence of bounded Borel functions

nonnegative in U . For any integer n we have W (fn) = V (f n)− R̂∁U
V (fn)

. As V (f n)

is finite and continuous on U , the function R̂CU
V (fn)

is finely harmonic on U by [17,

Theorem 11.13], and hence W (fn) ∈ S(U). Consequently, we have s ∈ U+(U). It
follows that E(U) ⊂ U+(U), and hence E(U) = U+(U). �
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Remark 2.4. The excessive functions in the sense of [5, page 16] of (Wλ) are
the excessive functions of (Wλ) that are finite (Wλ)-a.e. In this sense the cone of
excessive functions of (Wλ) is the cone S(U).

As the resolvent (Wλ) is subordinated to the resolvent (Vλ), then it is basic
and transient (cf. [10, Chapter XII]). The finely open U is assumed to be regu-
lar, then it is a Radonian space, that is, embeddable in a compact metric space
as a universally measurable subspace, which enables us to apply the results of
Chapter 12 of [10, pages 74–75].

Corollary 2.5. The cone S(U) is a standard H-cone of functions on U .

Proof: The corollary follows from the previous theorem and [5, Theorem 4.4.6].
�

3. Topology of cone S(U) and integral representation of nonnegative

finely superharmonic functions

In order to simplify the notations, we shall use the same notations to denote
the reduced and the swept out in the cones S(Ω) and S(U) and introduce the
necessary details if there is a risk of confusion.

Following [5, Section 4.5, page 141], we endow S(U) by the natural topology.
This topology is induced on S(U) by that of a locally convex vector space in which
S(U) is a well capped convex cone (that is, S(U) is the union of its caps in the
Choquet sense). This will be sufficient to the study of the integral representation
of finely superharmonic functions nonnegative, however, we show a stronger result,
namely that the cone S(U) has a compact base. This result is very important
because it allows us, in the case of proportionality of potentials of the same
punctual carrier (support) to define the Martin boundary ∆(U) of U and the
integral representation of invariant functions by means of a Martin kernel K on
U ×∆(U) (see [14] and Section 5 of the present paper).

Since S(U) is a standard H-cone, we can find an increasingly dense countable
set D = {sn ∈ S(U) : n ∈ N} in S(U). That is, any element s of S(U) (and
also any element of U+(U)) is the upper envelope of an (increasing) sequence of
elements of D. Thus for any s ∈ S(U), we have s = sup{t ∈ D : t ≤ s}.

Lemma 3.1. For any x ∈ U , there is a fine neighborhood Kx of x, compact in
the initial topology, such that the restriction of any function s ∈ S(U) to Kx is
l.s.c. in initial topology.

Proof: According to [19, Lemma, page 114], any point x of U has a finely
compact neighborhood Kx in initial topology such that the restriction of any
function sn of D to Kx is continuous in the initial topology. Since any function
s ∈ S(U) is the upper envelope of an increasing sequence of elements of D, then
its restriction to Kx is l.s.c. (in initial topology). �
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Theorem 3.2. There is a sequence (Kn) of compacts (in the initial topology
of Ω) contained in U and a polar set P such that

1. U =
⋃

n K
′
n ∪ P , where K ′

n denotes the fine interior of Kn.
2. For any n, the restriction to Kn of any function of S(U) is l.s.c. in the

initial topology.

Proof: According to Lemma 3.1, any point x of U has a fine neighborhood Kx,
compact in the initial topology, such that the restriction of any function t ∈ S(U)
to Kx is l.s.c. On the other hand, it follows from the quasi-Lindelöf property of
the fine topology that we can find a sequence (xj) of points of U and a polar set P
such that U =

⋃
j K

′
xj

∪P . The compact subsets Kj = Kxj
satisfy the conditions

of the theorem. �

Remark 3.3. The existence of a sequence (Kj) of compact subsets of U and
a polar set P with U = P ∪

⋃
j Kj such that a given finely continuous function

(in particular a superharmonic function) is continuous relative to each Kj follows
from the pioneering work of Le Jan [26], [27], [28], which applies more generally
to the excessive functions of the resolvent associated with the Hunt process. The
weaker form of condition 1. in our Theorem 3.2 in which U = P ∪

⋃
K ′

j is replaced

by the condition U = P∪
⋃

Kj, is a consequence of [3, Corollaire 1.6] together with
the existence of a family of universally continuous elements which is increasingly
dense in S(U). In the present case our Theorem 3.2 is stronger than that of
L. Beznea and N. Boboc. In fact, our result is not a consequence of that of
L. Beznea and N. Boboc because for a nest (Kj) of U the set

⋃
j Kj r

⋃
j K

′
j is

not necessarily polar, as it is seen by the following example in [14, Remark 2.10]:

Example. Let A be a compact non-polar subset of Ω with empty fine interior (for
example A can be a compact ball in some hyperplane in Rn such that A ⊂ Ω). Let
Ω1 = ΩrA. Then Ω1 is open and there exists an increasing sequence (Bj) of open

subsets of Ω1 such that Bj ⊂ Ω1 for every j (Bj denotes the Euclidean closure

of Bj) and that
⋃

j Bj = Ω1. For any j write Kj = Bj ∪ A. Clearly, (Kj) is

an increasing sequence of compact subsets of Ω with
⋃

j Kj =
⋃

j Bj ∪ A =

Ω1 ∪ A = Ω. It suffices to show that K ′
j ⊂ Bj for every j, for then

⋃
j K

′
j ⊂⋃

j Bj = Ω1 = ΩrA with A non-polar. Let x ∈ K ′
j . If x ∈ A then V := ΩrBj is

an open neighborhood of x and V ∩Bj = ∅. On the other hand, W := K ′
j is a fine

neighborhood of x contained in Kj. Then W ∩ V ⊂ Kj and (W ∩ V ) ∩ Bj = ∅,
hence x ∈ W ∩ V ⊂ A. But W ∩ V is finely open and A′ = ∅, so actually x /∈ A,
and since x ∈ K ′

j ⊂ Kj = Bj ∪ A we have x ∈ Bj . Because this holds for every

x ∈ K ′
j we indeed have K ′

j ⊂ Bj .

Remark 3.4. The finely open subsets K ′
n are regular because for any integer n

the set Kn is compact (in initial topology).

Corollary 3.5. There is a sequence (Hn) of compact subsets of U , each is non-
thin at any of its points, and a polar set P such that
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1. U =
⋃

n Hn ∪ P .
2. For any integer n, the restriction of any function of S(U) to Hn is l.s.c.

in initial topology.

Proof: One may write U =
⋃

n K
′
n ∪ P as in Theorem 3.2. For any integer n,

let (Um
n ) be the sequence of fine components of K ′

n. The finely open subsets
Um
n are necessarily regular according to Remark 3.4. Let p > 0 be a strict,

finite and continuous potential on Ω (cf. [9, page 166]). Then according to [9,
Proposition 7.2.2] we have for any pair of integers (m,n),

b
(
∁Um

n

)
=

{
x ∈ Ω: R̂

∁Um
n

p (x) = p(x)
}
.

Since Um
n is regular then we have

Um
n =

{
x ∈ Ω: R̂

∁Um
n

p (x) < p(x)
}
.

For any pair of integers (m,n) and for any integer l > 0, put

Hn,m,l =
{
x ∈ Um

n : p(x) − R̂
∁Um

n
p (x) ≥

1

l

}
.

Then the sets Hn,m,l are compact in the initial topology and each one of them is
non-thin at any of its points and we have U =

⋃
n,m,l Hn,m,l ∪ P . The restriction

of any function s ∈ S(U) to Hn,m,l is indeed l.s.c. in the initial topology. �

We shall use the sequence (Hn) of the previous corollary to define by analogy
with [30] a locally compact topology on the cone S(U). For any n we denote by
Cl(Hn) the cone of l.s.c. functions on Hn with values in R+, and we endow it with
the topology of the convergence in graph (cf. [30]). It is known that Cl(Hn) is
a compact and metrizable space for this topology. Let dn be a distance compatible
with this topology. We define a distance d on U+(U) by putting

d(u; v) =
∑

n

1

2nδ(Ci(Hn))
dn(u|Hn

, v|Hn
)

for any pair (u, v) of functions of U+(U), where δ(Cl(Hn)) denotes the diameter
of Cl(Hn). Since two finely hyperharmonic functions are identical if they coincide
τ -a.e., it follows that d is a distance on U+(U). We denote by T the topology
defined on U(U) by the distance d.

Let F be a filter on U+(U), put

lim înfF = sup
M∈F

înf
u∈M

.

Theorem 3.6. The cone U+(U) of finely hyperharmonic functions nonnegative
on U is compact in the topology T . For any ultrafilter G on U+(U) we have

lim
G

= lim înfG .
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Proof: We will copy word by word (with necessary modifications) the proof of
the same result in [12], corresponding to the case where Ω is a Green open subset
of Rn. Let G be an ultrafilter on U+(U). For any M ∈ G, put uM = infu∈M u.
Then the bases of ultrafilters Gn, images of G by restrictions to the compacts Hn,
converge, in the compact spaces Cl(Hn), to the functions un = supM∈U ûM

n,
where ûn denotes the l.s.c. regularization of the restriction of u to Hn. Let M ∈ G
and n be an integer, then the finely l.s.c. regularized ûM of uM is l.s.c. on Hn

according to Theorem 3.2 and minorizes uM , then ûM ≤ ûM
n in Hn. On the

other hand, according to the axiom D, there is a polar subset A of Ω such that
uM = ûM in U r A, then ûM

n ≤ ûM on Hn r A. Otherwise, if x ∈ A, we have
ûM

n
(x) ≤ ûM (x) because ûM is finely continuous on U and x belongs to the

fine closure of Hn r A since Hn is not thin at the point x. Hence un = lim înfG
in Hn for any n, and since the function u = lim înfG belongs to U+(U) by [17,
Theorem 12.9], we see that the ultrafilter G converges to u with respect to the
topology T . Hence U+(U) is compact in the topology T . �

Corollary 3.7. The topology of the convergence in graph coincides with the
natural topology on S(U).

Proof: According to Theorem 3.6 and Theorem 4.5.8 of [5], the natural topology
on S(U) is coarser than the topology of convergence in graph on S(U). Let G be
an ultrafilter on S(U) which converges with respect to the natural topology to
s ∈ S(U), then, always according to the previous theorem, G converges in graph
to s. We deduce that the topology in graph on S(U) is coarser than the natural
topology of S(U). So both topologies are identical on S(U). �

Corollary 3.8. Let F be a filter on S(U), which converges with respect to the

topology of the convergence in graph. Then we have limF = lim înfF .

Proof: The corollary follows from Corollary 3.7 and from [5, Theorem 4.5.2]. �

Corollary 3.9. The cone S(U) endowed with the natural topology has a compact
base.

Proof: The natural topology on S(U) is locally compact, then it follows from
a theorem by Klee, see [1, Theorem II.2.6], that S(U) has a compact base. �

Corollary 3.10. For any x ∈ U and for any subset A of U , the functions

u 7→ u(x) and u 7→ R̂A
u (x), with values in [0,∞], are affine and l.s.c. with re-

spect to the natural topology on S(U).

Proof: It is clear that the map u 7→ R̂A
u (x) is affine for fixed point x ∈ U . Let

(uj) be a sequence in S(U) which converges naturally (i.e. in natural topology)
to u ∈ S(U). For any integer k we have

înf
j≥k

R̂A
uj
(x) ≥ R̂A

înfj≥kuj
(x).
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Both members of this inequality increase with k and we have when k → ∞,

lim inf
k

R̂A
uk
(x) ≥ lim înf

k
R̂A

uk
(x) ≥ R̂A

lim înfuk
(x) ≥ R̂A

u (x),

and then the function u 7→ R̂A
u (x) is l.s.c. on S(U). For the function u 7→ u(x) it

suffices to take A = U . �

Let B be a compact base of the cone S(U) and µ a probability measure
on B. For any x ∈ U and any subset A of U , the integrals

∫
p(x) dµ(p) and∫

B
R̂A

p (x) dµ(p) are well defined because the functions u 7→ R̂A
u (x) are Borel

functions and nonnegative on B according to the previous corollary. We de-

note by
∫
p dµ(p) and

∫
B
R̂A

p dµ(p) the functions u and v defined on U by u(x) =∫
B
p(x) dµ(p) and v(x) =

∫
B
R̂A

p (x) dµ(p) for every x ∈ U . Let s be the barycen-

ter of µ, A ⊂ U and x ∈ U . The functions p 7→ p(x) and p 7→ R̂A
p (x) are non-

negative affine functions and l.s.c. on B, then, according to [1, Corollary I.1.4],
there are increasing sequences (fn) and (gn) of continuous affine forms on B

such that p(x) = supn fn(p) and R̂A
p (x) = supn gn(p) for any p ∈ B. Thus

we have s(x) = supn fn(s) = supn
∫
B fn(p) dµ(p) =

∫
B p(x) dµ(p) and R̂A

s (x) =

supn gn(s) = supn
∫
B
gn(p) dµ(p) =

∫
B
R̂A

p (x) dµ(p) by monotone convergence

theorem. We deduce that u = s and v = R̂A
s and consequently, u, v ∈ S(U).

Thus, we have proved the following theorem:

Theorem 3.11. Let B be a compact base of S(U), µ a Radon measure on B
and A a subset of U , and let s =

∫
B
p dµ(p). Then s is a finely superharmonic

function in U and R̂A
s =

∫
B
R̂A

p dµ(p). In particular the function
∫
B
R̂A

p dµ(p) is
finely superharmonic in U .

Theorem 3.12. Let B be a compact base of S(U) and u ∈ S(U). Then there
exists a unique Radon measure nonnegative µ on B supported by the set Ext(B)
of extreme elements of B such that u =

∫
B p dµ(p).

Proof: We may suppose that u 6= 0 (µ = 0 is the unique measure corresponding
to the case where u = 0), so that there is a real α > 0 such that αu ∈ B.
Since the cone S(U) is a lattice in its own order (the specific order) according
to [17, 11.15 a), page 131], then it follows from Choquet’s theorem of integral
representation that there exists a unique probability measure ν on B, carried by
Ext(B) (which is a Gδ set by a result of Choquet) and of barycenter ν. Then we
have αu =

∫
B p dν(p). The measure µ = (1/α)ν satisfies the conditions of the

theorem. �

The measure µ associated to u ∈ S(U) in the previous theorem will be called
the maximal measure representing u.
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4. Fine Green kernel and integral representation of fine potentials and

invariant functions

From now on we assume that Ω is a P-Brelot harmonic space with countable
base satisfying the domination axiom and the uniqueness hypothesis, that is, the
hypothesis of proportionality of the potentials of the same support reduced to
one point. According to [25, Theorem 18.1 and Proposition 18.1], Ω has a Green
kernel G, that is, a function G : Ω× Ω → R+ such that

1. For any y ∈ Ω, the function G(·, y) is a potential greater than 0 in Ω and
harmonic on Ωr {y}.

2. Function G is l.s.c. on Ω×Ω and continuous outside the diagonal of Ω×Ω.

Moreover, every potential p on Ω admits an integral representation p = Gµ :=∫
G(·, y) dµ(y), where µ is a (nonnegative) Radon measure on Ω (see [25, Théo-

rème 18.2, page 481]).
Assume further that the topology of Ω has a base formed by completely deter-

mining open subsets (cf. [25, Definition, page 451]). According to R.-M. Hervé
[25, Chapter VI] we can define on Ω a structure of (Brelot) adjoint harmonic
space, in which the function G∗ defined by G∗(x, y) = G(y, x) is a Green kernel.
We also assume that the adjoint harmonic space satisfies the axiom of domina-
tion, so that we can use the notions related to the adjoint fine potential theory
on adjoint finely open subsets of Ω.

To show the existence of a fine Green kernel greater than 0 on a fine domain U
of Ω in [18], B. Fuglede assumes that the fine topology and the adjoint fine topol-
ogy are identical. In the following we place ourselves in a somewhat more general
framework where we only assume that the fine topology is coarser than the adjoint
fine topology, or just only that U is an adjoint finely open set (that is, an open
set relatively to the adjoint fine topology). The results of the preceding sections
apply to this framework. We shall also show that the hypothesis that U is an
adjoint finely open set is necessary (and sufficient modulo an additional condition
(see Theorem 4.5 below)) for the existence of a fine Green kernel greater than 0
in U . This situation is a bit more general than the one considered by B. Fuglede
in [18].

Let U be a fine domain of Ω and we suppose, without loss of generality, that U

is regular. For any y ∈ U , the function R̂∁U
G(·,y) is finely harmonic on U if {y} is not

polar, and finely harmonic in Ur{y} if {y} is polar in view of [17, Theorem 11.13,
page 127]. We denote by GU (·, y) the finely superharmonic function in U , defined
on U r {y} by

GU (x, y) = G(x, y)− R̂∁U
G(·,y)(x),

and eventually extended by fine continuity at the point y if {y} is a polar set (cf.
[5, Theorem 9.15, page 98]).

Lemma 4.1. Let p =
∫
G(·, y) dµ(y) be a potential on Ω, harmonic outside

a compact subset K of Ω, where µ is a Radon measure on Ω. Then the measure
µ is supported by K.
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Proof: Let ω be a relatively compact open subset of Ω such that ω ⊂ Ω\K. We
have

∫
G(·, y) dµ(y) =

∫
ω G(·, y) dµ(y)+

∫
Ωrω G(·, y) dµ(y), and then the function∫

ω
G(·, y) dµ(y) is harmonic on the complement of K. On the other hand, it is

well known that the function
∫
ω
G(·, y) dµ(y) is harmonic on Ωrω, and therefore

on a neighborhood of K. It follows that the function
∫
ω G(·, y) dµ(y) is harmonic

in Ω. Hence it is null because it minorizes the potential p. It follows then that
µ(ω) = 0. Since the open set ω is arbitrary and the space Ω has a countable base,
then µ(ΩrK) = 0, that is, µ is supported by K. �

Lemma 4.2. The set A = {y ∈ U : GU (·, y) = 0} is polar.

Proof: Let us first prove that A is a Borel subset of Ω. In fact, let x ∈ U , then

we have Ar {x} =
{
y ∈ Ωr {x} : G(x, y) = R̂∁U

G(·,y)(x)
}
. Thus Ar {x} is a Borel

subset of Ω r {x} because the functions y 7→ G(x, y) and y 7→ R̂∁U
G(·,y)(x) are

Borel measurable (the first being continuous and the second is l.s.c. on Ω) and U
is a Borel subset of Ω since it is supposed regular. We deduce that A r {x} is
a Borel subset of Ωr {x}. Hence A is a Borel subset of Ω. Let K be a compact
subset of A and p a finite, continuous and strict potential in Ω. According to

[25, Théorème 18.2, page 481], there is a measure µ ≥ 0 such that R̂K
p = Gµ =∫

G(·, y) dµ(y). The function R̂K
p is harmonic in Ω r K, then the measure µ is

supported by K by the previous lemma. On the other hand, we have R̂∁U
R̂K

p

=
∫
R̂∁U

G(·,y)
dµ(y) by [25, Théorème 22.4, page 508] and the monotone convergence

theorem since ∁U is an Fσ . The measure µ is supported by K and for any y ∈ K

we have R̂∁U
G(·,y) = G(·, y) because U is assumed regular, then R̂K

p = R̂∁U
R̂K

p

. The

function R̂K
p is harmonic in Ω r K and the function R̂∁U

R̂K
p

is finely harmonic

in U , we deduce from the above equality that R̂K
p is finely harmonic in Ω, and

hence harmonic in Ω according to [17, Theorem 9.8, page 87] because it is locally

bounded. Since p is a potential and R̂K
p ≤ p, it follows that R̂K

p = 0, so that K
is polar according to the polarity criterion of [25, page 434]. Thus any compact
subset contained in A is polar. It follows from Choquet’s capacitability theorem
that A is polar because it is a Borel set, then analytic in the space with countable
base Ω. �

Corollary 4.3. Assume that the adjoint potentials on Ω of the same punctual
support are proportional. Then the set A = {x ∈ U : GU (x, ·) = 0} is polar.

Proof: It suffices to apply the previous lemma to the kernel G∗ and use the
relation between the balayage and adjoint balayage (cf. [25, page 550]), and the
fact that the polar sets and the adjoint polar sets in Ω are identical by [25,
Theorem 32.1]. �

Proposition 4.4. Suppose in addition that U is [also] an adjoint finely open
subset of Ω. Then we have GU (x, y) > 0 for any pair (x, y) ∈ U2.
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Proof: Let x ∈ U . According to Lemma 4.2, the set A = {z ∈ U :
GU (x, z) = 0} = {z ∈ U : GU (·, z) = 0} is polar. Since the polar sets and
the adjoint polar sets are identical by [25, Theorem 32.1], it follows that A is
adjoint polar, then the interior of A with respect to the adjoint fine topology is
empty. Let ω be an adjoint finely connected component of U , then ω r A 6= ∅,
and hence there exists z ∈ ω such that GU (x, z) > 0. The function y 7→ GU (x, y)
is adjoint finely superharmonic and nonnegative on U r {x} according to [25,
Lemma 30.1 and Theorem 31.1] and [17, Theorem 11.13, page 127]. It is not
identically zero on ωr{x}, and hence GU (x, y) > 0 for any y ∈ ωr{x} according
to [17, Theorem 12.6, page 150]. We deduce that GU (x, y) > 0 for any y ∈ U .
The proposition is proved. �

The following theorem can then be proved exactly as [18, Theorem, page 203]:

Theorem 4.5. Suppose that U is an adjoint finely open subset of U and, more-
over, that for any subset A of U , A′ ⊂ b∗(A). Then for any y ∈ U , the function
x 7→ GU (x, y) is a fine potential in U finely harmonic on U r {y}. Every fine
potential verifying this condition is of the form αGU (·, y) for some α > 0.

Remark 4.6. Without the additional condition that for every A ⊂ Ω, one has
A′ ⊂ b∗(A), we can only prove that GU (·, y) is a fine potential in U (finely
harmonic in U r {y} by definition of GU ). Indeed, let y ∈ U and let s be
a finely subharmonic function in U such that s ≤ GU (·, y), and q a finite po-
tential in Ω. Then for any integer n we have for any z ∈ ∂fU , s ≤ G(·, y) −

R̂∁U
G(·,y)∧nq = G(·, y) − H

U

G(·,y)∧nq on U , so that lim supx∈U→z s(x) ≤ G(z, y) −

lim infx∈U,x→z H
U

G(·,y)∧nq(x) = G(z, y) − G(z, y) ∧ nq(z), where the last equal-

ity follows from [17, Theorem 14.7]. We get lim supx∈U,x→z s(x) ≤ 0 by letting
n → ∞. It follows that s ≤ 0 by the minimum principle [17, Theorem 10.8].
Hence GU (·, y) is a fine potential.

Remark 4.7. Similarly, if again U is an adjoint finely open subset of Ω, then for
any x ∈ U , the function y 7→ GU (x, y) is an adjoint fine potential in U .

Definition 4.8. The function GU : (x, y) 7→ GU (x, y) defined on U2 is called the
fine Green kernel of U .

Proposition 4.9. The following statements are equivalent:

1. The function GU (·, y) > 0 for any y ∈ U .
2. The set U is an adjoint finely open subset of Ω.

Proof: The implication 2. ⇒ 1. was established in the proof of Proposition 4.4.
Let us prove the opposite implication. Suppose that GU (·, y) > 0 for any y ∈ U .

Let us put Ux =
{
y ∈ Ω r {x} : G(x, y) > R̂∁U

G(·,y)(x)
}
for any x ∈ U . Then Ux

is an adjoint finely open subset of Ω because the functions y 7→ G(x, y) and y 7→

R̂∁U
G(·,y)(x) are adjoint superharmonic by [25, Proposition 30.1], then continuous

in adjoint fine topology. Let x1, x2 ∈ U such that x1 6= x2, then we have for
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example y 6= x1 and hence y ∈ Ux1 . Anyway U = Ux1 ∪ Ux2 , and hence U is an
adjoint finely open subset of Ω. �

A function h ∈ S(U) is said to be invariant if it is orthogonal for the specific
order (order defined on the cone S(U)) to the band P(U) of all fine potentials
on U . The set of invariant functions of S(U) is denoted by Hi(U). It is a convex
cone and a band of S(U). Every function u ∈ S(U) has a unique decomposition
of the form u = p+ h, where p is a finely potential and h is an invariant function
on U . This decomposition is called the Riesz decomposition of nonnegative finely
superharmonic functions. Then the invariant functions play (for the nonnegative
finely superharmonic functions) the role of nonnegative harmonic functions in the
Riesz decomposition of nonnegative superharmonic functions on an open subset
with respect to the initial topology of Ω.

We shall say that a function u ∈ S(U) is extremal if it belongs to an extreme ray
of the cone S(U). It follows from the Riesz decomposition of finely superharmonic
functions that every extremal function of S(U) is either an invariant function or
a fine potential.

Proposition 4.10. Under the hypotheses of Theorem 4.5, the function GU (·, y)
is extremal for any y ∈ U .

Proof: Let u1, u2 ∈ S(U) such that u1 + u2 = GU (·, y), then u1 and u2 are fine
potentials finely harmonic in U r {y}. Hence, according to Theorem 4.5, u1 and
u2 are proportional to GU (·, y), thus GU (·, y) is extremal. �

The Lemma 2.1 in [12] contains, as well as its proof, some imperfections, and
the proofs of Theorem 2.3 and Theorem 2.4 in [12] are also incomplete and need
the following correct version of this lemma

Proposition 4.11. Let u, s ∈ S(U) such that s is finely harmonic outside a polar
set. Then s ≤ u if and only if s ≺ u.

Proof: Suppose that s ≤ u. There is a polar set E ⊂ U such that s is finely
harmonic on UrE, and hence u−s is finely superharmonic nonnegative on UrE.
According to [17, Theorem 9.14], u − s extends by fine continuity to a function
t ∈ S(U) such that t+ s = u on U rE and hence on all of U , whence h ≺ u. The
converse is obvious. �

Corollary 4.12. Let u ∈ S(U) and h be an invariant function. Then h ≤ u if
and only if h ≺ u.

Proof: By [17, Theorem 10.10] there is a polar set E ⊂ U such that h is finely
harmonic in U r E, hence h ≺ u by Proposition 4.11. �

Remark 4.13. Let u, v ∈ S(U) such that u ≺ v, that is v = u + w for some
w ∈ S(U). Then the function w is unique, we denote it by v − u. Furthermore
we have w(x) = u(x)− v(x) for every x ∈ {v < ∞}.
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Proposition 4.11 applies in particular when u = s|U and v = R̂∁U
s |U , where

s ∈ S(Ω), because, in view of [17, Theorem 11.13, page 127], R̂∁U
s is finely har-

monic outside the polar set where it takes the value ∞. The function s− R̂∁U
s is

also denoted by sU . It follows from fine minimum principle (cf. [17, Theorem 10.8,
page 106]) that sU is a fine potential in U if s is a potential in Ω.

Lemma 4.14. Let x0 ∈ U and A ⊂ U relatively compact in Ω such that

inf{GU (x0, y) : y ∈ A} = c > 0 and Ã ⊂ U . Then for any s ∈ S(U) such
that s(x0) < ∞, there exists a measure µ on Ω with support contained inA such
that s ≤ Gµ on U .

Proof: Let p be a finite potential greater than 0 on Ω. By Lemma 1.3 in [20]
and its proof, there is a sequence of potentials pn in Ω, harmonic in Ω rA such

that (pn)U ≺ U R̂A
s∧nq ≤ pn. By [25, Théorème 18.2, page 481], for each n ∈ N,

there is a (Radon) measure µn on Ω such that pn = Gµn. The measures µn

are carried by Ã and we have |µn| ≤ (1/c)GUµn(x0) ≤ s(x0) for every n ∈ N.
Hence there is a subsequence (µnk

) of (µn) which converges weakly to a measure µ

supported by A. By letting n → ∞ in the inequality U R̂A
s∧nq ≤ Gµn we obtain

U R̂A
s ≤ lim inf Gµnk

≤ Gµ on U and the proof is complete. �

Let s ∈ S(U), s > 0 and x0 ∈ U such that s(x0) < ∞. Consider a se-
quence of relatively compact open subsets ωn of Ω, n ≥ 1, such that

⋃
n ωn = Ω

and let us put E = {x ∈ U : s(x) = ∞}. For each integer n > 0 we put

Un = ωn∩{y ∈ U : GU (x0, y) > 1/n}, en = Un∩E and sn = înf{U R̂V
s : en ⊂ V ⊂

Un : V finely open set}. Suppose that the function y 7→ GU (x0, y) is finely con-

tinuous on U . Then the sets Un are finely open and for every n ≥ 1 Ũn ⊂ U . The
functions sn are finely harmonic outside polar subsets of U and we have sn ≤ s
and then sn ≺ s by Proposition 4.11. Let us also remark that by Lemma 4.14,
each function sn is majorized on U by a potential in Ω.

Lemma 4.15. For any potential p on Ω and any finely open set V ⊂ Ṽ ⊂ U , one
has:

1. U R̂UrV
p = R̂∁V

p on V .

2. U R̂UrV

R̂∁U
p

= R̂∁U
p on U .

Proof: Without loss of generality we may suppose that the constants are har-
monic on Ω.

1. Let s ∈ S(Ω) be such that s ≥ p on ∁V , then s ≥ p on U r V and hence

s ≥ U R̂UrV
p , whence R̂∁V

p ≥ U R̂UrV
p . For the opposite inequality let k be a real

number greater than 0 and s ∈ S(U) such that s ≥ p on U r V . The function

R̂∁V
p∧k is finely harmonic in V by [17, Corollary of Lemma 9.7, page 86], thus

the function s − R̂∁V
p∧k is finely superharmonic in V . For any z ∈ ∂fV , we have

lim infx∈V,x→z(s(x) − R̂∁V
p∧k(x)) = lim infx∈U,x→z(s(x) − R̂∁V

p∧k(x)) = s(z) − p ∧
k(z) ≥ 0. By the fine minimum principle [17, Theorem 10.8, page 106], we deduce
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that s ≥ R̂∁V
p∧k and conclude that U R̂UrV

p ≥ R̂∁V
p∧k on V . By letting k → ∞, we

obtain U R̂UrV
p ≥ R̂∁V

p on V . The requested equality is now proved.

2. It suffices to apply the first equality to the potential R̂∁U
p to obtain the

equality in V and use the property that R̂∁V
R̂∁U

p

= R̂∁U
p q.e. on ∁V . �

Proposition 4.16. In addition to the hypotheses of Theorem 4.5, suppose that
the adjoint fine topology on Ω is finer than the fine topology. Let (Un) be an

increasing sequence of finely open subsets of U such that Ũn ⊂ U for every

integer n and
⋃

n Un = U . Then for any y ∈ U we have înfnR̂
∁Un

G(·,y) = R̂∁U
G(·,y).

Proof: Let y be a fixed point in U . According to Proposition 4.11 and [17,

Theorem 11.13, page 127], we have R̂∁U
G(·,y) ≺ înfnR̂

∁Un

G(·,y) and then înfnR̂
∁Un

G(·,y) −

R̂∁U
G(·,y) ≤ GU (·, y). It follows by Remark 4.6 that înfnR̂

∁Un

G(·,y) − R̂∁U
G(·,y) is a fine

potential on U , finely harmonic on Ur{y}. In view of Theorem 4.5 there is a real

α ∈ [0, 1] such that înfnR̂
∁Un

G(·,y) − R̂∁U
G(·,y) = αGU (·, y) and hence

(4.1) înfnR̂
∁Un

G(·,y) = αG(·, y) + (1 − α)R̂∁U
G(·,y).

For any integer m and any x ∈ Um, x 6= y, x outside a polar subset e of U ,

R̂∁Um

înfnR̂
∁Un
G(·,y)

=

∫
înfnR̂

∁Un

G(·,y) dε
∁Um
x = înfn

∫
R̂∁Un

G(·,y) dε
∁Um
x

by Lebesgues convergence theorem. On the other hand we have
∫

R̂∁Un

G(·,y) dε
∁Um
x = R̂∁Um

R̂∁Un
G(·,y)

(x) = R̂∁Un

G(·,y)(x)

for any n ≥ m. Hence

R̂∁Un

înfnR̂
∁Un
G(·,y)

= înfnR̂
∁Un

G(·,y)

on U r e and therefore everywhere by fine continuity. Then it follows from (4.1)
that

înfnR̂
∁Un

G(·,y) = αînfnR̂
∁Un

G(·,y) + (1− α)R̂∁U
G(·,y),

and hence

(4.2) (1− α)înfnR̂
∁Un

G(·,y) = (1− α)R̂∁U
G(·,y).

According to (4.1) we have α < 1 because otherwise we would have

G(·, y) ≥ R̂∁Un

G(·,y) ≥ înfnR̂
∁Un

G(·,y) = G(·, y)

and hence G(·, y) = R̂∁Un

G(·,y) for any n such that y ∈ Un, which is absurd by

Proposition 4.9. Thus it follows from (4.2) that înfnR̂
∁Un

G(·,y) = R̂∁U
G(·,y). �
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Corollary 4.17. For any nonnegative Borel measure µ on U such that q =

Gµ 6= ∞, we have infn
U R̂UrUn

qU = 0 q.e. on U .

Proof: We have q = qU + R̂∁U
q on U and hence U R̂UrUn

q =U R̂UrUn
qU +U R̂UrUn

R̂∁U
q

.

By using Lemma 4.15 this yields R̂∁Un
q =U R̂UrUn

qU +U R̂∁U
q on Un for each n and

therefore înfnR̂
∁Un
q = înfn

U R̂UrUn
qU +U R̂∁U

q on U . Following Proposition 4.16, we

have înfnR̂
∁Un
q =U R̂∁U

q , hence înf
U

n R̂
UrUn
qU = 0 and, by the convergence theorem

for finely hyperharmonic functions, infn
U R̂UrUn

qU = 0 q.e. on U . �

Theorem 4.18. Let h ∈ S(U), x0 ∈ U be such that h(x0) < ∞ and (ωn)n≥1 an
increasing sequence of relatively compact subsets of Ω such that Ω =

⋃
n ωn. For

any integer n ≥ 1, put Un = {y ∈ U : GU (x0, y) > 1/n} ∩ ωn. Suppose that for
any x ∈ U , the function y 7→ GU (x0, y) is finely continuous on U , and that the
adjoint fine topology is finer than the fine topology on Ω. Then h is invariant if

and only if U R̂UrUn

h = h for every n.

Proof: Assume that h is invariant and let n ∈ N∗. We have h ≤ U R̂Un

h +U R̂UrUn

h .
By the Riesz decomposition property there exist h1, h2 ∈ S(U) such that h =

h1 + h2 and h1 ≤U R̂Un

h , h2 ≤ U R̂UrUn

h . Since h is invariant we infer that h1 and
h2 are invariant and, by Lemma 4.14, h1 is majorized by a potential in Ω. Let

q = R̂Un

h1
in S(Ω). Then q is a potential in Ω and hence it is of the form q = Gλ

for some measure λ on Ω carried by Ũn according to [25, Corollaire 2, page 552]
and [17, 4.8, page 37] (indeed, λ is carried by the adjoint fine closure of Un which

in turn is contained in Ũn because the adjoint fine topology is supposed to be

finer than the fine topology). On the other hand, we have q = qU + R̂∁U
q on U

and qU is a fine potential in U . Hence h1 = t1 + t2 where t1, t2 ∈ S(U) are such

that t1 ≤ qU and t2 ≤ R̂∁U
q . The function h1 is invariant, then t1 is invariant and

thus t1 ≺ qU following Corollary 4.12. Since qU is a fine potential, we deduce that

t1 = 0. It follows that h1 ≤ R̂∁U
q and hence R̂∁U

q = q = Gλ and the measure λ,

carried by Ũn, is also carried by ∁U , so that λ = 0 and q = 0 and therefore

h = h2 ≤U R̂UrUn

h , whence h =U R̂UrUn

h .

Conversely, suppose that U R̂UrUn

h = h for every n ≥ 1. By the Riesz decom-
position we have h = p+ k where p is a fine potential and k an invariant function

on U . It follows that U R̂UrUn
p = p for every integer n ≥ 1 and then p is finely

harmonic outside a polar subset of U by [17, Theorem 10.2]. Let pn, n ≥ 1,
the potentials associated with s = p, using the notations following the proof of
Lemma 4.14. Suppose that pk 6= 0 for some k ≥ 1: By Lemma 4.14, there is

a measure µ carried by Ũk such that pk ≤ q = Gµ. We have pk ≺ p, so that
U R̂UrUn

pk
= pk for any n ≥ 1. On the other hand, we have pk ≤ qU + R̂∁U

q , and

hence, by Corollary 4.17, pk ≤ U R̂UrUn
qU + R̂∁U

q for every integer n ≥ 1. This

implies that qU = 0 because înf
U

n R̂
UrUn
q = 0 according to Corollary 4.17. Hence
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R̂∁U
Gµ = Gµ, which implies that µ is supported by ∁U , so that µ = 0 since µ is

also supported by Ũk ⊂ U , which is a contradiction with pk 6= 0. It follows that
pn = 0 for every n ≥ 1. Then there exists x1 ∈ U such that for any n ≥ 1, there is

a finely open set Vn such that en ⊂ Vn ⊂ Un and U R̂Vn
p (x1) < 1/2n. The function

t =
∑

n
U R̂Vn

pn
is a fine potential in U by [17, Remark, page 105] and we have

p ≤ t in
⋃

n Vn, and hence in
⋃̃
Vn ∩ U by fine continuity. The inequality p ≤ t

in U r
⋃̃
Vn follows by the fine minimum principle applied to the finely superhar-

monic function t − p in U r
⋃̃
Vn. Putting q = R̂U

p , we have p ≤ qU + R̂∁U
q and

hence, again by Lemma 4.15 and Corollary 4.17, p =U R̂UrUn
p ≤ U R̂UrUn

qU + R̂∁U
q

for every integer n ≥ 1. By proceeding as above for pk, we show that q = 0 and
therefore p = 0, so that h = k is invariant. �

Proposition 4.19. Let p be an extremal fine potential in U , majorized on U by
a potential in Ω. Then p is of the form αGU (·, y) for some α ≥ 0 and y ∈ U .

Proof: We may suppose p > 0. By the hypothesis the function P = R̂U
p is

a potential on Ω and we have p ≤ P on U . Let P1, P2 ∈ S(Ω) be such that
P = P1 + P2 and P1 6= P2. By the Riesz decomposition property there are two
potentials p1, p2 on U such that p = p1 + p2 and p1 ≤ P1 and p2 ≤ P2. Since p
is extremal, there is a real β ∈ [0, 1] such that p1 = βp and p2 = (1 − β)p. Thus

we have P ≤ R̂U
p1

+ R̂U
p2

≤ P1 + P2 = P an hence P1 = βP and P2 = (1 − β)P

because P1 ≥ R̂U
p1

= βP and P2 ≥ R̂U
p2

= (1− β)P . It follows that P is extremal
in S(Ω) and thus it is of the form αG(·, y) for some α > 0 and y ∈ Ω. By the Riesz

decomposition property applied to the inequality p ≤ αGU (·, y) + αR̂G(·,y), we
get y ∈ U and p = αG(·, y)U = αGU (·, y) because p is a fine potential on U . �

Theorem 4.20. Suppose that, in addition of the hypotheses of Theorem 4.5, for
every x ∈ U , the function y 7→ GU (x, y) is finely continuous on U . Then a fine
potential p on U is extremal if and only if it is of the form αGU (·, y) for some
y ∈ U and a real α ≥ 0.

Proof: Suppose that p is not majorized on U by a potential in Ω and let x0 ∈ U
such that p(x0) < ∞, and (Un)n≥1 the sequence of finely open subsets of U from

Theorem 4.18. For any integer n ≥ 1 we have p ≤U R̂Un
p +U R̂UrUn

p , and by the
Riesz decomposition property there are p1, p2 ∈ S(U) such that p = p1 + p2 and

p1 ≤ U R̂Un
p and p2 ≤ U R̂UrUn

p . Since p is extremal there is a real α ∈ [0, 1] such
that p1 = αp and p2 = (1 − α)p. We have necessarily α = 0 because otherwise
p would be majorized on U by a potential in Ω according to Lemma 4.14, and

hence p = U R̂UrUn
p . But it follows from Theorem 4.18 that p is invariant, which

is a contradiction. Hence p is majorized on U by a potential in Ω and the theorem
follows from Proposition 4.19. �

Definition 4.21. An invariant function h ∈ S(U) is termed minimal if it is
extremal, that is h belongs to an extreme ray of the cone S(U).
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5. Martin boundary of a fine domain and integral representation of in-

variant functions

All the results of this section were obtained in the classical case in [14] and they
are stated in this section in the general framework considered in this paper with
necessary adaptations. We assume that the adjoint fine topology is finer than the
fine topology on Ω (in particular U is also an adjoint finely open set), we denote
by GU the Green kernel of U and we also assume that for any x ∈ U the function
y 7→ GU (x, y) is finely continuous on U .

Let B be a compact base of the cone S(U) and Φ be a nonnegative continuous
affine form on S(U) such that

B = {u ∈ S(U) : Φ(u) = 1}.

Then Φ(u) > 0 except for u = 0. Consider the mapping ϕ : U −→ B defined by

ϕ(y) = Py =
GU (·, y)

Φ(GU (·, y))
,

and identify y ∈ U with ϕ(y) = Py ∈ B and then U with ϕ(U). The topology
induced on U by that of B will be called the natural topology.

We denote by U the closure of U in B (with respect to the natural topology),
and put ∆(U) = U r U . Then U is compact in B, we will call it the Martin
compactification of U , and ∆(U) will be called the Martin boundary of U .

If B and B′ are two compact bases of S(U), the Martin compactifications of U
relative to B and B′ are clearly homeomorphic.

Throughout the rest of this article, we fix a base B of the cone S(U) and
a continuous affine form Φ: S(U) −→ [0,∞[ defining this base, that is, such that
B = {u ∈ S(U) : Φ(u) = 1}. The Martin compactification U ⊂ B and the Martin
boundary ∆(U) = U r U of U will be considered with respect to the base B.

We shall say that a nonnegative measure on B is carried (or supported) by
a Borel subset A of B if µ(B rA) = 0.

We denote by Ext(B) the set of extreme elements of B and we put Extp(B) =
P(U) ∩ Ext(B) and Exti(B) = Hi(U) ∩ Ext(B). Let us recall that since B is
metrizable, then by a result of G. Choquet, Ext(B) is a Gδ of B.

Remark 5.1. According to Theorem 4.20, we have Extp(B) = U .

Proposition 5.2. Let (An) be an increasing sequence of compact subsets of Ω
such that

⋃
n An = Ω. For any real α > 0 and any integer l, the set Aα,l = {y ∈ U :

Φ(GU (·, y)) ≥ α} ∩ Al is compact with respect to the natural topology.

Proof: Let (yn) be a sequence of points of Aα,l. According to the compactness
of S(U) ∪ {∞} and Al, we can find a subsequence (ynk

) of (yn) which converges

to a point y of Al such that the sequences (GU (·, ynk
)) and (R̂∁U

G(·,ynk
)) converge,

respectively, in U+(U) = S(U) ∪ {∞} to a function s and lim înfR̂∁U
G(·,ynk

). Both
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these functions belong to S(U) and we have

s+ lim înfR̂∁U
G(·,ynk

) = G(·, y).

Since we have lim înfR̂∁U
G(·,ynk

) ≥ R̂∁U
G(·,y), then s ≤ G(·, y) − R̂∁U

G(·,y) = GU (·, y).

Hence the function s is a fine potential on U , finely harmonic on U \ {y} because
s ≺ G(·, y)|U . We deduce by Theorem 4.5 that s = γGU (·, y) for some γ ∈ [0, 1].
Furthermore, we have Φ(s) ≥ α, then s > 0 and consequently γ > 0, and we
have Φ(GU (·, y)) = (1/γ)Φ(s) ≥ α. Hence y ∈ Aα,l. It follows then that Aα,l is
compact. �

Proposition 5.3. The set U = Extp(B) is a Kσ-set and Exti(B) is a Gδ set
of B.

Proof: Indeed we have Extp(B) = U =
⋃

k∈N∗,l∈N
A1/k,l according to Theo-

rem 4.20, where Aα,l are the compact sets of Proposition 5.2. Then Extp(B) is
a Kσ. On the other hand, we have Exti(B) = Ext(B) r Extp(B) and since B is
metrizable Ext(B) is a Gδ-set, thus Exti(B) is a Gδ set of B. �

Proposition 5.4. Let µ be a probability measure on B carried by Ext(B) and
s the barycenter of µ. Then s is a fine potential or an invariant function if and
only if µ is supported by Extp(B) or Exti(B), respectively.

Proof: We shall prove only that s is an invariant function if and only if µ is sup-
ported by Exti(B). Let x0 ∈ U and (Un) be the sequence of finely open subsets of
Theorem 4.18. We have s =

∫
B
u dµ(u) =

∫
Extp(B)

p dµ(p)+
∫
Exti(B)

k dµ(k). If µ

is supported by Exti(B), we have s =
∫
Exti(B) k dµ(k), and then for any n > 0, we

have, according to Theorem 4.18 and Theorem 3.11, R̂UrVn
s =

∫
Exti(B) R̂

UrVn

k =∫
k dµ(k) = s, and consequently, s is invariant according to Theorem 4.18. Con-

versely, if s is invariant, we have R̂UrVn
s = s and R̂UrVn

k = k for any integer n

and any function k ∈ Exti(B). Hence
∫
R̂UrVn

u dµ(u) =
∫
u dµ(u), whence for ev-

ery n, R̂UrVn
u = u µ-a.e. It follows that R̂UrVn

u = u µ-a.e. for all n, and therefore
µ is supported by Exti(B) by virtue of Theorem 4.18. �

Definition 5.5. A point Y ∈ ∆(U) is termed minimal if the function K(·, Y ) is
minimal, that is, it belongs to an extreme ray of the cone S(U).

We have Ext(B) ⊂ U and, by Theorem 4.20, Extp(B) = U . It follows that

Exti(B) ⊂ U r U = ∆(U). Put ∆1(U) = Exti(B) ∩ ∆(U). The set ∆1(U) is
called the minimal Martin boundary of U .

Corollary 5.6. The sets ∆(U) and ∆1(U) are Gδ-sets of U .

Proof: Indeed we have ∆1(U) = Exti(B) and ∆(U) = BrExtp(U). Both these
sets are Gδ-set by Proposition 5.3. �
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Theorem 5.7. Let s ∈ P(U) or s ∈ Hi(U). Then there exists a unique measure
µ ≥ 0 on B supported by Extp(B), or Exti(B), respectively, such that s =∫
B
u dµ(u).

Proof: Let s ∈ S(U). According to Theorem 3.12, there exists a unique Radon
measure µ ≥ 0 on B supported by Ext(B) such that s =

∫
B
u dµ(u) = p+h, where

p =
∫
Extp(B)

u dµ(u) and h =
∫
Exti(B)

u dµ(u). It follows from Proposition 5.4

that p is a fine potential and h is an invariant function. Moreover we have p ≺ s
and h ≺ s. Suppose that s is a fine potential, then h = 0 and hence s =∫
Extp(B)

u dµ(u). By the uniqueness of integral representation, we necessarily

have µ = 1Extp(B)µ and consequently, µ is supported by Extp(B). Similarly, if s
is an invariant function, then p = 0 and µ is supported by Exti(B). �

Proposition 5.8. With the notations from Proposition 5.2 for any α > 0 and any
integer l, the function g : Aα,l −→ S(U) defined by g(y) = GU (·, y) is continuous
with respect to the initial topology.

Proof: Let (yn) be a sequence of points of Aα,l which converges with respect to
the initial topology to y ∈ Aα,l. Since Aα,l is compact with respect to the natural
topology, for any cluster value z of (yn) in the closure of Aα,l with respect to the
natural topology, one can extract from (yn) a subsequence (y′n) which converges
with respect to the natural topology to the point z. Reasoning as in the proof of
Proposition 5.2, it follows that y = z and consequently, limn GU (·, yn) = GU (·, y)
in S(U). �

Corollary 5.9. Let x ∈ U . Then U ∋ y 7→ GU (x, y) and U ∋ y 7→ Φ(GU (·, y))
are Borel functions.

Corollary 5.10. Any Borel subset with respect to the natural topology of U is
a Borel subset of U with respect to the initial topology.

As a consequence of Theorem 5.7, we have the integral representation theorem
of Fuglede given in the classical case in [22]:

Theorem 5.11. Let p be a fine potential on U . Then there exists a unique
positive Borel measure µ on U such that

p(x) =

∫
GU (x, y) dµ(y) ∀x ∈ U.

Proof: According to Theorem 5.7 there exists a unique measure ν on B sup-
ported by Extp(U) such that

p =

∫

Extp(B)

q dν(q) =

∫

U

GU (·, y)

Φ(G(·, y))
dν(y),

the second equality by Theorem 4.18. For any x ∈ U the functions GU (x, y) and
Φ(GU (·, y)) are Borel functions on U with respect to the natural topology, then
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with respect to the initial topology according to Corollary 5.10. The measure
µ =

(
1/Φ(G(·, y))

)
ν satisfies the conditions of the theorem. �

For any Y ∈ U consider the function K(·, Y ) ∈ B ⊂ S(U) r {0} defined on U
by K(x, Y ) = ϕ(Y )(x) if Y ∈ U and K(·, Y ) = Y if Y ∈ ∆(U). It is clear that
the mapping Y 7−→ K(·, Y ) is a bijection of U on itself.

Definition 5.12. The function K : U × U −→ ]0,∞] defined by K(x, Y ) =
K(·, Y )(x) is called the (fine) Riesz-Martin kernel of U , and its restriction to
U ×∆(U) is called the (fine) Martin kernel of U .

Proposition 5.13. The (fine) Riesz-Martin kernel K : U × U −→ ]0,∞] has the
following properties, U being endowed with the natural topology:

(i) For any x ∈ U , K(x, ·) is l.s.c. on U .
(ii) For any Y ∈ U , K(·, Y ) ∈ S(U) is finely continuous on U .
(iii) The kernel K is l.s.c. on U ×U when U is endowed with the fine topology

and U is endowed with the natural topology.

Proof: The property (i) follows from Corollary 3.10 applied to u = K(·, Y ),
where K(·, Y ) is identified to Y . The property (ii) is obvious. Let us prove
the property (iii). Let x0 ∈ U , Z ∈ U , and (Vj) be a fundamental system of

neighborhoods of Z in U such that Vj+1 ⊂ Vj for any j. Given some constant
c > 0, consider the increasing sequence of functions

kj := infY ∈Vj
K(·, Y ) ∧ c

and their l.s.c. regularizatione k̂j ∈ S(U). According to the Brelot property,
cf. [19, Lemma, page 114], there is a fine neighborhood H of x0 in U such that H
is compact with respect to the initial topology and the restrictions of functions

k̂j ∈ S(U) and K(·, Z)∧ c ∈ S(U) to H are continuous on H (with respect to the
initial topology). From the property (i) we have on U

K(·, Z) ∧ c = lim inf
Y→Z

K(·, Y ) ∧ c = sup
j

inf
Y ∈Vj

K(·, Y ) ∧ c,

which is quasi-everywhere, and then everywhere on U equal to supj înf
Y ∈Vj

K(·, Y )∧

c ∈ S(U). According to Corollary 3.8 and the Dini theorem, there exists for any
ε > 0 an integer j0 > 0 such that

K(·, Z) ∧ c = sup
j

înf
Y ∈Vj

K(·, Y ) ∧ c = sup
j

k̂j < k̂i + ε

on H for any i ≥ j0. For any fine neighborhood W of x0 such that W ⊂ H we
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have

inf
x∈W, Y ∈Vj

K(x, Y ) ∧ c = inf
x∈W

kj(x) ≥ inf
x∈W

k̂j(x)

≥ inf
x∈W

K(x, Z) ∧ c− ε ≥ K(x0, Z) ∧ c− 2ε

for j ≥ j0. The assertion (iii) follows by taking ε → 0 and c → ∞. �

Remark 5.14. As in the classical case, a set A ⊂ U is said to be an quasi-
Borel subset if it differs only by a polar set (with respect to the initial topology)
from a Borel subset of U . We denote by B(U), or B∗(U), the σ-algebra (with
respect to the initial topology) of Borel subsets of U or quasi-Borel subsets of U ,
respectively. Any finely open subset V ⊂ U is an quasi-Borel subset because its
regularization r(V ) is an Fσ (with respect to the initial topology) and r(V ) r V
is a polar set. It follows that any open subset W of U × U , where U is endowed
with the fine topology and U with the natural topology, belongs to the σ-algebra
B∗(U)× B(U) generated by the sets A1 ×A2 where A1 ∈ B∗(U) and A2 ∈ B(U),
that is, A2 is a Borel subset of U with respect to the natural topology. According
to Proposition 5.13 (iii), any subset of the form {(x, Y ) ∈ U × U : K(x, Y ) > α},
α ∈ R, is an open subset of U × U , and then belongs to B∗(U) × B(U). This
means that the Riesz-Martin kernel K is measurable relatively to B∗(U)×B(U).

The following theorem and its corollary are easy consequences of Theorem 5.7:

Theorem 5.15. For any invariant function u ∈ S(U), there exists a unique
Radon measure µ on U supported by ∆1(U) such that u =

∫
K(·, Y ) dµ(Y ).

Corollary 5.16. For any function u ∈ S(U), there exists a unique Radon measure
µ on U supported by U ∪∆1(U) such that u =

∫
K(·, Y ) dµ(Y ).

6. Brelot decomposition of nonnegative finely superharmonic func-

tions

In [7], M. Brelot proved that if u ∈ S(Ω) and A ⊂ Ω, then u has a decom-

position u = u1 + u2, where R̂A
u1

= u1 and R̂∁A
u2

= u2, with uniqueness of the
decomposition if we take for u2 the greatest specific minorant v of u which is self-

reduced on ∁A, that is, R̂∁A
v = v. As an application of the integral representation

we shall extend this result to nonnegative finely superharmonic functions.

Lemma 6.1. Let u be an extremal element of S(U) and A ⊂ U . Then we have

u = R̂A
u or u = R̂UrA

u .

Proof: Suppose that u 6= R̂A
u (and then in particular u 6= 0) and let f = u− R̂A

u

(understood as 0 at points where R̂A
u (x) = ∞). Then R̂f > 0 and we have R̂f ≺ u

according to the lemma of [17, page 129]. Since u is extremal, we have u = αR̂f ,
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with α > 0. On the other hand, since f = 0 q.e. on A then R̂f = R̂UrA
f and

consequently, R̂f = R̂UrA

R̂f

. Hence u = R̂UrA
u . �

Proposition 6.2. Let B be a compact base of the cone S(U) and A ⊂ U . Then

the set ExtA(B) =
{
u ∈ Ext(B) : R̂A

u = u
}
is a Borel subset of B.

Proof: We may suppose that the constants are superharmonic. Let τ be the
measure of the base of the resolvent (Vλ) of Section 2. Without loss of generality
we may suppose that the constants are τ -integrable. Since two positive superhar-
monic functions equal τ -a.e. are necessarily equal everywhere, we have ExtA(B) =⋂

n Cn, where for any integer n, Cn =
{
u ∈ B :

∫
u∧ n dτ =

∫
R̂A

u ∧ n dτ
}
. Then

it suffices to show that for any n the set Cn is a Borel subset of B. But this

follows from the fact that the functions u 7→
∫
u ∧ n dτ and u 7→

∫
R̂A

u ∧ n dτ are
l.s.c. on B as easily shown by application of Fatou lemma and Corollary 3.10. �

We say that u is selfreduced on A ⊂ U if R̂A
u = A.

Theorem 6.3. Let u ∈ S(U) and A ⊂ U . Then there exists a decomposition
u = u1 + u2 of u in S(U) such that

1. The function u1 is selfreduced on A.
2. The function u2 is selfreduced on U rA.

Proof: Let u ∈ S(U) and µ be the maximal measure on B representing u. We
have u =

∫
Ext(B)

p dµ(p) =
∫
ExtA(B)

p dµ(p) +
∫
Ext(B)rExtA(B)

p dµ(p) in view

of Proposition 6.2. According to Lemma 6.1 we have Ext(B) = ExtA(B) ∪

ExtUrA(B), and for any p ∈ Ext(B) r ExtA(B), we have R̂UrA
p = p. Put

u1 =
∫
ExtA(B) p dµ(p) and u2 =

∫
Ext(B)rExtA(B) (these integrals are well de-

fined according to Proposition 6.2). Then we have u = u1 + u2 and, by The-

orem 3.11, R̂A
u1

=
∫
ExtA(B)

R̂A
p dµ(p) =

∫
ExtA(B)

p dµ(p) = u1 and R̂UrA
u2

=
∫
Ext(B)rExtA(B) R̂

UrA
p dµ(p) =

∫
Ext(B)rExtA(B) p dµ(p) = u2. �

Remark 6.4. We have uniqueness in the decomposition of u in the preceding
theorem if we impose on u2 (or u1) to be the specific greatest minorant of u which
is selfreduced on U rA (or A, respectively).

7. Approximation of invariant functions by finely harmonic functions

If U = D ∪ ∂iD, where D is a non regular domain of R2, then any minimal
invariant function u on U = D ∪ ∂iD is finely harmonic according to a theorem
of M. Brelot (cf. [6, Section 7]). Indeed, the restriction h of u to D is invariant
by [14, Theorem 2.6 (a)], and hence harmonic since D is open in the initial
topology. In fact, the positive finely superharmonic functions on D (or the fine
potentials on D), are the same as the usual positive superharmonic functions
(the usual potentials, respectively), according to [17, Teorems 9.8 and 10.13 (and
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Section 10.4)]; hence the invariant functions on D are the same as the positive
harmonic functions there. Next, h is minimal harmonic on D. In fact, let h =
h1 + h2 with h1, h2 harmonic nonnegative on D. Since ∂iD is polar, h1 and h2

extend by the removable singularities theorem [17, Theorem 9.14] to positive finely
superharmonic u1 and u2 on U , specifically majorized by u and hence likewise
invariant on U . By minimality of u we conclude that u1 = (1− α)u and u2 = αu
for some α ∈ [0, 1], and hence h1 = (1−α)h and h2 = αh, showing that indeed h
is minimal harmonic in D.

For any point x0 ∈ ∂iD it now follows from M. Brelot [6, Section 7] (see
also [24, Quesion 2]) that if fine limx→x0 h(x) = ∞, that is u(x0) = ∞, then
u is positive constant multiple of GU (·, x0), which is a fine potential on U and
hence vanishes there because u is also invariant. But this contradicts the fact
that u(x0) = ∞. Hence u(x0) < ∞, and therefore u is bounded on some fine
neighborhood of x0, then u is finely harmonic on the finely open set D ∪ {x0}
according to the removable singularity theorem for finely harmonic functions [17,
Theorem 9.15]. We deduce that u is finely harmonic on some finely open set
containing x0, and hence on all of U , by varying x0 and recalling that h is harmonic
on D.

Returning to an arbitrary fine domain U in the setting of a P-Brelot space
satisfying the axiom D, the above example suggests to ask the following question:
If any minimal invariant function on U is finely harmonic, is then any invariant
function on U the sum of a sequence of nonnegative finely harmonic functions
on U (equivalently: is any invariant function the pointwise limit of an increasing
sequence of nonnegative finely harmonic functions on U)?

In this section we give a partial answer to this question (Theorem 7.2). More
precisely, we shall show, under the hypotheses of Section 5, that if any minimal
invariant function on U is finely harmonic on U , then any invariant function on U
is approachable in the natural topology by nonnegative finely harmonic functions
nonnegative on U .

In this section we assume that the adjoint fine topology is finer than the fine
topology on Ω (in particular U is also an adjoint finely open set), we denote by
GU the Green kernel of U and we also assume that for any x ∈ U the function
y 7→ GU (x, y) is finely continuous.

Proposition 7.1. Let K ⊂ U be compact with respect to the natural topology
such that K ⊂ Exti(B) and HK(U) the set of invariant functions of the form∫
k dµ(k), where µ is a probability measure on K. Then HK(U) is a compact

convex subset of B and Ext(HK(U)) = Ext(B) ∩HK(U).

Proof: It is clear that HK(U) is convex. It remains to prove that it is compact.
Let (µj) be a sequence of probability measures on K. We can extract from the
sequence (µj) a subsequence νj which converges vaguely to a probability mea-
sure µ on K. For any continuous affine form l on B, we have l

( ∫
K
k dµ(k)

)
=∫

K l(k) dµ(k) = limj l
( ∫

K k dνj(k)
)
= l

(
limj

∫
K k dνj(k)

)
, and therefore it fol-

lows
∫
K k dµ(k) = limj

∫
K k dνj(k) ∈ HK(U). It hence follows that HK(U) is
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compact. The inclusion Ext(B) ∩ HK(U) ⊂ Ext(HK(U)) is obvious. Let us
prove the opposite inclusion. Let h ∈ Ext(HK(U)), and u, v ∈ S(U) such that
h = u+ v. We can find two finite measures σ and τ on B, supported by Exti(B)
such that u =

∫
B k dσ(k) and v =

∫
B k dτ(k), and a measure µ on K such that

h =
∫
K

dµ(k). According to the uniqueness of the integral representation in
the Choquet’s theorem, we have µ = σ + τ , and then σ and τ are supported
by K, and consequently, u, v ∈ HK(U). Since h ∈ Ext(HK(U)), we deduce that
u and v are proportional to h and then h ∈ Ext(B). This proves the inclusion
Ext(HK(U)) ⊂ Ext(B) ∩HK(U), and hence the required equality holds. �

Theorem 7.2. Suppose that any minimal invariant function on U is finely har-
monic, then any invariant function on U is limit (in the natural topology) of
a sequence of finely harmonic functions on U .

Proof: Let h be an invariant function, h > 0, and µ the measure on B supported
by Exti(B) which represents h (Theorem 5.7). We can find a sequence (Kn)n∈J ,
J ⊂ N possibly finite, of compact pairwise disjoint subsets of B, contained in
Exti(B) and such that µ(B) = µ

(⋃
n Kn

)
and µ(Kn) > 0 for any integer n ∈ J .

Thus we have h =
∑

n∈J

∫
Kn

k dµ(k) =
∑

n∈J µ(Kn)b(µn), where µn is the prob-

ability measure (1/µ(Kn))1Kn
· µ and b(µn) its barycenter (cf. [1, page 12]). For

any integer n we have b(µn) ∈ HKn
(U) because HKn

(U) is convex. According to
the Krein–Milman theorem, the function hn = b(µn) is a limit of a sequence (hi

n)
of affine combinations of extreme elements of HKn

(U), which are finely harmonic
functions according to the preceding proposition and the hypothesis of the the-
orem. It follows that h =

∑
n µ(Kn)hn is the limit (in the natural topology) of

a sequence of finely harmonic functions on U . �

Remark 7.3. Theorem 7.2 is not a direct consequence of the Krein–Milman
theorem, because B ∩ Hi(U) is not compact if U is not an open set relative to
initial topology.

Corollary 7.4. Let D be a non regular bounded open subset of R2, and U =
D∪∂i(D). Then any invariant function on U is the limit (in the natural topology)
of a sequence of finely harmonic functions on U .

Proof: In fact, as explained in the beginning of the present section, any minimal
invariant function on U is finely harmonic, and the result follows immediately from
the preceding theorem. �
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