Commentationes Mathematicae Universitatis Caroline

Nobuyuki Kemoto
Countable compactness of lexicographic products of GO-spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 60 (2019), No. 3, 421-439
Persistent URL: http://dml.cz/dmlcz/147853

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

Countable compactness of lexicographic products of GO-spaces

Nobuyuki Kemoto

```
Abstract. We characterize the countable compactness of lexicographic products of GO-spaces. Applying this characterization about lexicographic products, we see:
- the lexicographic product \(X^{2}\) of a countably compact GO-space \(X\) need not be countably compact,
- \(\omega_{1}^{2}, \omega_{1} \times \omega,(\omega+1) \times\left(\omega_{1}+1\right) \times \omega_{1} \times \omega, \omega_{1} \times \omega \times \omega_{1}, \omega_{1} \times \omega \times \omega_{1} \times \omega \times \cdots, \omega_{1} \times \omega^{\omega}\), \(\omega_{1} \times \omega^{\omega} \times(\omega+1), \omega_{1}^{\omega}, \omega_{1}^{\omega} \times\left(\omega_{1}+1\right)\) and \(\prod_{n \in \omega} \omega_{n+1}\) are countably compact,
\(\circ \omega \times \omega_{1},(\omega+1) \times\left(\omega_{1}+1\right) \times \omega \times \omega_{1}, \omega \times \omega_{1} \times \omega \times \omega_{1} \times \cdots, \omega \times \omega_{1}^{\omega}, \omega_{1} \times \omega^{\omega} \times \omega_{1}\), \(\omega_{1}^{\omega} \times \omega, \prod_{n \in \omega} \omega_{n}\) and \(\prod_{n \leq \omega} \omega_{n+1}\) are not countably compact,
- \([0,1)_{\mathbb{R}} \times \omega_{1}\), where \([0,1)_{\mathbb{R}}\) denotes the half open interval in the real line \(\mathbb{R}\), is not countably compact,
- \(\omega_{1} \times[0,1)_{\mathbb{R}}\) is countably compact,
- both \(\mathbb{S} \times \omega_{1}\) and \(\omega_{1} \times \mathbb{S}\) are not countably compact,
- \(\omega_{1} \times\left(-\omega_{1}\right)\) is not countably compact, where for a GO-space \(X=\left\langle X,<_{X}, \tau_{X}\right\rangle,-X\) denotes the GO-space \(\left\langle X,>_{X}, \tau_{X}\right\rangle\).
```

Keywords: lexicographic product; GO-space; LOTS; countably compact product
Classification: 54F05, 54B10, 54B05, 54C05

1. Introduction

Lexicographic products of LOTS's were studied in [2] and it was proved:

- a lexicographic product of LOTS's is compact if and only if all factors are compact;
- a lexicographic products of paracompact LOTS's is also paracompact.

Recently, the author defined the notion of the lexicographic product of GOspaces and extended the results above for GO-spaces, see [6], [7]. It is also known:

- the usual Tychonoff product of GO-spaces is countably compact if and only if all factors are countably compact, therefore the usual Tychonoff product ω_{1}^{γ} is countably compact for every ordinal γ;
- the lexicographic product ω_{1}^{ω} is countably compact, but the lexicographic product $\omega_{1}^{\omega+1}$ is not countably compact, see [4].

In this paper, we will characterize the countable compactness of lexicographic products of GO-spaces, further we give some applications.

When we consider a product $\prod_{\alpha<\gamma} X_{\alpha}$, all X_{α} are assumed to have cardinality at least 2 with $\gamma \geq 2$. Set theoretical and topological terminology follow [9] and [1].

A linearly ordered set $\left\langle L,<_{L}\right\rangle$ has a natural topology λ_{L}, which is called an interval topology, generated by $\left\{(\leftarrow, x)_{L}: x \in L\right\} \cup\left\{(x, \rightarrow)_{L}: x \in L\right\}$ as a subbase, where $(x, \rightarrow)_{L}=\left\{z \in L: x<_{L} z\right\},(x, y)_{L}=\left\{z \in L: x<_{L} z<_{L} y\right\}$, $(x, y]_{L}=\left\{z \in L: x<_{L} z \leq_{L} y\right\}$ and so on. The triple $\left\langle L,<_{L}, \lambda_{L}\right\rangle$, which is simply denoted by L, is called a LOTS.

A triple $\left\langle X,<_{X}, \tau_{X}\right\rangle$ is said to be a GO-space, which is also simply denoted by X, if $\left\langle X,<_{X}\right\rangle$ is a linearly ordered set and τ_{X} is a T_{2}-topology on X having a base consisting of convex sets, where a subset C of X is convex if for every $x, y \in C$ with $x<_{X} y,[x, y]_{X} \subset C$ holds. For more information on LOTS's or GO-spaces, see [10]. Usually $<_{L},(x, y)_{L}, \lambda_{L}$ or τ_{X} are written simply $<,(x, y)$, λ or τ if contexts are clear.

The symbols ω and ω_{1} denote the first infinite ordinal and the first uncountable ordinal, respectively. Ordinals, which are usually denoted by Greek letters $\alpha, \beta, \gamma, \cdots$, are considered to be LOTS's with the usual interval topologies.

The cofinality of α is denoted by $\operatorname{cf} \alpha$.
For GO-spaces $X=\left\langle X,<_{X}, \tau_{X}\right\rangle$ and $Y=\left\langle Y,<_{Y}, \tau_{Y}\right\rangle, X$ is said to be a subspace of Y if $X \subset Y$, the linear order " $<_{X}$ " is the restriction $<_{Y} \upharpoonright X$ of the order " $<_{Y}$ " and the topology τ_{X} is the subspace topology $\tau_{Y} \upharpoonright X\left(=\left\{U \cap X: U \in \tau_{Y}\right\}\right)$ on X of the topology τ_{Y}. So a subset of a GO-space is naturally considered as a GO-space. For every GO-space X, there is a LOTS X^{*} such that X is a dense subspace of X^{*} and X^{*} has the property that if L is a LOTS containing X as a dense subspace, then L also contains the LOTS X^{*} as a subspace, see [11]. Such a X^{*} is called the minimal d-extension of a GO-space X. The construction of X^{*} is also shown in [6]. Obviously, we can see:

- if X is a LOTS, then $X^{*}=X$;
- the space X has a maximal element max X if and only if X^{*} has a maximal element $\max X^{*}$, in this case, $\max X=\max X^{*}$ (similarly for minimal elements).

For every $\alpha<\gamma$, let X_{α} be a LOTS and $X=\prod_{\alpha<\gamma} X_{\alpha}$. Every element $x \in X$ is identified with the sequence $\langle x(\alpha): \alpha<\gamma\rangle$. For notational convenience, $\prod_{\alpha<\gamma} X_{\alpha}$ is considered as the trivial one point LOTS $\{\emptyset\}$ whenever $\gamma=0$, where \emptyset is considered to be a function whose domain is $0(=\emptyset)$. When $0 \leq \beta<\gamma$, $y_{0} \in \prod_{\alpha<\beta} X_{\alpha}$ and $y_{1} \in \prod_{\beta \leq \alpha} X_{\alpha}, y_{0}{ }^{\wedge} y_{1}$ denotes the sequence $y \in \prod_{\alpha<\gamma} X_{\alpha}$ defined by

$$
y(\alpha)= \begin{cases}y_{0}(\alpha) & \text { if } \quad \alpha<\beta \\ y_{1}(\alpha) & \text { if } \beta \leq \alpha\end{cases}
$$

In this case, whenever $\beta=0, \emptyset^{\wedge} y_{1}$ is considered as y_{1}. In case $0 \leq \beta<\gamma$, $y_{0} \in \prod_{\alpha<\beta} X_{\alpha}, u \in X_{\beta}$ and $y_{1} \in \prod_{\beta<\alpha} X_{\alpha}, y_{0}{ }^{\wedge}\langle u\rangle^{\wedge} y_{1}$ denotes the sequence $y \in \prod_{\alpha<\gamma} X_{\alpha}$ defined by

$$
y(\alpha)= \begin{cases}y_{0}(\alpha) & \text { if } \alpha<\beta \\ u & \text { if } \alpha=\beta \\ y_{1}(\alpha) & \text { if } \beta<\alpha\end{cases}
$$

More general cases are similarly defined. The lexicographic order " $<_{X}$ " on X is defined as follows: for every $x, x^{\prime} \in X$,

$$
x<_{X} x^{\prime} \text { if and only if for some } \alpha<\gamma, \quad x \upharpoonright \alpha=x^{\prime} \upharpoonright \alpha \text { and } x(\alpha)<_{X_{\alpha}} x^{\prime}(\alpha),
$$

where $x \upharpoonright \alpha=\langle x(\beta): \beta<\alpha\rangle$ (in particular $x \upharpoonright 0=\emptyset$) and " $<_{X_{\alpha}}$ " is the order on X_{α}. Now for every $\alpha<\gamma$, let X_{α} be a GO-space and $X=\prod_{\alpha<\gamma} X_{\alpha}$. The subspace X of the lexicographic product $\widehat{X}=\prod_{\alpha<\gamma} X_{\alpha}^{*}$ is said to be the lexicographic product of GO-spaces X_{α} 's, for more details see [6]. Product $\prod_{i \in \omega} X_{i}$ $\left(\prod_{i \leq n} X_{i}\right.$ where $\left.n \in \omega\right)$ is denoted by $X_{0} \times X_{1} \times X_{2} \times \cdots\left(X_{0} \times X_{1} \times X_{2} \times \cdots \times X_{n}\right.$, respectively). Product $\prod_{\alpha<\gamma} X_{\alpha}$ is also denoted by X^{γ} whenever $X_{\alpha}=X$ for all $\alpha<\gamma$.

Let X and Y be LOTS's. A map $f: X \rightarrow Y$ is said to be order preserving or 0 -order preserving if $f(x)<_{Y} f\left(x^{\prime}\right)$ whenever $x<_{X} \quad x^{\prime}$. Similarly a map $f: X \rightarrow Y$ is said to be order reversing or 1-order preserving if $f(x)>_{Y} f\left(x^{\prime}\right)$ whenever $x<_{X} x^{\prime}$. Obviously a 0 -order preserving map (also 1 -order preserving map) $f: X \rightarrow Y$ between LOTS's X and Y, which is onto, is a homeomorphism, i.e., both f and f^{-1} are continuous. Now let X and Y be GO-spaces. A 0-order preserving map $f: X \rightarrow Y$ is said to be a 0 -order preserving embedding if f is a homeomorphism between X and $f[X]$, where $f[X]$ is the subspace of the GOspace Y. In this case, we identify X with $f[X]$ as a GO-space and write $X=f[X]$ and $X \subset Y$.

Let X be a GO-space. A subset A of X is called a 0 -segment of X if for every $x, x^{\prime} \in X$ with $x \leq x^{\prime}$, if $x^{\prime} \in A$, then $x \in A$. A 0 -segment A is said to be bounded if $X \backslash A$ is nonempty. Similarly the notion of (bounded) 1-segment can be defined. Both \emptyset and X are 0 -segments and 1 -segments. Obviously if A is a 0 -segment of X, then $X \backslash A$ is a 1 -segment of X.

Let A be a 0 -segment of a GO-space X. A subset U of A is unbounded in A if for every $x \in A$, there is $x^{\prime} \in U$ such that $x \leq x^{\prime}$. Let

$$
0-\mathrm{cf}_{X} A=\min \{|U|: \quad U \text { is unbounded in } A\} .
$$

A set $0-\mathrm{cf}_{X} A$ can be 0,1 or regular infinite cardinals. $0-\mathrm{cf}_{X} A=0$ means $A=\emptyset$ and $0-\mathrm{cf}_{X} A=1$ means that A has a maximal element. If contexts are clear, $0-\mathrm{cf}_{X} A$ is denoted by $0-\mathrm{cf} A$. For cofinality in compact LOTS and linearly ordered compactifications, see also [3], [8].

Remember that a topological space is said to be countably compact if every infinite subset has a cluster point.

Definition 1.1. A GO-space X is (boundedly) countably 0-compact if for every (bounded) closed 0 -segment A of $X, 0-\operatorname{cf}_{X} A \neq \omega$ holds. The term "(boundedly) countably 1-compact" is analogously defined.

Obviously a GO-space X is countably 0-compact if and only if it is boundedly countably 0 -compact and $0-\mathrm{cf} X \neq \omega$. Note that subspaces of ordinals are always countably 1 -compact because they are well-ordered. Also note that ordinals are boundedly countably 0 -compact but in general not countably 0 -compact, e.g., ω, \aleph_{ω} etc.

We first check:
Lemma 1.2. A GO-space X is countably 0 -compact if and only if every 0 -order preserving sequence $\left\{x_{n}: n \in \omega\right\}$ (i.e., $m<n \rightarrow x_{m}<x_{n}$) has a cluster point.

Proof: Assuming the existence of a 0 -order preserving sequence $\left\{x_{n}: n \in \omega\right\}$ with no cluster points, set $A=\left\{x \in X: \exists n \in \omega\left(x \leq x_{n}\right)\right\}$. Then A is closed 0 -segment with $0-\operatorname{cf} A=\omega$.

To see the other direction, assuming the existence a closed 0 -segment A with 0 - cf $A=\omega$, by induction, we can construct a 0 -order preserving sequence with no cluster points.

Using the lemma, we can see that a GO-space is countably compact if and only if it is both countably 0-compact and countably 1-compact, see also [5].

2. A simple case

In this section, we characterize countable 0-compactness of lexicographic products of two GO-spaces. The following is easy to prove, see also [7, Lemma 3.6 (3a)].
Lemma 2.1. Let $X=X_{0} \times X_{1}$ be a lexicographic product of two GO-spaces and A_{0} a 0 -segment of X_{0} with $0-\mathrm{cf}_{X_{0}} A_{0} \geq \omega$. Then $A=A_{0} \times X_{1}$ is also a 0-segment of X with $0-\mathrm{cf}_{X} A=0-\mathrm{cf}_{X_{0}} A_{0}$.

The following lemma will be a useful tool for handling general cases.
Lemma 2.2. Let $X=X_{0} \times X_{1}$ be a lexicographic product of two GO-spaces. Then the following are equivalent:
(1) the product X is countably 0-compact;
(2) the following clauses hold:
(a) the space X_{0} is countably 0-compact;
(b) the space X_{1} is boundedly countably 0-compact;
(c) if X_{1} has no minimal element or $(u, \rightarrow)_{X_{0}}$ has no minimal element (that is, $1-\operatorname{cf}_{X_{0}}(u, \rightarrow) \neq 1$) for some $u \in X_{0}$, then $0-\mathrm{cf}_{X_{1}} X_{1} \neq \omega$;
(d) if X_{1} has no minimal element, then $0-\operatorname{cf}_{X_{0}}(\leftarrow, u) \neq \omega$ for every $u \in X_{0}$.

Proof: Set $\widehat{X}=X_{0}^{*} \times X_{1}^{*}$.
(1) $\Rightarrow(2)$ Let X be countably 0 -compact.
(a) Assuming that X_{0} is not countably 0-compact, take a closed 0-segment A_{0} of X_{0} with $0-\mathrm{cf}_{X_{0}} A_{0}=\omega$. By the lemma above, $A=A_{0} \times X_{1}$ is a 0 -segment of X with $0-\mathrm{cf}_{X} A=\omega$. It suffices to see that A is closed, which contradicts countable 0 -compactness of X. So let $x \notin A$, then $x(0) \notin A_{0}$. Since A_{0} is closed in X_{0}, there
 $\left.\left(u^{*}, x(0)\right)_{X_{0}^{*}}=\emptyset\right)$. Fix $w \in X_{1}$ and let $x^{*}=\left\langle u^{*}, w\right\rangle \in \widehat{X}$. Let $U=\left(x^{*}, \rightarrow\right)_{\widehat{X}} \cap X$, then U is a neighborhood of x. To see $U \cap A=\emptyset$, assume $a \in U \cap A$ for some a. By $a(0) \in A_{0}$, we can take $u \in A_{0}$ with $a(0)<u$. Now $u^{*} \leq a(0)<u$ shows $u \in\left(\left(u^{*}, \rightarrow\right) \cap X_{0}\right) \cap A_{0}$, a contradiction.
(b) Assuming that X_{1} is not boundedly countably 0-compact, take a bounded closed 0 -segment A_{1} of X_{1} with $0-\operatorname{cf}_{X_{1}} A_{1}=\omega$. Fix $u \in X_{0}$ and let $A=\{x \in X$: $\left.\exists v \in A_{1}\left(x \leq_{X}\langle u, v\rangle\right)\right\}$. Obviously A is a 0 -segment of X and $\{u\} \times A_{1}$ is unbounded in the 0 -segment A, so we see $0-\operatorname{cf}_{X} A=0-\operatorname{cf}_{X_{1}} A_{1}=\omega$. It suffices to see that A is closed, so let $x \in X \backslash A$. Note $u \leq x(0)$. Since A_{1} is bounded, fix $v \in X_{1} \backslash A_{1}$ and let $y=\langle u, v\rangle$. When $y<x, U=(y, \rightarrow)_{X}$ is a neighborhood of x disjoint from A. So let $x \leq y$, then we have $x(0)=u$ and $x(1) \notin A_{1}$. Since A_{1} is closed in X_{1}, take $v^{*} \in X_{1}^{*}$ such that $v^{*}<x(1)$ and $\left(\left(v^{*}, \rightarrow\right) \cap X_{1}\right) \cap A_{1}=\emptyset$. Then $U=\left(\left\langle u, v^{*}\right\rangle, \rightarrow\right)_{\widehat{X}} \cap X$ is a neighborhood of x disjoint from A.
(c) First assume that X_{1} has no minimal element. Fix $u \in X_{0}$. Then $A=$ $(\leftarrow, u] \times X_{1}$ is a closed 0 -segment of X and $\{u\} \times X_{1}$ is unbounded in the 0 segment A, therefore $0-\operatorname{cf}_{X_{1}} X_{1}=0-\operatorname{cf}_{X} A \neq \omega$.

Next assume that $(u, \rightarrow)_{X_{0}}$ has no minimal element. Then putting $A=$ $(\leftarrow, u] \times X_{1}$, similarly we see $0-\mathrm{cf}_{X_{1}} X_{1} \neq \omega$.
(d) Assuming that X_{1} has no minimal element and $0-\mathrm{cf}_{X_{0}}(\leftarrow, u)=\omega$ for some $u \in X_{0}$, let $A=(\leftarrow, u) \times X_{1}$. Then A is a closed 0 -segment of X with $0-\operatorname{cf}_{X} A=$ $0-\mathrm{cf}_{X_{0}}(\leftarrow, u)$ by Lemma 2.1. This contradicts countable 0 -compactness of X.
$(2) \Rightarrow(1)$ Assuming (2) and that X is not countably 0 -compact, take a closed 0 -segment A of X with $0-\mathrm{cf}_{X} A=\omega$. Let $A_{0}=\left\{u \in X_{0}: \exists v \in X_{1}(\langle u, v\rangle \in A)\right\}$. Since A is a nonempty 0 -segment of X, A_{0} is also a nonempty 0 -segment of X_{0}. We consider two cases, and in each cases, we will derive a contradiction.

Case 1. The 0 -segment A_{0} has no maximal element, i.e., $0-\mathrm{cf} A_{0} \geq \omega$.
In this case, we have:
Claim 1. The equality $A=A_{0} \times X_{1}$ holds.
Proof: The inclusion " \subset " is obvious. Let $\langle u, v\rangle \in A_{0} \times X_{1}$. Since $u \in A_{0}$ and A_{0} has no maximal element, we can take $u^{\prime} \in A_{0}$ with $u<u^{\prime}$. By $u^{\prime} \in A_{0}$, there is $v^{\prime} \in X_{1}$ with $\left\langle u^{\prime}, v^{\prime}\right\rangle \in A$. Then from $\langle u, v\rangle<\left\langle u^{\prime}, v^{\prime}\right\rangle \in A$, we see $\langle u, v\rangle \in A$, because A is a 0 -segment.

Lemma 2.1 shows $0-\mathrm{cf} A_{0}=0-\mathrm{cf} A=\omega$. The following claim contradicts the condition (2a).

Claim 2. The 0-segment A_{0} is closed in X_{0}.
Proof: Let $u \in X_{0} \backslash A_{0}$. Whenever $u^{\prime}<u$ for some $u^{\prime} \in X_{0} \backslash A_{0},\left(u^{\prime}, \rightarrow\right)$ is a neighborhood of u disjoint from A_{0}. So assume the other case, that is, $u=\min \left(X_{0} \backslash A_{0}\right)$. Note $A_{0}=(\leftarrow, u)$. If X_{1} has no minimal element, then by (2d), we have $0-\operatorname{cf}(\leftarrow, u) \neq \omega$, a contradiction. Thus X_{1} has a minimal element, therefore $\left\langle u, \min X_{1}\right\rangle=\min (X \backslash A) \notin A$. Since A is closed, there are $u^{*} \in X_{0}^{*}$ and $v^{*} \in X_{1}^{*}$ such that $\left\langle u^{*}, v^{*}\right\rangle<\left\langle u, \min X_{1}\right\rangle$ and $\left(\left(\left\langle u^{*}, v^{*}\right\rangle, \rightarrow\right)_{\widehat{X}} \cap X\right) \cap A=\emptyset$. The inequality $\left\langle u^{*}, v^{*}\right\rangle<\left\langle u, \min X_{1}\right\rangle$ shows $u^{*}<u$, so $\left(u^{*}, \rightarrow\right) \cap X_{0}$ is a neighborhood of u disjoint from A_{0}.

Case 2. The 0-segment A_{0} has a maximal element.
In this case, let $A_{1}=\left\{v \in X_{1}:\left\langle\max A_{0}, v\right\rangle \in A\right\}$. Then A_{1} is a nonempty 0 -segment of X_{1}. Since $\left\{\max A_{0}\right\} \times A_{1}$ is unbounded in the 0 -segment A, we see $0-\mathrm{cf}_{X_{1}} A_{1}=0-\mathrm{cf}_{X} A=\omega$.

Claim 3. The 0 -segment A_{1} is closed in X_{1}.
Proof: Let $v \in X_{1} \backslash A_{1}$. Since $\left\langle\max A_{0}, v\right\rangle \notin A$ and A is closed, there are $u^{*} \in X_{0}^{*}$ and $v^{*} \in X_{1}^{*}$ such that $\left\langle u^{*}, v^{*}\right\rangle<\left\langle\max A_{0}, v\right\rangle$ and $\left(\left(\left\langle u^{*}, v^{*}\right\rangle, \rightarrow\right)_{\widehat{X}} \cap X\right) \cap A=\emptyset$. It follows from $A_{1} \neq \emptyset$ that $u^{*}=\max A_{0}$ and so $v^{*}<v$. Then we see that $\left(v^{*}, \rightarrow\right)_{X_{1}^{*}} \cap X_{1}$ is a neighborhood of v disjoint from A_{1}.

This claim with the condition (2b) shows $A_{1}=X_{1}$, which says

$$
A=\left(\leftarrow, \max A_{0}\right] \times X_{1},
$$

in particular, we see that X_{1} has no maximal element.
Claim 4. The interval $\left(\max A_{0}, \rightarrow\right)$ has no minimal element or X_{1} has no minimal element.

Proof: Assume that $\left(\max A_{0}, \rightarrow\right)$ has a minimal element u_{0} and X_{1} has a minimal element, then note $\left\langle u_{0}, \min X_{1}\right\rangle=\min (X \backslash A)$. Since A is closed in X, there are $u^{*} \in X_{0}^{*}$ and $v^{*} \in X_{1}^{*}$ such that $\left\langle u^{*}, v^{*}\right\rangle<\left\langle u_{0}, \min X_{1}\right\rangle$ and $\left(\left(\left\langle u^{*}, v^{*}\right\rangle, \rightarrow\right)_{\widehat{X}} \cap\right.$ $X) \cap A=\emptyset$. Then we have $u^{*}=\max A_{0}$. Since X_{1} has no maximal element, pick $v \in X_{1}$ with $v^{*}<v$. Then we see $\left\langle\max A_{0}, v\right\rangle \in\left(\left(\left\langle u^{*}, v^{*}\right\rangle, \rightarrow\right)_{\widehat{X}} \cap X\right) \cap A$, a contradiction.

Now the condition (2c) shows $0-\mathrm{cf}_{X_{1}} X_{1} \neq \omega$, a contradiction. This completes the proof of the lemma.

3. A general case

In this section, using the results in the previous section, we characterize the countable compactness of lexicographic products of any length of GO-spaces. We use the following notations.

Definition 3.1. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GO-spaces. Define:

$$
\begin{gathered}
J^{+}=\left\{\alpha<\gamma: X_{\alpha} \text { has no maximal element }\right\} ; \\
J^{-}=\left\{\alpha<\gamma: X_{\alpha} \text { has no minimal element }\right\} ; \\
K^{+}=\left\{\alpha<\gamma: \text { there is } x \in X_{\alpha} \text { such that }(x, \rightarrow)_{X_{\alpha}}\right. \text { is nonempty } \\
\text { and has no minimal element }\} ; \\
K^{-}=\left\{\alpha<\gamma: \text { there is } x \in X_{\alpha} \text { such that }(\leftarrow, x)_{X_{\alpha}}\right. \text { is nonempty } \\
\text { and has no maximal element }\} ; \\
L^{+}=\left\{\alpha \leq \gamma: \text { there is } u \in \prod_{\beta<\alpha} X_{\beta} \text { with } 0-\mathrm{cf}_{\prod_{\beta<\alpha} X_{\beta}}(\leftarrow, u)=\omega\right\} ; \\
L^{-}=\left\{\alpha \leq \gamma: \text { there is } u \in \prod_{\beta<\alpha} X_{\beta} \text { with } 1-\mathrm{cf} \prod_{\beta<\alpha} X_{\beta}(u, \rightarrow)=\omega\right\} .
\end{gathered}
$$

For an ordinal α, let

$$
l(\alpha)= \begin{cases}0 & \text { if } \alpha<\omega \\ \sup \{\beta \leq \alpha: \beta \text { is limit }\} & \text { if } \alpha \geq \omega\end{cases}
$$

Some of the definitions above are introduced in [7]. Note that $0 \notin L^{+} \cup L^{-}$ and for an ordinal $\alpha \geq \omega, l(\alpha)$ is the largest limit ordinal less than or equal to α, therefore the half open interval $[l(\alpha), \alpha)$ of ordinals is finite.

We also remark:
Lemma 3.2. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GO-spaces. If $\omega \leq \gamma$, then $\omega \in L^{+} \cap L^{-}$holds.

Proof: Assume $\omega \leq \gamma$. For each $n \in \omega$, fix $u_{0}(n), u_{1}(n) \in X_{n}$ with $u_{0}(n)<$ $u_{1}(n)$. Set $y=\left\langle u_{1}(n): n \in \omega\right\rangle$. Moreover for each $n \in \omega$, set $y_{n}=\left\langle u_{1}(i): i<\right.$ $n\rangle^{\wedge}\left\langle u_{0}(i): n \leq i\right\rangle$. Then $\left\{y_{n}: n \in \omega\right\}$ is a 0 -order preserving unbounded sequence in (\leftarrow, y) in $\prod_{n \in \omega} X_{n}$, therefore $\omega \in L^{+}$. The statement $\omega \in L^{-}$is similar.
Theorem 3.3. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GO-spaces. Then the following are equivalent:
(1) the product X is countably 0-compact;
(2) the following clauses hold:
(a) space X_{α} is boundedly countably 0-compact for every $\alpha<\gamma$;
(b) if $L^{+} \neq \emptyset$, then $J^{-} \subset \min L^{+}$;
(c) for every $\alpha<\gamma$, if any one of the following cases (i)-(iii) holds, then $0-\mathrm{cf}_{X_{\alpha}} X_{\alpha} \neq \omega$ holds:
(i) $J^{+} \cap[l(\alpha), \alpha)=\emptyset$;
(ii) $J^{+} \cap[l(\alpha), \alpha) \neq \emptyset$ and $\left(\alpha_{0}, \alpha\right] \cap J^{-} \neq \emptyset$, where $\alpha_{0}=\max \left(J^{+} \cap\right.$ $[l(\alpha), \alpha))$;
(iii) $J^{+} \cap[l(\alpha), \alpha) \neq \emptyset$ and $\left[\alpha_{0}, \alpha\right) \cap K^{+} \neq \emptyset$, where $\alpha_{0}=\max \left(J^{+} \cap\right.$ $[l(\alpha), \alpha))$.

Proof: Note that (2a) $+(2 \mathrm{ci})$ implies that X_{0} is countably 0-compact. Let $\widehat{X}=$ $\prod_{\alpha<\gamma} X_{\alpha}^{*}$.
(1) \Rightarrow (2) Assume that X is countably 0-compact.
(a) Let $\alpha_{0}<\gamma$. Since $X=\prod_{\alpha \leq \alpha_{0}} X_{\alpha} \times \prod_{\alpha_{0}<\alpha} X_{\alpha}$, see [6, Lemma 1.5], and X is countably 0 -compact, Lemma 2.2 shows that $\prod_{\alpha \leq \alpha_{0}} X_{\alpha}$ is countably 0 -compact. Now by $\prod_{\alpha \leq \alpha_{0}} X_{\alpha}=\prod_{\alpha<\alpha_{0}} X_{\alpha} \times X_{\alpha_{0}}$ and Lemma 2.2 again, we see that $X_{\alpha_{0}}$ is boundedly countably 0-compact.
(b) Assume $L^{+} \neq \emptyset$ and $\alpha_{0}=\min L^{+}$. Then Lemma 3.2 shows $\alpha_{0} \leq \omega$. From $\alpha_{0} \in L^{+}$one can take $u \in \prod_{\alpha<\alpha_{0}} X_{\alpha}$ such that $0-\mathrm{cf}_{\prod_{\alpha<\alpha_{0}} X_{\alpha}}(\leftarrow, u)=\omega$. Now since $X=\prod_{\alpha<\alpha_{0}} X_{\alpha} \times \prod_{\alpha_{0} \leq \alpha} X_{\alpha}$ is countably 0-compact, Lemma 2.2 (d) shows that $\prod_{\alpha_{0} \leq \alpha} X_{\alpha}$ has a minimal element. Therefore X_{α} has a minimal element for every $\alpha \geq \alpha_{0}$, which shows $J^{-} \subset \alpha_{0}$.
(c) Let $\alpha_{0}<\gamma$. We will see $0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$ in each case of (i), (ii) and (iii).

Case (i). I.e., $J^{+} \cap\left[l\left(\alpha_{0}\right), \alpha_{0}\right)=\emptyset$.
Since X is countably 0-compact and $X=\prod_{\alpha \leq \alpha_{0}} X_{\alpha} \times \prod_{\alpha_{0}<\alpha} X_{\alpha}$, Lemma 2.2 shows that $\prod_{\alpha \leq \alpha_{0}} X_{\alpha}$ is also countably 0-compact. When $\alpha_{0}=0$, by countable 0 -compactness of $\prod_{\alpha \leq \alpha_{0}} X_{\alpha}=X_{\alpha_{0}}$, we see $0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$. So let $\alpha_{0}>0$. We divide into two cases.

Case (i)-1. $l\left(\alpha_{0}\right)=0$, i.e., $\alpha_{0}<\omega$.
In this case, since $\prod_{\alpha<\alpha_{0}} X_{\alpha}$ has a maximal element, which implies that $\left(\max \prod_{\alpha<\alpha_{0}} X_{\alpha}, \rightarrow\right)$ has no minimal element, and $\prod_{\alpha<\alpha_{0}} X_{\alpha} \times X_{\alpha_{0}}$ is countably 0 -compact, Lemma 2.2 (2c) shows 0 - $\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$.

Case (i)-2. $l\left(\alpha_{0}\right) \geq \omega$, i.e., $\alpha_{0} \geq \omega$.
In this case, note that for every $\alpha \in\left[l\left(\alpha_{0}\right), \alpha_{0}\right), X_{\alpha}$ has a maximal element. For every $\alpha<l\left(\alpha_{0}\right)$, fix $x_{0}(\alpha), x_{1}(\alpha) \in X_{\alpha}$ with $x_{0}(\alpha)<x_{1}(\alpha)$, and let $y=\left\langle x_{0}(\alpha): \alpha<l\left(\alpha_{0}\right)\right\rangle^{\wedge}\left\langle\max X_{\alpha}: l\left(\alpha_{0}\right) \leq \alpha<\alpha_{0}\right\rangle$. Moreover for every $\beta<l\left(\alpha_{0}\right)$, let $\left.\left.y_{\beta}=\left\langle x_{0}(\alpha): \alpha<\beta\right)\right\rangle^{\wedge}\left\langle x_{1}(\alpha): \beta \leq \alpha<l\left(\alpha_{0}\right)\right)\right\rangle^{\wedge}\left\langle\max X_{\alpha}: l\left(\alpha_{0}\right) \leq\right.$ $\left.\alpha<\alpha_{0}\right\rangle$. Then $\left\{y_{\beta}: \beta<l\left(\alpha_{0}\right)\right\}$ is 1-order preserving and unbounded in (y, \rightarrow), in particular, the interval (y, \rightarrow) in $\prod_{\alpha<\alpha_{0}} X_{\alpha}$ has no minimal element. Now Lemma 2.2 (2c) shows $0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$.

Case (ii). I.e., $J^{+} \cap\left[l\left(\alpha_{0}\right), \alpha_{0}\right) \neq \emptyset$ and $\left(\alpha_{1}, \alpha_{0}\right] \cap J^{-} \neq \emptyset$, where $\alpha_{1}=\max \left(J^{+} \cap\right.$ $\left.\left[l\left(\alpha_{0}\right), \alpha_{0}\right)\right)$.

Note that α_{1} is well-defined insomuch as $\left[l\left(\alpha_{0}\right), \alpha_{0}\right)$ is finite. Also let $\alpha_{2}=$ $\max \left(\left(\alpha_{1}, \alpha_{0}\right] \cap J^{-}\right)$, then note $0 \leq l\left(\alpha_{0}\right) \leq \alpha_{1}<\alpha_{2} \leq \alpha_{0}$, in particular $\left[0, \alpha_{2}\right) \neq \emptyset$.

Case (ii)-1. $\alpha_{2}=\alpha_{0}$.
Since $\prod_{\alpha<\alpha_{0}} X_{\alpha} \times X_{\alpha_{0}}\left(=\prod_{\alpha \leq \alpha_{0}} X_{\alpha}\right)$ is countably 0-compact, Lemma 2.2 (2c) shows $0-\operatorname{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$.
Case (ii)-2. $\alpha_{2}<\alpha_{0}$.
Note that by the definition of α_{2}, X_{α} has a minimal element for every $\alpha \in$ $\left(\alpha_{2}, \alpha_{0}\right]$. Fixing $z \in \prod_{\alpha<\alpha_{2}} X_{\alpha}$, let $y=z^{\wedge}\left\langle\max X_{\alpha}: \alpha_{2} \leq \alpha<\alpha_{0}\right\rangle$, then $y \in$ $\prod_{\alpha<\alpha_{0}} X_{\alpha}$.
Claim 1. $(y, \rightarrow)_{\prod_{\alpha<\alpha_{0}}} X_{\alpha}$ is nonempty and has no minimal element.
Proof: Because $X_{\alpha_{1}}$ has no maximal element, fix $u \in X_{\alpha_{1}}$ with $y\left(\alpha_{1}\right)<u$. Then $\left(y \upharpoonright \alpha_{1}\right)^{\wedge}\langle u\rangle^{\wedge}\left(y \upharpoonright\left(\alpha_{1}, \alpha_{0}\right)\right) \in(y, \rightarrow)$, which shows $(y, \rightarrow) \neq \emptyset$. Next assume $y<y^{\prime} \in \prod_{\alpha<\alpha_{0}} X_{\alpha}$. Since $y(\alpha)=\max X_{\alpha}$ for every $\alpha \in\left[\alpha_{2}, \alpha_{0}\right)$, we have $y \upharpoonright \alpha_{2}<y^{\prime} \upharpoonright \alpha_{2}$. Since $X_{\alpha_{2}}$ has no minimal element, fix $u \in X_{\alpha_{2}}$ with $u<y^{\prime}\left(\alpha_{2}\right)$. Then we have $y<\left(y^{\prime} \upharpoonright \alpha_{2}\right)^{\wedge}\langle u\rangle^{\wedge}\left(\left(y^{\prime} \upharpoonright\left(\alpha_{2}, \alpha_{0}\right)\right)<y^{\prime}\right.$, which shows that (y, \rightarrow) has no minimal element.

Now because $\prod_{\alpha<\alpha_{0}} X_{\alpha} \times X_{\alpha_{0}}$ is countably 0-compact, Lemma 2.2 (2c) and the claim above shows $0-\operatorname{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$.
Case (iii). I.e., $J^{+} \cap\left[l\left(\alpha_{0}\right), \alpha_{0}\right) \neq \emptyset$ and $\left[\alpha_{1}, \alpha_{0}\right) \cap K^{+} \neq \emptyset$, where $\alpha_{1}=\max \left(J^{+} \cap\right.$ $\left.\left[l\left(\alpha_{0}\right), \alpha_{0}\right)\right)$.

Let $\alpha_{2}=\max \left(\left[\alpha_{1}, \alpha_{0}\right) \cap K^{+}\right)$, then note $l\left(\alpha_{0}\right) \leq \alpha_{1} \leq \alpha_{2}<\alpha_{0}$. Fixing $z \in$ $\prod_{\alpha<\alpha_{2}} X_{\alpha}$ and $u \in X_{\alpha_{2}}$ satisfying that (u, \rightarrow) is nonempty and has no minimal element, let $y=z^{\wedge}\langle u\rangle^{\wedge}\left\langle\max X_{\alpha}\right.$: $\left.\alpha_{2}<\alpha<\alpha_{0}\right\rangle$. Then obviously $y \in \prod_{\alpha<\alpha_{0}} X_{\alpha}$ and (y, \rightarrow) has no minimal element. Since $\prod_{\alpha<\alpha_{0}} X_{\alpha} \times X_{\alpha_{0}}$ is countable 0compact, Lemma 2.2 (2c) shows $0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$.
$(2) \Rightarrow(1)$ Assuming (2) and the negation of (1), take a closed 0 -segment A of X with $0-\operatorname{cf}_{X} A=\omega$. Modifying the proof of Theorem 4.8 in [7], we consider 3 cases and their subcases. In each case, we will derive a contradiction.
Case 1. $A=X$.
In this case, since X has no maximal element, we have $J^{+} \neq \emptyset$, so let $\alpha_{0}=$ $\min J^{+}$. Then $J^{+} \cap\left[l\left(\alpha_{0}\right), \alpha_{0}\right) \subset J^{+} \cap\left[0, \alpha_{0}\right)=\emptyset$ and the condition (2ci) shows $0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \geq \omega_{1}$. Since $\left\{\left\langle\max X_{\alpha}: \alpha<\alpha_{0}\right\rangle\right\} \times X_{\alpha_{0}}$ is unbounded in $\prod_{\alpha \leq \alpha_{0}} X_{\alpha}$, we have $0-\mathrm{cf}_{\prod_{\alpha \leq \alpha_{0}} X_{\alpha}} \prod_{\alpha \leq \alpha_{0}} X_{\alpha}=0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \geq \omega_{1}$. Now by $X=\prod_{\alpha \leq \alpha_{0}} X_{\alpha} \times$ $\prod_{\alpha_{0}<\alpha} X_{\alpha}$, Lemma 2.1 shows $0-\mathrm{cf}_{X} A=0-\operatorname{cf}_{X} X=0-\operatorname{cf}_{\prod_{\alpha \leq \alpha_{0}} X_{\alpha}} \prod_{\alpha \leq \alpha_{0}} X_{\alpha}=$ $0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \geq \omega_{1}$, a contradiction.
Case 2. $A \neq X$ and $X \backslash A$ has a minimal element.
Let $B=X \backslash A$ and $b=\min B$. Since A is nonempty closed and $B=[b, \rightarrow)$, there is $b^{*} \in \widehat{X}$ with $b^{*}<b$ and $\left(\left(b^{*}, \rightarrow\right)_{\widehat{X}} \cap X\right) \cap A=\emptyset$, equivalently $\left(b^{*}, b\right)_{\widehat{X}}=\emptyset$. Note $b^{*} \notin X$ because A has no maximal element. Let $\alpha_{0}=\min \left\{\alpha<\gamma: b^{*}(\alpha) \neq\right.$ $b(\alpha)\}$.

Claim 2. For every $\alpha>\alpha_{0}, X_{\alpha}$ has a minimal element and $b(\alpha)=\min X_{\alpha}$.
Proof: Assuming $b(\alpha)>u$ for some $\alpha>\alpha_{0}$ and $u \in X_{\alpha}$, let $\alpha_{1}=\min \left\{\alpha>\alpha_{0}\right.$: $\left.\exists u \in X_{\alpha}(b(\alpha)>u)\right\}$ and fix $u \in X_{\alpha_{1}}$ with $b\left(\alpha_{1}\right)>u$. Then we have $b^{*}<$ $\left(b \upharpoonright \alpha_{1}\right)^{\wedge}\langle u\rangle^{\wedge}\left(b \upharpoonright\left(\alpha_{1}, \gamma\right)\right)<b$, a contradiction.

Claim 3. $\left(b^{*}\left(\alpha_{0}\right), b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}^{*}} \cap X_{\alpha_{0}}=\emptyset$.
Proof: Assume $u \in\left(b^{*}\left(\alpha_{0}\right), b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}^{*}} \cap X_{\alpha_{0}}$ for some u. Then we have $b^{*}<$ $\left(b \upharpoonright \alpha_{0}\right)^{\wedge}\langle u\rangle^{\wedge}\left(b \upharpoonright\left(\alpha_{0}, \gamma\right)\right)<b$, a contradiction.

Claim 4. $\left[b\left(\alpha_{0}\right), \rightarrow\right)_{X_{\alpha_{0}}} \notin \lambda_{X_{\alpha_{0}}}$, therefore $b^{*}\left(\alpha_{0}\right) \notin X_{\alpha_{0}}$.
Proof: It follows from $b^{*}\left(\alpha_{0}\right) \in\left(\leftarrow, b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}^{*}}$ that $\left(\leftarrow, b\left(\alpha_{0}\right)\right)_{X_{\alpha_{0}}} \neq \emptyset$. Assume $\left[b\left(\alpha_{0}\right), \rightarrow\right)_{X_{\alpha_{0}}} \in \lambda_{X_{\alpha_{0}}}$, then for some $u \in X_{\alpha_{0}}$ with $u<b\left(\alpha_{0}\right),\left(u, b\left(\alpha_{0}\right)\right)=\emptyset$ holds. Claim 3 shows $b^{*}\left(\alpha_{0}\right)=u \in X_{\alpha_{0}}$. If there were $\alpha>\alpha_{0}$ and $v \in X_{\alpha}$ with $v>b^{*}(\alpha)$, then by letting $\alpha_{1}=\min \left\{\alpha>\alpha_{0}: \exists v \in X_{\alpha}\left(v>b^{*}(\alpha)\right)\right\}$ and taking $v \in X_{\alpha_{1}}$ with $v>b^{*}\left(\alpha_{1}\right)$, we have $b^{*}<\left(b^{*} \upharpoonright \alpha_{1}\right)^{\wedge}\langle v\rangle^{\wedge}\left(b^{*} \upharpoonright\left(\alpha_{1}, \gamma\right)\right)<b$, a contradiction. Therefore for every $\alpha>\alpha_{0}, \max X_{\alpha}$ exists and $b^{*}(\alpha)=\max X_{\alpha}$. Thus we have $b^{*}=\left(b \upharpoonright \alpha_{0}\right)^{\wedge}\langle u\rangle^{\wedge}\left\langle\max X_{\alpha}: \alpha_{0}<\alpha\right\rangle \in X$, a contradiction.

Claims 3 and 4 show that $A_{0}:=\left(\leftarrow, b\left(\alpha_{0}\right)\right)$ is a bounded closed 0-segment of $X_{\alpha_{0}}$ without a maximal element. Now the condition (2a) shows $0-\mathrm{cf}_{X_{\alpha_{0}}} A_{0} \geq \omega_{1}$. Since $\left\{b \upharpoonright \alpha_{0}\right\} \times A_{0} \times\left\{b \upharpoonright\left(\alpha_{0}, \gamma\right)\right\}$ is unbounded in the 0-segment in $A\left(=(\leftarrow, b)_{X}\right)$, we have $\omega=0-\mathrm{cf}_{X} A=0-\mathrm{cf}_{X_{\alpha_{0}}} A_{0} \geq \omega_{1}$, a contradiction. This completes Case 2 .

Case 3. $A \neq X$ and $X \backslash A$ has no minimal element.
Let $B=X \backslash A$ and

$$
I=\{\alpha<\gamma: \exists a \in A \quad \exists b \in B \quad(a \upharpoonright(\alpha+1)=b \upharpoonright(\alpha+1))\} .
$$

Obviously I is a 0 -segment of γ, so $I=\alpha_{0}$ for some $\alpha_{0} \leq \gamma$. For each $\alpha<\alpha_{0}$, fix $a_{\alpha} \in A$ and $b_{\alpha} \in B$ with $a_{\alpha} \upharpoonright(\alpha+1)=b_{\alpha} \upharpoonright(\alpha+1)$. By letting $Y_{0}=\prod_{\alpha<\alpha_{0}} X_{\alpha}$ and $Y_{1}=\prod_{\alpha_{0} \leq \alpha} X_{\alpha}$, define $y_{0} \in Y_{0}$ by $y_{0}(\alpha)=a_{\alpha}(\alpha)$ for every $\alpha<\alpha_{0}$. The ordinal α_{0} can be 0 , then in this case, $Y_{0}=\{\emptyset\}$ and $y_{0}=\emptyset$.

Claim 5. For every $\alpha<\alpha_{0}, y_{0} \upharpoonright(\alpha+1)=a_{\alpha} \upharpoonright(\alpha+1)=b_{\alpha} \upharpoonright(\alpha+1)$ holds.
Proof: The second equality is obvious. To see the first equality, assuming $y_{0} \upharpoonright$ $(\alpha+1) \neq a_{\alpha} \upharpoonright(\alpha+1)$ for some $\alpha<\alpha_{0}$, let $\alpha_{1}=\min \left\{\alpha<\alpha_{0}: y_{0} \upharpoonright(\alpha+1) \neq\right.$ $\left.a_{\alpha} \upharpoonright(\alpha+1)\right\}$. Moreover let $\alpha_{2}=\min \left\{\alpha \leq \alpha_{1}: y_{0}(\alpha) \neq a_{\alpha_{1}}(\alpha)\right\}$. It follows from $y_{0}\left(\alpha_{1}\right)=a_{\alpha_{1}}\left(\alpha_{1}\right)$ that $\alpha_{2}<\alpha_{1}$. Since $y_{0} \upharpoonright \alpha_{2}=a_{\alpha_{1}} \upharpoonright \alpha_{2}$ and $y_{0}\left(\alpha_{2}\right) \neq a_{\alpha_{1}}\left(\alpha_{2}\right)$ hold, by the minimality of α_{1}, we have $y_{0} \upharpoonright\left(\alpha_{2}+1\right)=a_{\alpha_{2}} \upharpoonright\left(\alpha_{2}+1\right)=b_{\alpha_{2}} \upharpoonright$ $\left(\alpha_{2}+1\right)$. When $y_{0}\left(\alpha_{2}\right)<a_{\alpha_{1}}\left(\alpha_{2}\right)$, we have $B \ni b_{\alpha_{2}}<a_{\alpha_{1}} \in A$, a contradiction. When $y_{0}\left(\alpha_{2}\right)>a_{\alpha_{1}}\left(\alpha_{2}\right)$, we have $B \ni b_{\alpha_{1}}<a_{\alpha_{2}} \in A$, a contradiction.

Claim 5 remains true when $\alpha_{0}=0$, because there is no ordinal α with $\alpha<\alpha_{0}$.

Claim 6. $\alpha_{0}<\gamma$.
Proof: Assume $\alpha_{0}=\gamma$, then note $y_{0} \in Y_{0}=X=A \cup B$. Assume $y_{0} \in A$. Since A has no maximal element, one can take $a \in A$ with $y_{0}<a$. Letting $\beta_{0}=\min \left\{\beta<\gamma: y_{0}(\beta) \neq a(\beta)\right\}$, we see $A \ni a>b_{\beta_{0}} \in B$, a contradiction. The remaining case is similar.

Let $A_{0}=\left\{a\left(\alpha_{0}\right): a \in A, a \upharpoonright \alpha_{0}=y_{0}\right\}$ and $B_{0}=\left\{b\left(\alpha_{0}\right): b \in B, b \upharpoonright \alpha_{0}=y_{0}\right\}$.
Claim 7. The following hold:
(1) for every $a \in A, a \upharpoonright \alpha_{0} \leq y_{0}$ holds;
(2) for every $x \in X$, if $x \upharpoonright \alpha_{0}<y_{0}$, then $x \in A$.

Proof: (1) Assume $a \upharpoonright \alpha_{0}>y_{0}$ for some $a \in A$. Letting $\beta_{0}=\min \left\{\beta<\alpha_{0}\right.$: $\left.a(\beta) \neq y_{0}(\beta)\right\}$, we see $B \ni b_{\beta_{0}}<a \in A$, a contradiction.
(2) Assume $x \upharpoonright \alpha_{0}<y_{0}$. Letting $\beta_{0}=\min \left\{\beta<\alpha_{0}: x(\beta) \neq y_{0}(\beta)\right\}$, we see $x<a_{\beta_{0}} \in A$. Since A is a 0 -segment, we have $x \in A$.

Similarly we have:
Claim 8. The following hold:
(1) for every $b \in B, b \upharpoonright \alpha_{0} \geq y_{0}$ holds;
(2) for every $x \in X$, if $x \upharpoonright \alpha_{0}>y_{0}$, then $x \in B$.

Claim 9. A_{0} is a 0 -segment of $X_{\alpha_{0}}$ and $B_{0}=X_{\alpha_{0}} \backslash A_{0}$.
Proof: To see that A_{0} is a 0 -segment, let $u^{\prime}<u \in A_{0}$. Pick $a \in A$ with $a \upharpoonright \alpha_{0}=y_{0}$ and $u=a\left(\alpha_{0}\right)$. Let $a^{\prime}=\left(a \upharpoonright \alpha_{0}\right)^{\wedge}\left\langle u^{\prime}\right\rangle^{\wedge}\left(a \upharpoonright\left(\alpha_{0}, \gamma\right)\right)$. Since A is a 0 -segment and $a^{\prime}<a \in A$, we have $a^{\prime} \in A$. Now we see $u^{\prime}=a^{\prime}\left(\alpha_{0}\right) \in A_{0}$ because of $a^{\prime} \upharpoonright \alpha_{0}=y_{0}$.

To see $B_{0}=X_{\alpha_{0}} \backslash A_{0}$, first let $u \in B_{0}$. Take $b \in B$ with $b \upharpoonright \alpha_{0}=y_{0}$ and $b\left(\alpha_{0}\right)=u$. If $u \in A_{0}$ were true, then by taking $a \in A$ with $a \upharpoonright \alpha_{0}=y_{0}$ and $a\left(\alpha_{0}\right)=u$, we see $a \upharpoonright\left(\alpha_{0}+1\right)=b \upharpoonright\left(\alpha_{0}+1\right)$, therefore $\alpha_{0} \in I=\alpha_{0}$, a contradiction. So we have $u \in X_{\alpha_{0}} \backslash A_{0}$. To see the remaining inclusion, let $u \in X_{\alpha_{0}} \backslash A_{0}$. Take $x \in X$ with $x \upharpoonright\left(\alpha_{0}+1\right)=y_{0} \wedge\langle u\rangle$. If $x \in A$ were true, then by $x \upharpoonright \alpha_{0}=y_{0}$, we have $u=x\left(\alpha_{0}\right) \in A_{0}$, a contradiction. So we have $x \in B$, therefore $u \in B_{0}$.

Claim 10. $A_{0} \neq \emptyset$.
Proof: Assume $A_{0}=\emptyset$. We prove the following facts.
Fact 1. $\left(\leftarrow, y_{0}\right)_{Y_{0}} \times Y_{1}=A$.
Proof: One inclusion follows from Claim 7 (2). To see the other inclusion, let $a \in A$. Claim 7 (1) shows $a \upharpoonright \alpha_{0} \leq y_{0}$. If $a \upharpoonright \alpha_{0}=y_{0}$ were true, then we have $a\left(\alpha_{0}\right) \in A_{0}$, a contradiction. So we have $a \upharpoonright \alpha_{0}<y_{0}$ therefore $a \in\left(\leftarrow, y_{0}\right) \times Y_{1}$.

Fact 2. $\alpha_{0}>0$ and α_{0} is limit.
Proof: If $\alpha_{0}=0$ were true, then by taking $a \in A$, we have $a\left(\alpha_{0}\right) \in A_{0}$, a contradiction. Therefore we have $\alpha_{0}>0$. Next if $\alpha_{0}=\beta_{0}+1$ were true for some ordinal β_{0}, then by $\beta_{0} \in \alpha_{0}$ and Claim 5, we have $y_{0} \upharpoonright \alpha_{0}=y_{0} \upharpoonright\left(\beta_{0}+1\right)=$ $a_{\beta_{0}} \upharpoonright\left(\beta_{0}+1\right)=a_{\beta_{0}} \upharpoonright \alpha_{0}$, thus we have $a_{\beta_{0}}\left(\alpha_{0}\right) \in A_{0}$, a contradiction. Thus α_{0} is limit.

Now Claim 6 and Fact 2 show $\omega \leq \alpha_{0}<\gamma$, so Lemma 3.2 shows $\omega \in L^{+}$. Moreover the condition (2b) shows $J^{-} \subset \min L^{+} \leq \omega \leq \alpha_{0}$, in particular, X_{α} has a minimal element for every $\alpha \geq \alpha_{0}$. This means $Y_{1}\left(=\prod_{\alpha_{0} \leq \alpha} X_{\alpha}\right)$ has a minimal element. Now by Fact 1 , we see $y_{0} \wedge \min Y_{1}=\min (X \backslash A)$, which contradicts our case.

Next, let $Z_{0}=\prod_{\alpha \leq \alpha_{0}} X_{\alpha}, Z_{1}=\prod_{\alpha_{0}<\alpha} X_{\alpha}$ and

$$
A^{*}=\left\{z \in Z_{0}: z \upharpoonright \alpha_{0}<y_{0} \text { or }\left(z \upharpoonright \alpha_{0}=y_{0}, z\left(\alpha_{0}\right) \in A_{0}\right)\right\}
$$

Note $A^{*}=\left(\left(\leftarrow, y_{0}\right) \times X_{\alpha_{0}}\right) \cup\left(\left\{y_{0}\right\} \times A_{0}\right)$.
Claim 11. A^{*} is a 0 -segment of Z_{0} and $A=A^{*} \times Z_{1}$.
Proof: Since A_{0} is a 0 -segment of $X_{\alpha_{0}}, A^{*}$ is obviously a 0 -segment of Z_{0}. To see $A \subset A^{*} \times Z_{1}$, let $a \in A$. Claim 7 (1) shows $a \upharpoonright \alpha_{0} \leq y_{0}$. When $a \upharpoonright \alpha_{0}<y_{0}$, obviously we have $a \upharpoonright\left(\alpha_{0}+1\right) \in A^{*}$. When $a \upharpoonright \alpha_{0}=y_{0}, a \in A$ shows $a\left(\alpha_{0}\right) \in A_{0}$ thus $a \upharpoonright\left(\alpha_{0}+1\right) \in A^{*}$. To see $A \supset A^{*} \times Z_{1}$, let $a \in A^{*} \times Z_{1}$. Then note $a \upharpoonright\left(\alpha_{0}+1\right) \in A^{*}$. When $a \upharpoonright \alpha_{0}<y_{0}$, letting $\beta_{0}=\min \left\{\beta<\alpha_{0}: a(\beta) \neq y_{0}(\beta)\right\}$, we see $a<a_{\beta_{0}} \in A$ thus $a \in A$. When $a \upharpoonright \alpha_{0}=y_{0}$ and $a\left(\alpha_{0}\right) \in A_{0}$, Claim 9 shows $a \in A$.

Since $\left\{y_{0}\right\} \times A_{0}$ is unbounded in the 0 -segment A^{*}, we see $1 \leq 0-\mathrm{cf}_{Z_{0}} A^{*}=$ $0-\mathrm{cf}_{X_{\alpha_{0}}} A_{0}$. We divide Case 3 into two subcases.

Case 3-1. $0-\operatorname{cf}_{Z_{0}} A^{*} \geq \omega$.
In this case, Claim 11 and Lemma 2.1 show $\omega=0-\operatorname{cf}_{X} A=0-\operatorname{cf}_{Z_{0}} A^{*}=$ $0-\operatorname{cf}_{X_{\alpha_{0}}} A_{0}$.

Claim 12. $A_{0} \neq X_{\alpha_{0}}$.
Proof: Assume $A_{0}=X_{\alpha_{0}}$. Then $0-\operatorname{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}}=0-\mathrm{cf}_{X_{\alpha_{0}}} A_{0}=\omega$ shows $\alpha_{0} \in J^{+}$. Assume $\alpha_{0}=\beta_{0}+1$ for some ordinal β_{0}. Then $\beta_{0}<\alpha_{0}=I$ shows $b_{\beta_{0}} \in B$. Now from $b_{\beta_{0}} \upharpoonright \alpha_{0}=b_{\beta_{0}} \upharpoonright\left(\beta_{0}+1\right)=y_{0} \upharpoonright\left(\beta_{0}+1\right)=y_{0} \upharpoonright \alpha_{0}$, we have $b_{\beta_{0}}\left(\alpha_{0}\right) \in B_{0}=X_{\alpha_{0}} \backslash A_{0}$, a contradiction. Thus we see that $\alpha_{0}=0$ or α_{0} is limit, that is, $\left[l\left(\alpha_{0}\right), \alpha_{0}\right)=\emptyset$. Now the condition (2ci) shows $0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}} \neq \omega$, a contradiction.

Claim 13. A_{0} is closed in $X_{\alpha_{0}}$.
Proof: When B_{0} has no minimal element, obviously A_{0} is closed. So assume that B_{0} has a minimal element, say $u=\min B_{0}$. It suffices to find a neighborhood of u disjoint from A_{0}. The facts $A^{*}=\left(\leftarrow, y_{0} \wedge\langle u\rangle\right)_{Z_{0}}$ and $0-\operatorname{cf}_{Z_{0}} A^{*}=\omega$ show $\alpha_{0}+1 \in L^{+}$, therefore $\min L^{+} \leq \alpha_{0}+1$. The condition (2b) ensures $J^{-} \subset$ $\min L^{+} \leq \alpha_{0}+1$, so $J^{-} \subset\left[0, \alpha_{0}\right]$. Therefore X_{α} has a minimal element for every $\alpha>\alpha_{0}$. Let $b=y_{0} \wedge\langle u\rangle^{\wedge}\left\langle\min X_{\alpha}: \alpha_{0}<\alpha\right\rangle$. Since $b \in B(=X \backslash A)$ and A is closed in X, there is $b^{*} \in \widehat{X}$ such that $b^{*}<b$ and $\left(b^{*}, b\right)_{\widehat{X}} \cap A=\emptyset$. Set $\beta_{0}=\min \left\{\beta<\gamma: b^{*}(\beta) \neq b(\beta)\right\}$, then obviously $\beta_{0} \leq \alpha_{0}$. If $\beta_{0}<\alpha_{0}$ were true, we have $a_{\beta_{0}} \in\left(b^{*}, b\right)_{\widehat{X}} \cap A$, a contradiction. Thus we have $\beta_{0}=\alpha_{0}$, so $b^{*} \upharpoonright \alpha_{0}=y_{0}$ and $b^{*}\left(\alpha_{0}\right)<u$. If there were $v \in\left(b^{*}\left(\alpha_{0}\right), \rightarrow\right)_{X_{\alpha_{0}}^{*}} \cap A_{0}$, then $v<u$ shows $y_{0} \wedge\langle v\rangle^{\wedge}\left\langle\min X_{\alpha}: \alpha_{0}<\alpha\right\rangle \in\left(b^{*}, b\right) \cap A$, a contradiction. Therefore $\left(b^{*}\left(\alpha_{0}\right), \rightarrow\right)_{X_{\alpha_{0}}^{*}} \cap X_{\alpha_{0}}$ is a neighborhood of u disjoint from A_{0}.

These claims above show that A_{0} is a bounded closed 0-segment of $X_{\alpha_{0}}$. Now the condition (2a) shows $0-\operatorname{cf}_{X_{\alpha_{0}}} A_{0} \neq \omega$, a contradiction.
Case 3-1. $0-\operatorname{cf}_{Z_{0}} A^{*}=1$.
Since $A=A^{*} \times Z_{1}, A^{*}$ has a maximal element but A has no maximal element, we see that Z_{1} has no maximal element. Therefore X_{α} has no maximal element for some $\alpha>\alpha_{0}$, in particular $\left(\alpha_{0}, \gamma\right) \neq \emptyset$. Let $\alpha_{1}=\min \left\{\alpha>\alpha_{0}\right.$: X_{α} has no maximal element $\}$. Then we have $\alpha_{0}<\alpha_{1} \in J^{+}$and $\left(\alpha_{0}, \alpha_{1}\right) \cap J^{+}=\emptyset$. As $A=A^{*} \times Z_{1}=A^{*} \times\left(\prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha} \times \prod_{\alpha_{1}<\alpha} X_{\alpha}\right)=\left(A^{*} \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}\right) \times$ $\prod_{\alpha_{1}<\alpha} X_{\alpha}$ and $A^{*} \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} \bar{X}_{\alpha}$ is a 0 -segment in $\prod_{\alpha \leq \alpha_{1}} X_{\alpha}$ with no maximal element, Lemma 2.1 shows $\omega=0-\operatorname{cf}_{X} A=0-\operatorname{cf}\left(A^{*} \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}\right)=$ $0-\mathrm{cf}_{X_{\alpha_{1}}} X_{\alpha_{1}}\left(\right.$ that $\left\{y_{0} \wedge\left\langle\max A_{0}\right\rangle^{\wedge}\left\langle\max X_{\alpha}: \alpha_{0}<\alpha<\alpha_{1}\right\rangle\right\} \times X_{\alpha_{1}}$ is unbounded in the 0 -segment $A^{*} \times \prod_{\alpha_{0}<\alpha \leq \alpha_{1}} X_{\alpha}$ witnesses the last equality).

Claim 14. Let $l\left(\alpha_{1}\right) \leq \alpha_{0}$ and $J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{0}\right] \neq \emptyset$ hold, in particular $J^{+} \cap$ $\left[l\left(\alpha_{1}\right), \alpha_{1}\right) \neq \emptyset$.
Proof: First assume $\alpha_{0}<l\left(\alpha_{1}\right)$. Then $J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{1}\right) \subset J^{+} \cap\left(\alpha_{0}, \alpha_{1}\right)=\emptyset$ and the condition (2ci) show $0-\mathrm{cf}_{X_{\alpha_{1}}} X_{\alpha_{1}} \neq \omega$, a contradiction. Thus we have $l\left(\alpha_{1}\right) \leq \alpha_{0}$.

Next assume $J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{0}\right]=\emptyset$, then we have $J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{1}\right)=\emptyset$ because of $J^{+} \cap\left(\alpha_{0}, \alpha_{1}\right)=\emptyset$. Therefore the condition (2ci) shows $0-\operatorname{cf}_{X_{\alpha_{1}}} X_{\alpha_{1}} \neq \omega$, a contradiction. Thus $J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{0}\right] \neq \emptyset$.

Using the above claim, set $\alpha_{2}=\max \left(J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{1}\right)\right)$. Note $0 \leq l\left(\alpha_{1}\right) \leq \alpha_{2} \leq$ $\alpha_{0}<\alpha_{1}$ and $J^{+} \cap\left(\alpha_{2}, \alpha_{1}\right)=\emptyset$.

Claim 15. B_{0} has a minimal element.
Proof: First we check $B_{0} \neq \emptyset$, so assume $B_{0}=\emptyset$, i.e., $A_{0}=X_{\alpha_{0}}$. The equations $1=0-\mathrm{cf}_{Z_{0}} A^{*}=0-\mathrm{cf}_{X_{\alpha_{0}}} A_{0}=0-\mathrm{cf}_{X_{\alpha_{0}}} X_{\alpha_{0}}$ show $\alpha_{0} \notin J^{+}$. Also $\alpha_{2} \leq \alpha_{0}$ and $\alpha_{2} \in J^{+}$show $0 \leq \alpha_{2}<\alpha_{0}$. Assume that $\alpha_{0}=\beta_{0}+1$ for some ordinal β_{0}, then
by $\beta_{0}<\alpha_{0}=I$, we have $b_{\beta_{0}} \in B$ and $b_{\beta_{0}} \upharpoonright \alpha_{0}=b_{\beta_{0}} \upharpoonright\left(\beta_{0}+1\right)=y_{0} \upharpoonright\left(\beta_{0}+1\right)=$ $y_{0} \upharpoonright \alpha_{0}$. Therefore we have $b_{\beta_{0}}\left(\alpha_{0}\right) \in B_{0}$, a contradiction. So we have $0<\alpha_{0}$ and α_{0} is limit, therefore $\alpha_{0} \leq l\left(\alpha_{1}\right) \leq \alpha_{2}$, which contradicts $\alpha_{2}<\alpha_{0}$. We have seen $B_{0} \neq \emptyset$.

Next we check that B_{0} has a minimal element. Assume that B_{0} has no minimal element, then max A_{0} witnesses $\alpha_{0} \in\left[\alpha_{2}, \alpha_{1}\right) \cap K^{+}$. The definition of α_{2} and the condition (2ciii) show $0-\operatorname{cf}_{X_{\alpha_{1}}} X_{\alpha_{1}} \neq \omega$, a contradiction.

Now since B has no minimal element, by the claim above, there is $\alpha>\alpha_{0}$ such that X_{α} has no minimal element. So let $\alpha_{3}=\min \left\{\alpha>\alpha_{0}: X_{\alpha}\right.$ has no minimal element $\}$. Then we have $\alpha_{0}<\alpha_{3} \in J^{-}$. When $\omega \leq \gamma$, Lemma 3.2 and the condition (2b) show $J^{-} \subset \min L^{+} \leq \omega$. When $\gamma<\omega$, obviously $J^{-} \subset \omega$. So in any case we have $J^{-} \subset \omega$. Therefore $l\left(\alpha_{1}\right) \leq \alpha_{0}<\alpha_{3} \in \omega$ so we have $\alpha_{1} \in \omega$.

Claim 16. $\alpha_{3} \leq \alpha_{1}$.
Proof: Assume $\alpha_{1}<\alpha_{3}$, then X_{α} has a minimal element for every $\alpha \in\left(\alpha_{0}, \alpha_{1}\right]$. So let $y=y_{0} \wedge\left\langle\min B_{0}\right\rangle^{\wedge}\left\langle\min X_{\alpha}: \alpha_{0}<\alpha \leq \alpha_{1}\right\rangle$. Note $y \in \prod_{\alpha \leq \alpha_{1}} X_{\alpha}$ and consider the interval (\leftarrow, y) in $\prod_{\alpha \leq \alpha_{1}} X_{\alpha}$. The definition of α_{2} and $\alpha_{2} \leq \alpha_{0}$ show that X_{α} has a maximal element for every $\alpha \in\left(\alpha_{0}, \alpha_{1}\right)$. Since $\left\{y_{0} \wedge\left\langle\max A_{0}\right\rangle^{\wedge}\left\langle\max X_{\alpha}\right.\right.$: $\left.\left.\alpha_{0}<\alpha<\alpha_{1}\right\rangle\right\} \times X_{\alpha_{1}}$ is unbounded in (\leftarrow, y), we have $0-\operatorname{cf}(\leftarrow, y)=$ $0-\mathrm{cf}_{X_{\alpha_{1}}} X_{\alpha_{1}}=\omega$. Thus y witnesses $\alpha_{1}+1 \in L^{+}$. The condition (2b) ensures $J^{-} \subset \min L^{+} \leq \alpha_{1}+1$, thus $\alpha_{3} \in J^{-} \subset\left[0, \alpha_{1}\right]$, a contradiction. Now we have $\alpha_{3} \leq \alpha_{1}$.

Now $\alpha_{3} \in\left(\alpha_{0}, \alpha_{1}\right] \cap J^{-} \subset\left(\alpha_{2}, \alpha_{1}\right] \cap J^{-}, \alpha_{2}=\max \left(J^{+} \cap\left[l\left(\alpha_{1}\right), \alpha_{1}\right)\right)$ and the condition (2cii) show $0-\mathrm{cf}_{X_{\alpha_{1}}} X_{\alpha_{1}} \neq \omega$, a contradiction. This completes the proof of the theorem.

Analogously we can see:
Theorem 3.4. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of $G O$-spaces. Then the following are equivalent:
(1) the product X is countably 1-compact;
(2) the following clauses hold:
(a) X_{α} is boundedly countably 1-compact for every $\alpha<\gamma$;
(b) if $L^{-} \neq \emptyset$, then $J^{+} \subset \min L^{-}$;
(c) for every $\alpha<\gamma$, if any one of the following cases bellow holds; then 1- $\mathrm{cf}_{X_{\alpha}} X_{\alpha} \neq \omega$ holds;
(i) $J^{-} \cap[l(\alpha), \alpha)=\emptyset$;
(ii) $J^{-} \cap[l(\alpha), \alpha) \neq \emptyset$ and $\left(\alpha_{0}, \alpha\right] \cap J^{+} \neq \emptyset$, where $\alpha_{0}=\max \left(J^{-} \cap\right.$ $[l(\alpha), \alpha))$;
(iii) $J^{-} \cap[l(\alpha), \alpha) \neq \emptyset$ and $\left[\alpha_{0}, \alpha\right) \cap K^{-} \neq \emptyset$, where $\alpha_{0}=\max \left(J^{-} \cap\right.$ $[l(\alpha), \alpha))$.

4. Applications

In this section, we apply the theorems in the previous section
Corollary 4.1. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GO-spaces. Then the following hold:
(1) if X is countably 0 -compact, then $J^{-} \subset \omega$;
(2) if X is countably 1-compact, then $J^{+} \subset \omega$;
(3) if X is countably 0-compact, then for every $\delta<\gamma$, the lexicographic product $\prod_{\alpha<\delta} X_{\alpha}$ is countably 0-compact, in particular X_{0} is countably 0-compact;
(4) if X is countably 1-compact, then for every $\delta<\gamma$, the lexicographic product $\prod_{\alpha<\delta} X_{\alpha}$ is countably 1-compact, in particular X_{0} is countably 1-compact.

Proof: Lemma 3.2 and the condition (2b) in Theorem 3.3 show (1). (3) obviously follows from Theorem 3.3 or Lemma 2.2 directly. The remaining is similar.

Corollary 4.2. Let X be a GO-space. Then the lexicographic product $X^{\omega+1}$ is countably compact if and only if X is countably compact and has both a minimal and a maximal element.

Proof: That $X^{\omega+1}$ is countably compact implies that X is countably compact and has both a minimal and a maximal element follows from the corollary above. The other implication follows from the theorems in the previous section because of $J^{+}=J^{-}=\emptyset$.

Corollary 4.3. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of countably compact GO-spaces. Then the following are equivalent:
(1) the product X is countably compact;
(2) the following clauses hold:
(a) if $L^{+} \neq \emptyset$, then $J^{-} \subset \min L^{+}$;
(b) if $L^{-} \neq \emptyset$, then $J^{+} \subset \min L^{-}$.

Proof: Since all X_{α} 's are countably compact, (2a)+(2c) in Theorems 3.3 and 3.4 of the previous section are true.

Example 4.4. Let $[0,1)_{\mathbb{R}}$ denote the unit half open interval in the real line \mathbb{R} with the usual order. Let X be the lexicographic product $[0,1)_{\mathbb{R}} \times \omega_{1}$. Since $[0,1)_{\mathbb{R}}$ is not countably 0 -compact, Corollary 4.1 shows that X is not countably 0 compact. Both $[0,1)_{\mathbb{R}}$ and ω_{1} are countably 1-compact. Considering $X_{0}=[0,1)_{\mathbb{R}}$ and $X_{1}=\omega_{1}$, we see $1 \in L^{-}\left(0\right.$ in $[0,1)_{\mathbb{R}}$ witnesses this) therefore $1=\min L^{-}$. Moreover by $1 \in J^{+}$, (2b) in Theorem 3.4 does not hold. Therefore X is neither countably 0 -compact nor countably 1 -compact. Note that X is not paracompact, see [7, Example 4.6].

Example 4.5. Let X be the lexicographic product $\omega_{1} \times[0,1)_{\mathbb{R}}$. Checking all clauses in the theorems in the previous section, we see that X is countably compact. Since it is not compact, it is not paracompact. The lexicographic product $\omega_{1} \times[0,1)_{\mathbb{R}}$ is called the long line of length ω_{1} and denoted by $\mathbb{L}\left(\omega_{1}\right)$.
Example 4.6. Let \mathbb{S} be the Sorgenfrey line, where half open intervals $[a, b)_{\mathbb{R}}$'s are declared to be open. Then it is known that $\omega_{1} \times \mathbb{S}$ is paracompact but $\mathbb{S} \times \omega_{1}$ is not paracompact, see [7]. On the other hand, both lexicographic products $\omega_{1} \times \mathbb{S}$ and $\mathbb{S} \times \omega_{1}$ are not countably compact, because \mathbb{S} is not boundedly countably 0 -compact.

Example 4.7. Let X be the lexicographic product $\omega_{1} \times[0,1)_{\mathbb{R}} \times \omega_{1}$, and consider as $X_{0}=\omega_{1}, X_{1}=[0,1)_{\mathbb{R}}$ and $X_{2}=\omega_{1}$. Then $1-\operatorname{cf}_{\omega_{1} \times[0,1)_{\mathbb{R}}}(\langle 0,0\rangle, \rightarrow)=\omega$ shows $2 \in L^{-}$. Since $0,1 \notin L^{-}$, we have min $L^{-}=2$. Now $2 \in J^{+}$implies $J^{+} \not \subset \min L^{-}$. Thus Theorem 3.4 shows that X is not countably (1-)compact. On the other hand, we will later see that the lexicographic product $\omega_{1} \times \omega \times \omega_{1}$ is countably compact.

Corollary 4.8. There is a countably compact LOTS X whose lexicographic square X^{2} is not countably compact.

Proof: $X=\mathbb{L}\left(\omega_{1}\right)$ is such an example, because $\mathbb{L}\left(\omega_{1}\right)^{2}=\left(\omega_{1} \times[0,1)_{\mathbb{R}} \times \omega_{1}\right) \times$ $[0,1)_{\mathbb{R}}$ (use Example 4.7). We will later see that the lexicographic product $X=\omega_{1}^{\omega}$ is also such an example.

In the rest of the paper, we consider countable compactness of lexicographic products whose all factors have minimal elements. In the following, apply theorems with $J^{-}=\emptyset$.

Corollary 4.9. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GO-spaces. If all X_{α} 's have minimal elements, then the following are equivalent:
(1) the product X is countably 0-compact;
(2) the following clauses hold:
(a) X_{α} is boundedly countably 0-compact for every $\alpha<\gamma$;
(b) for every $\alpha<\gamma$, if either one of the following cases holds, then $0-\mathrm{cf}_{X_{\alpha}} X_{\alpha} \neq \omega$ holds:
(i) $J^{+} \cap[l(\alpha), \alpha)=\emptyset$;
(ii) $J^{+} \cap[l(\alpha), \alpha) \neq \emptyset$ and $\left[\alpha_{0}, \alpha\right) \cap K^{+} \neq \emptyset$, where $\alpha_{0}=\max \left(J^{+} \cap\right.$ $[l(\alpha), \alpha))$.
Corollary 4.10. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of GO-spaces. If all X_{α} 's have minimal elements, then the following are equivalent:
(1) the product X is countably 1-compact;
(2) the following clauses hold:
(a) X_{α} is (boundedly) countably 1-compact for every $\alpha<\gamma$;
(b) if $L^{-} \neq \emptyset$, then $J^{+} \subset \min L^{-}$.

Now we consider the case that all factors are subspaces of ordinals. First let X be a subspace of an ordinal. Since X is well-ordered, the following hold:

- the GO-space X is countably 1-compact;
- the GO-space X has a minimal element;
- for every $u \in X$ with $(u, \rightarrow) \neq \emptyset,(u, \rightarrow)$ has a minimal element;
- there is $u \in X$ such that (\leftarrow, u) is nonempty and has no maximal element if and only if the order type of X is greater than ω.

Note that a subspace X of ω_{1} is countably compact if and only if it is closed in ω_{1}, and also note that the subspace $X=\left\{\alpha<\omega_{2}: \operatorname{cf} \alpha \leq \omega\right\}$ is countably compact but not closed in ω_{2}.

Next let X_{α} be a subspace of an ordinal for every $\alpha<\gamma$ and $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product. Then using the notation in Section 3, we see:

- $J^{-}=\emptyset$;
- $K^{+}=\emptyset$;
- $\alpha \in K^{-}$if and only if the order type of X_{α} is greater than ω.

Remarking these facts with corollaries above, we see:
Corollary 4.11. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product. If all X_{α} 's are subspaces of ordinals, then the following are equivalent:
(1) the product X is countably 0-compact;
(2) the following clauses hold:
(a) X_{α} is boundedly countably 0-compact for every $\alpha<\gamma$;
(b) for every $\alpha<\gamma$ with $J^{+} \cap[l(\alpha), \alpha)=\emptyset, 0-\mathrm{cf}_{X_{\alpha}} X_{\alpha} \neq \omega$ holds.

Corollary 4.12. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product. If all X_{α} 's are subspaces of ordinals, then the following are equivalent:
(1) the product X is countably 1-compact;
(2) $J^{+} \subset \omega$.

Proof: $(1) \Rightarrow(2)$ Assume that X is countably 1-compact. By Corollary 4.10, if $L^{-} \neq \emptyset$, then $J^{+} \subset \min L^{-}$. When $\gamma \geq \omega$, because of $\omega \in L^{-}$, we see $J^{+} \subset \min L^{-} \leq \omega$. When $\gamma<\omega$, obviously we see $J^{+} \subset \gamma<\omega$.
$(2) \Rightarrow(1)$ Assume $J^{+} \subset \omega$. It suffices to check (2a) and (2b) in Corollary 4.10. (2a) is obvious. To see (2b), let $L^{-} \neq \emptyset$. Now assume $\omega \cap L^{-} \neq \emptyset$, and take $n \in \omega \cap L^{-}$. Then we can take $u \in \prod_{m<n} X_{m}$ with $1-\operatorname{cf}(u, \rightarrow)=\omega$. But this is a contradiction, because a lexicographic product of finite length of subspaces of ordinals are also a subspace of ordinal, see [7, Lemma 4.3]. Therefore we have $\omega \cap L^{-}=\emptyset . L^{-} \neq \emptyset$ and Lemma 3.2 show $J^{+} \subset \omega=\min L^{-}$.

If X is an ordinal, then it is boundedly countably 0 -compact and $0-\operatorname{cf}_{X} X=$ cf X. Therefore we have:

Corollary 4.13. Let $X=\prod_{\alpha<\gamma} X_{\alpha}$ be a lexicographic product of ordinals. Then the following are equivalent:
(1) the product X is countably compact;
(2) the following clauses hold:
(a) if $J^{+} \neq \emptyset$, then of $X_{\min J^{+}} \geq \omega_{1}$;
(b) $J^{+} \subset \omega$.

Corollary 4.14 ([4]). The following clauses hold:
(1) the lexicographic product ω_{1}^{γ} is countably 0-compact for every ordinal γ;
(2) the lexicographic product ω_{1}^{γ} is countably (1-)compact if and only if $\gamma \leq \omega$.

Example 4.15. Using Corollary 4.13, we see:
(1) lexicographic products $\omega_{1}^{2}, \omega_{1} \times \omega,(\omega+1) \times\left(\omega_{1}+1\right) \times \omega_{1} \times \omega, \omega_{1} \times \omega \times \omega_{1}$, $\omega_{1} \times \omega \times \omega_{1} \times \omega \times \cdots, \omega_{1} \times \omega^{\omega}, \omega_{1} \times \omega^{\omega} \times(\omega+1), \omega_{1}^{\omega}, \omega_{1}^{\omega} \times\left(\omega_{1}+1\right)$ and $\prod_{n \in \omega} \omega_{n+1}$ are countably compact;
(2) lexicographic products $\omega \times \omega_{1},(\omega+1) \times\left(\omega_{1}+1\right) \times \omega \times \omega_{1}, \omega \times \omega_{1} \times \omega \times \omega_{1} \times \cdots$, $\omega \times \omega_{1}^{\omega}, \omega_{1} \times \omega^{\omega} \times \omega_{1}, \omega_{1}^{\omega} \times \omega, \prod_{n \in \omega} \omega_{n}$ and $\prod_{n \leq \omega} \omega_{n+1}$ are not countably compact;
(3) let $X=\omega_{1}^{\omega}$, then the lexicographic product X^{2} is not countably compact because of $X^{2}=\omega_{1}^{\omega} \times \omega_{1}^{\omega}=\omega_{1}^{\omega+\omega}$, so this shows also Corollary 4.8.
For a GO-space $X=\left\langle X,<_{X}, \tau_{X}\right\rangle,-X$ denotes the reverse of X, that is, the GO-space $\left\langle X,>_{X}, \tau_{X}\right\rangle$, see [7]. Note that X and $-X$ are topologically homeomorphic.
Example 4.16. As above, the lexicographic product ω_{1}^{2} was countably compact. But the lexicographic product $\omega_{1} \times\left(-\omega_{1}\right)$ is not countably compact. Indeed, let $X=\omega_{1} \times\left(-\omega_{1}\right), X_{0}=\omega_{1}$ and $X_{1}=-\omega_{1}$. The element $\omega \in X_{0}$ with $0-\mathrm{cf}_{X_{0}}(\leftarrow, \omega)=\operatorname{cf} \omega=\omega$ witnesses $1 \in L^{+}$, therefore $\min L^{+}=1$. On the other hand $-\omega_{1}$ has no minimal element, so we have $1 \in J^{-}$. Therefore (2b) of Theorem 3.3 does not hold, thus X is not countably (0 -)compact.

Also note that $\left(-\omega_{1}\right) \times\left(-\omega_{1}\right)$ is countably compact but $\left(-\omega_{1}\right) \times \omega_{1}$ is not countably compact, because $\left(-\omega_{1}\right) \times\left(-\omega_{1}\right)$ and $\left(-\omega_{1}\right) \times \omega_{1}$ are topologically homeomorphic to ω_{1}^{2} and $\omega_{1} \times\left(-\omega_{1}\right)$, respectively, see [7].

Moreover $\omega_{1} \times(-\omega)$ is directly shown not to be countably (1-)compact, because the 1 -order preserving sequence $\{\langle 0, n\rangle: n \in \omega\}$ has no cluster point in $\omega_{1} \times(-\omega)$.

Acknowledgment. The author thanks the reviewer for careful reading the manuscript and for giving useful comments.

References

[1] Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Herdermann Verlag, Berlin, 1989.
[2] Faber M. J., Metrizability in Generalized Ordered Spaces, Mathematical Centre Tracts, 53, Mathematisch Centrum, Amsterdam, 1974.
[3] Kemoto N., Normality of products of GO-spaces and cardinals, Topology Proc. 18 (1993), 133-142.
[4] Kemoto N., The lexicographic ordered products and the usual Tychonoff products, Topology Appl. 162 (2014), 20-33.
[5] Kemoto N., Normality, orthocompactness and countable paracompactness of products of GO-spaces, Topology Appl. 231 (2017), 276-291.
[6] Kemoto N., Lexicographic products of GO-spaces, Topology Appl. 232 (2017), 267-280.
[7] Kemoto N., Paracompactness of lexicographic products of GO-spaces, Topology Appl. 240 (2018), 35-58.
[8] Kemoto N., The structure of the linearly ordered compactifications of GO-spaces, Topology Proc. 52 (2018), 189-204.
[9] Kunen K., Set Theory. An Introduction to Independence Proofs, Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing, Amsterdam, 1980.
[10] Lutzer D. J., On generalized ordered spaces, Dissertationes Math. Rozprawy Mat. 89 (1971), 32 pages.
[11] Miwa T., Kemoto N., Linearly ordered extensions of GO-spaces, Topology Appl. 54 (1993), no. 1-3, 133-140.
N. Kemoto:

Department of Mathematics, Oita University, 700 Dannoharu, Oita, 870-1192, JAPAN

E-mail: nkemoto@cc.oita-u.ac.jp
(Received July 23, 2018, revised December 1, 2018)

