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Countable compactness of lexi-

cographic products of GO-spaces

Nobuyuki Kemoto

Abstract. We characterize the countable compactness of lexicographic products
of GO-spaces. Applying this characterization about lexicographic products, we
see:

◦ the lexicographic product X2 of a countably compact GO-space X need not be count-
ably compact,

◦ ω2
1
, ω1 ×ω, (ω+1)× (ω1 +1)×ω1 ×ω, ω1 ×ω×ω1, ω1 ×ω×ω1 ×ω× · · · , ω1 ×ωω ,

ω1 × ωω × (ω + 1), ωω

1
, ωω

1
× (ω1 + 1) and

∏
n∈ω

ωn+1 are countably compact,
◦ ω × ω1, (ω + 1) × (ω1 + 1) × ω × ω1, ω × ω1 × ω × ω1 × · · · , ω × ωω

1
, ω1 × ωω × ω1,

ωω

1
× ω,

∏
n∈ω

ωn and
∏

n≤ω
ωn+1 are not countably compact,

◦ [0, 1)R × ω1, where [0, 1)R denotes the half open interval in the real line R, is not
countably compact,

◦ ω1 × [0, 1)R is countably compact,
◦ both S× ω1 and ω1 × S are not countably compact,
◦ ω1 × (−ω1) is not countably compact, where for a GO-space X = 〈X,<X , τX 〉, −X

denotes the GO-space 〈X,>X , τX 〉.

Keywords: lexicographic product; GO-space; LOTS; countably compact product

Classification: 54F05, 54B10, 54B05, 54C05

1. Introduction

Lexicographic products of LOTS’s were studied in [2] and it was proved:

◦ a lexicographic product of LOTS’s is compact if and only if all factors are
compact;
◦ a lexicographic products of paracompact LOTS’s is also paracompact.

Recently, the author defined the notion of the lexicographic product of GO-
spaces and extended the results above for GO-spaces, see [6], [7]. It is also known:

◦ the usual Tychonoff product of GO-spaces is countably compact if and
only if all factors are countably compact, therefore the usual Tychonoff
product ωγ

1 is countably compact for every ordinal γ;
◦ the lexicographic product ωω

1 is countably compact, but the lexicographic
product ωω+1

1 is not countably compact, see [4].
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422 N. Kemoto

In this paper, we will characterize the countable compactness of lexicographic
products of GO-spaces, further we give some applications.

When we consider a product
∏

α<γ Xα, all Xα are assumed to have cardinality

at least 2 with γ ≥ 2. Set theoretical and topological terminology follow [9]
and [1].

A linearly ordered set 〈L,<L〉 has a natural topology λL, which is called an
interval topology, generated by {(←, x)L : x ∈ L} ∪ {(x,→)L : x ∈ L} as a sub-
base, where (x,→)L = {z ∈ L : x <L z}, (x, y)L = {z ∈ L : x <L z <L y},
(x, y]L = {z ∈ L : x <L z ≤L y} and so on. The triple 〈L,<L, λL〉, which is
simply denoted by L, is called a LOTS.

A triple 〈X,<X , τX〉 is said to be a GO-space, which is also simply denoted
by X , if 〈X,<X〉 is a linearly ordered set and τX is a T2-topology on X having
a base consisting of convex sets, where a subset C of X is convex if for every
x, y ∈ C with x <X y, [x, y]X ⊂ C holds. For more information on LOTS’s or
GO-spaces, see [10]. Usually <L, (x, y)L, λL or τX are written simply <, (x, y),
λ or τ if contexts are clear.

The symbols ω and ω1 denote the first infinite ordinal and the first uncount-
able ordinal, respectively. Ordinals, which are usually denoted by Greek letters
α, β, γ, · · · , are considered to be LOTS’s with the usual interval topologies.

The cofinality of α is denoted by cf α.
For GO-spaces X = 〈X,<X , τX〉 and Y = 〈Y,<Y , τY 〉, X is said to be a sub-

space of Y if X ⊂ Y , the linear order “<X” is the restriction <Y ↾ X of the order
“<Y ” and the topology τX is the subspace topology τY ↾ X (= {U ∩X : U ∈ τY })
on X of the topology τY . So a subset of a GO-space is naturally considered as
a GO-space. For every GO-space X , there is a LOTS X∗ such that X is a dense
subspace of X∗ and X∗ has the property that if L is a LOTS containing X as
a dense subspace, then L also contains the LOTS X∗ as a subspace, see [11]. Such
a X∗ is called the minimal d-extension of a GO-space X . The construction of X∗

is also shown in [6]. Obviously, we can see:

◦ if X is a LOTS, then X∗ = X ;
◦ the spaceX has a maximal element maxX if and only if X∗ has a maximal
element maxX∗, in this case, maxX = maxX∗ (similarly for minimal
elements).

For every α < γ, let Xα be a LOTS and X =
∏

α<γ Xα. Every element

x ∈ X is identified with the sequence 〈x(α) : α < γ〉. For notational convenience,∏
α<γ Xα is considered as the trivial one point LOTS {∅} whenever γ = 0, where

∅ is considered to be a function whose domain is 0 (= ∅). When 0 ≤ β < γ,
y0 ∈

∏
α<β Xα and y1 ∈

∏
β≤αXα, y0

∧y1 denotes the sequence y ∈
∏

α<γ Xα

defined by

y(α) =

{
y0(α) if α < β,

y1(α) if β ≤ α.
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In this case, whenever β = 0, ∅∧y1 is considered as y1. In case 0 ≤ β < γ,
y0 ∈

∏
α<β Xα, u ∈ Xβ and y1 ∈

∏
β<α Xα, y0

∧〈u〉∧y1 denotes the sequence

y ∈
∏

α<γ Xα defined by

y(α) =





y0(α) if α < β,

u if α = β,

y1(α) if β < α.

More general cases are similarly defined. The lexicographic order “<X” on X is
defined as follows: for every x, x′ ∈ X ,

x <X x′ if and only if for some α < γ, x ↾ α = x′ ↾ α and x(α) <Xα
x′(α),

where x ↾ α = 〈x(β) : β < α〉 (in particular x ↾ 0 = ∅) and “<Xα
” is the

order on Xα. Now for every α < γ, let Xα be a GO-space and X =
∏

α<γ Xα.

The subspace X of the lexicographic product X̂ =
∏

α<γ X
∗
α is said to be the

lexicographic product of GO-spaces Xα’s, for more details see [6]. Product
∏

i∈ω Xi(∏
i≤n Xi where n ∈ ω

)
is denoted by X0×X1×X2×· · · (X0×X1×X2×· · ·×Xn,

respectively). Product
∏

α<γ Xα is also denoted by Xγ whenever Xα = X for all
α < γ.

Let X and Y be LOTS’s. A map f : X → Y is said to be order preserving

or 0-order preserving if f(x) <Y f(x′) whenever x <X x′. Similarly a map
f : X → Y is said to be order reversing or 1-order preserving if f(x) >Y f(x′)
whenever x <X x′. Obviously a 0-order preserving map (also 1-order preserving
map) f : X → Y between LOTS’s X and Y , which is onto, is a homeomorphism,
i.e., both f and f−1 are continuous. Now let X and Y be GO-spaces. A 0-order
preserving map f : X → Y is said to be a 0-order preserving embedding if f is
a homeomorphism between X and f [X ], where f [X ] is the subspace of the GO-
space Y . In this case, we identify X with f [X ] as a GO-space and write X = f [X ]
and X ⊂ Y .

Let X be a GO-space. A subset A of X is called a 0-segment of X if for every
x, x′ ∈ X with x ≤ x′, if x′ ∈ A, then x ∈ A. A 0-segment A is said to be bounded
if X \A is nonempty. Similarly the notion of (bounded) 1-segment can be defined.
Both ∅ and X are 0-segments and 1-segments. Obviously if A is a 0-segment of X ,
then X \A is a 1-segment of X .

Let A be a 0-segment of a GO-space X . A subset U of A is unbounded in A if
for every x ∈ A, there is x′ ∈ U such that x ≤ x′. Let

0- cfX A = min{|U | : U is unbounded in A}.

A set 0- cfX A can be 0, 1 or regular infinite cardinals. 0- cfX A = 0 means A = ∅
and 0- cfX A = 1 means that A has a maximal element. If contexts are clear,
0- cfX A is denoted by 0- cf A. For cofinality in compact LOTS and linearly or-
dered compactifications, see also [3], [8].
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Remember that a topological space is said to be countably compact if every
infinite subset has a cluster point.

Definition 1.1. A GO-space X is (boundedly) countably 0-compact if for every
(bounded) closed 0-segment A of X , 0- cfX A 6= ω holds. The term “(boundedly)
countably 1-compact” is analogously defined.

Obviously a GO-space X is countably 0-compact if and only if it is boundedly
countably 0-compact and 0- cfX 6= ω. Note that subspaces of ordinals are always
countably 1-compact because they are well-ordered. Also note that ordinals are
boundedly countably 0-compact but in general not countably 0-compact, e.g., ω,
ℵω etc.

We first check:

Lemma 1.2. A GO-space X is countably 0-compact if and only if every 0-order
preserving sequence {xn : n ∈ ω} (i.e., m < n→ xm < xn) has a cluster point.

Proof: Assuming the existence of a 0-order preserving sequence {xn : n ∈ ω}
with no cluster points, set A = {x ∈ X : ∃n ∈ ω(x ≤ xn)}. Then A is closed
0-segment with 0- cf A = ω.

To see the other direction, assuming the existence a closed 0-segment A with
0- cf A = ω, by induction, we can construct a 0-order preserving sequence with no
cluster points. �

Using the lemma, we can see that a GO-space is countably compact if and only
if it is both countably 0-compact and countably 1-compact, see also [5].

2. A simple case

In this section, we characterize countable 0-compactness of lexicographic prod-
ucts of two GO-spaces. The following is easy to prove, see also [7, Lemma 3.6 (3a)].

Lemma 2.1. Let X = X0×X1 be a lexicographic product of two GO-spaces and
A0 a 0-segment of X0 with 0- cfX0

A0 ≥ ω. Then A = A0×X1 is also a 0-segment
of X with 0- cfX A = 0- cfX0

A0.

The following lemma will be a useful tool for handling general cases.

Lemma 2.2. Let X = X0 × X1 be a lexicographic product of two GO-spaces.
Then the following are equivalent:

(1) the product X is countably 0-compact;
(2) the following clauses hold:

(a) the space X0 is countably 0-compact;
(b) the space X1 is boundedly countably 0-compact;
(c) if X1 has no minimal element or (u,→)X0

has no minimal element
(that is, 1- cfX0

(u,→) 6= 1) for some u ∈ X0, then 0- cfX1
X1 6= ω;

(d) if X1 has no minimal element, then 0- cfX0
(←, u) 6= ω for every

u ∈ X0.
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Proof: Set X̂ = X∗
0 ×X∗

1 .
(1)⇒ (2) Let X be countably 0-compact.
(a) Assuming that X0 is not countably 0-compact, take a closed 0-segment A0

of X0 with 0- cfX0
A0 = ω. By the lemma above, A = A0×X1 is a 0-segment of X

with 0- cfX A = ω. It suffices to see that A is closed, which contradicts countable
0-compactness of X . So let x /∈ A, then x(0) /∈ A0. Since A0 is closed in X0, there
is u∗ ∈ X∗

0 such that u∗ <X∗
0
x(0) and ((u∗,→)X∗

0
∩ X0) ∩ A0 = ∅ (this means

(u∗, x(0))X∗
0
= ∅). Fix w ∈ X1 and let x∗ = 〈u∗, w〉 ∈ X̂. Let U = (x∗,→)

X̂
∩X ,

then U is a neighborhood of x. To see U ∩ A = ∅, assume a ∈ U ∩ A for some a.
By a(0) ∈ A0, we can take u ∈ A0 with a(0) < u. Now u∗ ≤ a(0) < u shows
u ∈ ((u∗,→) ∩X0) ∩A0, a contradiction.

(b) Assuming that X1 is not boundedly countably 0-compact, take a bounded
closed 0-segment A1 of X1 with 0- cfX1

A1 = ω. Fix u ∈ X0 and let A = {x ∈ X:
∃ v ∈ A1(x ≤X 〈u, v〉)}. Obviously A is a 0-segment of X and {u} × A1 is
unbounded in the 0-segment A, so we see 0- cfX A = 0- cfX1

A1 = ω. It suffices
to see that A is closed, so let x ∈ X \A. Note u ≤ x(0). Since A1 is bounded, fix
v ∈ X1 \A1 and let y = 〈u, v〉. When y < x, U = (y,→)X is a neighborhood of x
disjoint from A. So let x ≤ y, then we have x(0) = u and x(1) /∈ A1. Since A1

is closed in X1, take v∗ ∈ X∗
1 such that v∗ < x(1) and ((v∗,→) ∩X1) ∩ A1 = ∅.

Then U = (〈u, v∗〉,→)
X̂
∩X is a neighborhood of x disjoint from A.

(c) First assume that X1 has no minimal element. Fix u ∈ X0. Then A =
(←, u] × X1 is a closed 0-segment of X and {u} × X1 is unbounded in the 0-
segment A, therefore 0- cfX1

X1 = 0- cfX A 6= ω.
Next assume that (u,→)X0

has no minimal element. Then putting A =
(←, u]×X1, similarly we see 0- cfX1

X1 6= ω.
(d) Assuming that X1 has no minimal element and 0- cfX0

(←, u) = ω for some
u ∈ X0, let A = (←, u)×X1. Then A is a closed 0-segment of X with 0- cfX A =
0- cfX0

(←, u) by Lemma 2.1. This contradicts countable 0-compactness of X .
(2)⇒ (1) Assuming (2) and that X is not countably 0-compact, take a closed

0-segment A of X with 0- cfX A = ω. Let A0 = {u ∈ X0 : ∃ v ∈ X1(〈u, v〉 ∈ A)}.
Since A is a nonempty 0-segment of X , A0 is also a nonempty 0-segment of X0.
We consider two cases, and in each cases, we will derive a contradiction.

Case 1. The 0-segment A0 has no maximal element, i.e., 0- cfA0 ≥ ω.

In this case, we have:

Claim 1. The equality A = A0 ×X1 holds.

Proof: The inclusion “⊂” is obvious. Let 〈u, v〉 ∈ A0 ×X1. Since u ∈ A0 and
A0 has no maximal element, we can take u′ ∈ A0 with u < u′. By u′ ∈ A0, there
is v′ ∈ X1 with 〈u′, v′〉 ∈ A. Then from 〈u, v〉 < 〈u′, v′〉 ∈ A, we see 〈u, v〉 ∈ A,
because A is a 0-segment. �

Lemma 2.1 shows 0- cf A0 = 0- cf A = ω. The following claim contradicts the
condition (2a).
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Claim 2. The 0-segment A0 is closed in X0.

Proof: Let u ∈ X0 \ A0. Whenever u′ < u for some u′ ∈ X0 \ A0, (u′,→)
is a neighborhood of u disjoint from A0. So assume the other case, that is,
u = min(X0 \ A0). Note A0 = (←, u). If X1 has no minimal element, then
by (2d), we have 0- cf(←, u) 6= ω, a contradiction. ThusX1 has a minimal element,
therefore 〈u,minX1〉 = min(X \A) /∈ A. Since A is closed, there are u∗ ∈ X∗

0 and
v∗ ∈ X∗

1 such that 〈u∗, v∗〉 < 〈u,minX1〉 and ((〈u∗, v∗〉,→)
X̂
∩X) ∩ A = ∅. The

inequality 〈u∗, v∗〉 < 〈u,minX1〉 shows u∗ < u, so (u∗,→)∩X0 is a neighborhood
of u disjoint from A0. �

Case 2. The 0-segment A0 has a maximal element.

In this case, let A1 = {v ∈ X1 : 〈maxA0, v〉 ∈ A}. Then A1 is a nonempty
0-segment of X1. Since {maxA0} ×A1 is unbounded in the 0-segment A, we see
0- cfX1

A1 = 0- cfX A = ω.

Claim 3. The 0-segment A1 is closed in X1.

Proof: Let v ∈ X1\A1. Since 〈maxA0, v〉 /∈ A and A is closed, there are u∗ ∈ X∗
0

and v∗ ∈ X∗
1 such that 〈u∗, v∗〉 < 〈maxA0, v〉 and ((〈u∗, v∗〉,→)

X̂
∩X) ∩ A = ∅.

It follows from A1 6= ∅ that u∗ = maxA0 and so v∗ < v. Then we see that
(v∗,→)X∗

1
∩X1 is a neighborhood of v disjoint from A1. �

This claim with the condition (2b) shows A1 = X1, which says

A = (←,maxA0]×X1,

in particular, we see that X1 has no maximal element.

Claim 4. The interval (maxA0,→) has no minimal element orX1 has no minimal
element.

Proof: Assume that (maxA0,→) has a minimal element u0 and X1 has a mini-
mal element, then note 〈u0,minX1〉 = min(X \A). Since A is closed in X , there
are u∗ ∈ X∗

0 and v∗ ∈ X∗
1 such that 〈u∗, v∗〉 < 〈u0,minX1〉 and ((〈u∗, v∗〉,→)

X̂
∩

X) ∩ A = ∅. Then we have u∗ = maxA0. Since X1 has no maximal element,
pick v ∈ X1 with v∗ < v. Then we see 〈maxA0, v〉 ∈ ((〈u∗, v∗〉,→)

X̂
∩ X) ∩ A,

a contradiction. �

Now the condition (2c) shows 0- cfX1
X1 6= ω, a contradiction. This completes

the proof of the lemma. �

3. A general case

In this section, using the results in the previous section, we characterize the
countable compactness of lexicographic products of any length of GO-spaces. We
use the following notations.



Countable compactness of lexicographic products of GO-spaces 427

Definition 3.1. Let X =
∏

α<γ Xα be a lexicographic product of GO-spaces.
Define:

J+ = {α < γ : Xα has no maximal element};

J− = {α < γ : Xα has no minimal element};

K+ = {α < γ : there is x ∈ Xα such that (x,→)Xα
is nonempty

and has no minimal element};

K− = {α < γ : there is x ∈ Xα such that (←, x)Xα
is nonempty

and has no maximal element};

L+ =

{
α ≤ γ : there is u ∈

∏

β<α

Xβ with 0- cf∏
β<α

Xβ
(←, u) = ω

}
;

L− =

{
α ≤ γ : there is u ∈

∏

β<α

Xβ with 1- cf∏
β<α

Xβ
(u,→) = ω

}
.

For an ordinal α, let

l(α) =

{
0 if α < ω,

sup{β ≤ α : β is limit} if α ≥ ω.

Some of the definitions above are introduced in [7]. Note that 0 /∈ L+ ∪ L−

and for an ordinal α ≥ ω, l(α) is the largest limit ordinal less than or equal to α,
therefore the half open interval [l(α), α) of ordinals is finite.

We also remark:

Lemma 3.2. Let X =
∏

α<γ Xα be a lexicographic product of GO-spaces. If

ω ≤ γ, then ω ∈ L+ ∩ L− holds.

Proof: Assume ω ≤ γ. For each n ∈ ω, fix u0(n), u1(n) ∈ Xn with u0(n) <
u1(n). Set y = 〈u1(n) : n ∈ ω〉. Moreover for each n ∈ ω, set yn = 〈u1(i) : i <
n〉∧〈u0(i) : n ≤ i〉. Then {yn : n ∈ ω} is a 0-order preserving unbounded sequence
in (←, y) in

∏
n∈ω Xn, therefore ω ∈ L+. The statement ω ∈ L− is similar. �

Theorem 3.3. Let X =
∏

α<γ Xα be a lexicographic product of GO-spaces.
Then the following are equivalent:

(1) the product X is countably 0-compact;
(2) the following clauses hold:

(a) space Xα is boundedly countably 0-compact for every α < γ;
(b) if L+ 6= ∅, then J− ⊂ minL+;
(c) for every α < γ, if any one of the following cases (i)–(iii) holds, then

0- cfXα
Xα 6= ω holds:

(i) J+ ∩ [l(α), α) = ∅;
(ii) J+ ∩ [l(α), α) 6= ∅ and (α0, α]∩J− 6= ∅, where α0 = max(J+ ∩

[l(α), α));
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(iii) J+∩ [l(α), α) 6= ∅ and [α0, α)∩K+ 6= ∅, where α0 = max(J+∩
[l(α), α)).

Proof: Note that (2a)+(2ci) implies that X0 is countably 0-compact. Let X̂ =∏
α<γ X

∗
α.

(1)⇒ (2) Assume that X is countably 0-compact.
(a) Let α0 < γ. Since X =

∏
α≤α0

Xα ×
∏

α0<α Xα, see [6, Lemma 1.5],

and X is countably 0-compact, Lemma 2.2 shows that
∏

α≤α0
Xα is countably

0-compact. Now by
∏

α≤α0
Xα =

∏
α<α0

Xα×Xα0
and Lemma 2.2 again, we see

that Xα0
is boundedly countably 0-compact.

(b) Assume L+ 6= ∅ and α0 = minL+. Then Lemma 3.2 shows α0 ≤ ω. From
α0 ∈ L+ one can take u ∈

∏
α<α0

Xα such that 0- cf∏
α<α0

Xα
(←, u) = ω. Now

since X =
∏

α<α0
Xα×

∏
α0≤α Xα is countably 0-compact, Lemma 2.2 (d) shows

that
∏

α0≤α Xα has a minimal element. Therefore Xα has a minimal element for

every α ≥ α0, which shows J− ⊂ α0.
(c) Let α0 < γ. We will see 0- cfXα0

Xα0
6= ω in each case of (i), (ii) and (iii).

Case (i). I.e., J+ ∩ [l(α0), α0) = ∅.

Since X is countably 0-compact and X =
∏

α≤α0
Xα×

∏
α0<α Xα, Lemma 2.2

shows that
∏

α≤α0
Xα is also countably 0-compact. When α0 = 0, by countable

0-compactness of
∏

α≤α0
Xα = Xα0

, we see 0- cfXα0
Xα0

6= ω. So let α0 > 0. We
divide into two cases.

Case (i)-1. l(α0) = 0, i.e., α0 < ω.

In this case, since
∏

α<α0
Xα has a maximal element, which implies that(

max
∏

α<α0
Xα,→

)
has no minimal element, and

∏
α<α0

Xα×Xα0
is countably

0-compact, Lemma 2.2 (2c) shows 0- cfXα0
Xα0

6= ω.

Case (i)-2. l(α0) ≥ ω, i.e., α0 ≥ ω.

In this case, note that for every α ∈ [l(α0), α0), Xα has a maximal ele-
ment. For every α < l(α0), fix x0(α), x1(α) ∈ Xα with x0(α) < x1(α), and
let y = 〈x0(α) : α < l(α0)〉∧〈maxXα : l(α0) ≤ α < α0〉. Moreover for every
β < l(α0), let yβ = 〈x0(α) : α < β)〉∧〈x1(α) : β ≤ α < l(α0))〉∧〈maxXα : l(α0) ≤
α < α0〉. Then {yβ : β < l(α0)} is 1-order preserving and unbounded in (y,→),
in particular, the interval (y,→) in

∏
α<α0

Xα has no minimal element. Now
Lemma 2.2 (2c) shows 0- cfXα0

Xα0
6= ω.

Case (ii). I.e., J+∩ [l(α0), α0) 6= ∅ and (α1, α0]∩J− 6= ∅, where α1 = max(J+∩
[l(α0), α0)).

Note that α1 is well-defined insomuch as [l(α0), α0) is finite. Also let α2 =
max((α1, α0]∩J

−), then note 0 ≤ l(α0) ≤ α1 < α2 ≤ α0, in particular [0, α2) 6= ∅.
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Case (ii)-1. α2 = α0.

Since
∏

α<α0
Xα×Xα0

(
=

∏
α≤α0

Xα

)
is countably 0-compact, Lemma 2.2 (2c)

shows 0- cfXα0
Xα0

6= ω.

Case (ii)-2. α2 < α0.

Note that by the definition of α2, Xα has a minimal element for every α ∈
(α2, α0]. Fixing z ∈

∏
α<α2

Xα, let y = z∧〈maxXα : α2 ≤ α < α0〉, then y ∈∏
α<α0

Xα.

Claim 1. (y,→)∏
α<α0

Xα
is nonempty and has no minimal element.

Proof: Because Xα1
has no maximal element, fix u ∈ Xα1

with y(α1) < u.
Then (y ↾ α1)

∧〈u〉∧(y ↾ (α1, α0)) ∈ (y,→), which shows (y,→) 6= ∅. Next assume
y < y′ ∈

∏
α<α0

Xα. Since y(α) = maxXα for every α ∈ [α2, α0), we have

y ↾ α2 < y′ ↾ α2. Since Xα2
has no minimal element, fix u ∈ Xα2

with u < y′(α2).
Then we have y < (y′ ↾ α2)

∧〈u〉∧((y′ ↾ (α2, α0)) < y′, which shows that (y,→)
has no minimal element. �

Now because
∏

α<α0
Xα × Xα0

is countably 0-compact, Lemma 2.2 (2c) and
the claim above shows 0- cfXα0

Xα0
6= ω.

Case (iii). I.e., J+∩[l(α0), α0) 6= ∅ and [α1, α0)∩K+ 6= ∅, where α1 = max(J+∩
[l(α0), α0)).

Let α2 = max([α1, α0) ∩ K+), then note l(α0) ≤ α1 ≤ α2 < α0. Fixing z ∈∏
α<α2

Xα and u ∈ Xα2
satisfying that (u,→) is nonempty and has no minimal

element, let y = z∧〈u〉∧〈maxXα : α2 < α < α0〉. Then obviously y ∈
∏

α<α0
Xα

and (y,→) has no minimal element. Since
∏

α<α0
Xα × Xα0

is countable 0-

compact, Lemma 2.2 (2c) shows 0- cfXα0
Xα0

6= ω.

(2) ⇒ (1) Assuming (2) and the negation of (1), take a closed 0-segment A
of X with 0- cfX A = ω. Modifying the proof of Theorem 4.8 in [7], we consider
3 cases and their subcases. In each case, we will derive a contradiction.

Case 1. A = X .

In this case, since X has no maximal element, we have J+ 6= ∅, so let α0 =
min J+. Then J+ ∩ [l(α0), α0) ⊂ J+ ∩ [0, α0) = ∅ and the condition (2ci) shows
0- cfXα0

Xα0
≥ ω1. Since {〈maxXα : α < α0〉}×Xα0

is unbounded in
∏

α≤α0
Xα,

we have 0- cf∏
α≤α0

Xα

∏
α≤α0

Xα = 0- cfXα0
Xα0

≥ ω1. Now by X =
∏

α≤α0
Xα×∏

α0<α Xα, Lemma 2.1 shows 0- cfX A = 0- cfX X = 0- cf∏
α≤α0

Xα

∏
α≤α0

Xα =

0- cfXα0
Xα0

≥ ω1, a contradiction.

Case 2. A 6= X and X \A has a minimal element.

Let B = X \ A and b = minB. Since A is nonempty closed and B = [b,→),

there is b∗ ∈ X̂ with b∗ < b and ((b∗,→)
X̂
∩X)∩A = ∅, equivalently (b∗, b)

X̂
= ∅.

Note b∗ /∈ X because A has no maximal element. Let α0 = min{α < γ : b∗(α) 6=
b(α)}.
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Claim 2. For every α > α0, Xα has a minimal element and b(α) = minXα.

Proof: Assuming b(α) > u for some α > α0 and u ∈ Xα, let α1 = min{α > α0 :
∃u ∈ Xα(b(α) > u)} and fix u ∈ Xα1

with b(α1) > u. Then we have b∗ <
(b ↾ α1)

∧〈u〉∧(b ↾ (α1, γ)) < b, a contradiction. �

Claim 3. (b∗(α0), b(α0))X∗
α0
∩Xα0

= ∅.

Proof: Assume u ∈ (b∗(α0), b(α0))X∗
α0
∩ Xα0

for some u. Then we have b∗ <

(b ↾ α0)
∧〈u〉∧(b ↾ (α0, γ)) < b, a contradiction. �

Claim 4. [b(α0),→)Xα0
/∈ λXα0

, therefore b∗(α0) /∈ Xα0
.

Proof: It follows from b∗(α0) ∈ (←, b(α0))X∗
α0

that (←, b(α0))Xα0
6= ∅. Assume

[b(α0),→)Xα0
∈ λXα0

, then for some u ∈ Xα0
with u < b(α0), (u, b(α0)) = ∅

holds. Claim 3 shows b∗(α0) = u ∈ Xα0
. If there were α > α0 and v ∈ Xα

with v > b∗(α), then by letting α1 = min{α > α0 : ∃ v ∈ Xα(v > b∗(α))} and
taking v ∈ Xα1

with v > b∗(α1), we have b∗ < (b∗ ↾ α1)
∧〈v〉∧(b∗ ↾ (α1, γ)) < b,

a contradiction. Therefore for every α > α0, maxXα exists and b∗(α) = maxXα.
Thus we have b∗ = (b ↾ α0)

∧〈u〉∧〈maxXα : α0 < α〉 ∈ X , a contradiction. �

Claims 3 and 4 show that A0 := (←, b(α0)) is a bounded closed 0-segment
ofXα0

without a maximal element. Now the condition (2a) shows 0- cfXα0
A0 ≥ ω1.

Since {b ↾ α0}×A0×{b ↾ (α0, γ)} is unbounded in the 0-segment in A (= (←, b)X),
we have ω = 0- cfX A = 0- cfXα0

A0 ≥ ω1, a contradiction. This completes Case 2.

Case 3. A 6= X and X \A has no minimal element.

Let B = X \A and

I = {α < γ : ∃ a ∈ A ∃ b ∈ B (a ↾ (α+ 1) = b ↾ (α+ 1))}.

Obviously I is a 0-segment of γ, so I = α0 for some α0 ≤ γ. For each α < α0, fix
aα ∈ A and bα ∈ B with aα ↾ (α+ 1) = bα ↾ (α + 1). By letting Y0 =

∏
α<α0

Xα

and Y1 =
∏

α0≤α Xα, define y0 ∈ Y0 by y0(α) = aα(α) for every α < α0. The

ordinal α0 can be 0, then in this case, Y0 = {∅} and y0 = ∅.

Claim 5. For every α < α0, y0 ↾ (α+ 1) = aα ↾ (α+ 1) = bα ↾ (α+ 1) holds.

Proof: The second equality is obvious. To see the first equality, assuming y0 ↾

(α + 1) 6= aα ↾ (α + 1) for some α < α0, let α1 = min{α < α0 : y0 ↾ (α + 1) 6=
aα ↾ (α + 1)}. Moreover let α2 = min{α ≤ α1 : y0(α) 6= aα1

(α)}. It follows from
y0(α1) = aα1

(α1) that α2 < α1. Since y0 ↾ α2 = aα1
↾ α2 and y0(α2) 6= aα1

(α2)
hold, by the minimality of α1, we have y0 ↾ (α2 + 1) = aα2

↾ (α2 + 1) = bα2
↾

(α2 + 1). When y0(α2) < aα1
(α2), we have B ∋ bα2

< aα1
∈ A, a contradiction.

When y0(α2) > aα1
(α2), we have B ∋ bα1

< aα2
∈ A, a contradiction. �

Claim 5 remains true when α0 = 0, because there is no ordinal α with α < α0.
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Claim 6. α0 < γ.

Proof: Assume α0 = γ, then note y0 ∈ Y0 = X = A ∪ B. Assume y0 ∈ A.
Since A has no maximal element, one can take a ∈ A with y0 < a. Letting
β0 = min{β < γ : y0(β) 6= a(β)}, we see A ∋ a > bβ0

∈ B, a contradiction. The
remaining case is similar. �

Let A0 = {a(α0) : a ∈ A, a ↾ α0 = y0} and B0 = {b(α0) : b ∈ B, b ↾ α0 = y0}.

Claim 7. The following hold:

(1) for every a ∈ A, a ↾ α0 ≤ y0 holds;
(2) for every x ∈ X , if x ↾ α0 < y0, then x ∈ A.

Proof: (1) Assume a ↾ α0 > y0 for some a ∈ A. Letting β0 = min{β < α0 :
a(β) 6= y0(β)}, we see B ∋ bβ0

< a ∈ A, a contradiction.
(2) Assume x ↾ α0 < y0. Letting β0 = min{β < α0 : x(β) 6= y0(β)}, we see

x < aβ0
∈ A. Since A is a 0-segment, we have x ∈ A. �

Similarly we have:

Claim 8. The following hold:

(1) for every b ∈ B, b ↾ α0 ≥ y0 holds;
(2) for every x ∈ X , if x ↾ α0 > y0, then x ∈ B.

Claim 9. A0 is a 0-segment of Xα0
and B0 = Xα0

\A0.

Proof: To see that A0 is a 0-segment, let u′ < u ∈ A0. Pick a ∈ A with
a ↾ α0 = y0 and u = a(α0). Let a′ = (a ↾ α0)

∧〈u′〉∧(a ↾ (α0, γ)). Since A is
a 0-segment and a′ < a ∈ A, we have a′ ∈ A. Now we see u′ = a′(α0) ∈ A0

because of a′ ↾ α0 = y0.
To see B0 = Xα0

\ A0, first let u ∈ B0. Take b ∈ B with b ↾ α0 = y0
and b(α0) = u. If u ∈ A0 were true, then by taking a ∈ A with a ↾ α0 = y0
and a(α0) = u, we see a ↾ (α0 + 1) = b ↾ (α0 + 1), therefore α0 ∈ I = α0,
a contradiction. So we have u ∈ Xα0

\ A0. To see the remaining inclusion, let
u ∈ Xα0

\ A0. Take x ∈ X with x ↾ (α0 + 1) = y0
∧〈u〉. If x ∈ A were true, then

by x ↾ α0 = y0, we have u = x(α0) ∈ A0, a contradiction. So we have x ∈ B,
therefore u ∈ B0. �

Claim 10. A0 6= ∅.

Proof: Assume A0 = ∅. We prove the following facts.

Fact 1. (←, y0)Y0
× Y1 = A.

Proof: One inclusion follows from Claim 7 (2). To see the other inclusion, let
a ∈ A. Claim 7 (1) shows a ↾ α0 ≤ y0. If a ↾ α0 = y0 were true, then we have
a(α0) ∈ A0, a contradiction. So we have a ↾ α0 < y0 therefore a ∈ (←, y0)×Y1. �



432 N. Kemoto

Fact 2. α0 > 0 and α0 is limit.

Proof: If α0 = 0 were true, then by taking a ∈ A, we have a(α0) ∈ A0, a con-
tradiction. Therefore we have α0 > 0. Next if α0 = β0 + 1 were true for some
ordinal β0, then by β0 ∈ α0 and Claim 5, we have y0 ↾ α0 = y0 ↾ (β0 + 1) =
aβ0

↾ (β0 + 1) = aβ0
↾ α0, thus we have aβ0

(α0) ∈ A0, a contradiction. Thus α0

is limit. �

Now Claim 6 and Fact 2 show ω ≤ α0 < γ, so Lemma 3.2 shows ω ∈ L+.
Moreover the condition (2b) shows J− ⊂ minL+ ≤ ω ≤ α0, in particular, Xα has
a minimal element for every α ≥ α0. This means Y1

(
=

∏
α0≤α Xα

)
has a minimal

element. Now by Fact 1, we see y0
∧ minY1 = min(X \ A), which contradicts our

case. �

Next, let Z0 =
∏

α≤α0
Xα, Z1 =

∏
α0<α Xα and

A∗ = {z ∈ Z0 : z ↾ α0 < y0 or (z ↾ α0 = y0, z(α0) ∈ A0)}.

Note A∗ = ((←, y0)×Xα0
) ∪ ({y0} ×A0).

Claim 11. A∗ is a 0-segment of Z0 and A = A∗ × Z1.

Proof: Since A0 is a 0-segment of Xα0
, A∗ is obviously a 0-segment of Z0. To

see A ⊂ A∗ × Z1, let a ∈ A. Claim 7 (1) shows a ↾ α0 ≤ y0. When a ↾ α0 < y0,
obviously we have a ↾ (α0 + 1) ∈ A∗. When a ↾ α0 = y0, a ∈ A shows a(α0) ∈ A0

thus a ↾ (α0 + 1) ∈ A∗. To see A ⊃ A∗ × Z1, let a ∈ A∗ × Z1. Then note
a ↾ (α0 + 1) ∈ A∗. When a ↾ α0 < y0, letting β0 = min{β < α0 : a(β) 6= y0(β)},
we see a < aβ0

∈ A thus a ∈ A. When a ↾ α0 = y0 and a(α0) ∈ A0, Claim 9
shows a ∈ A. �

Since {y0} × A0 is unbounded in the 0-segment A∗, we see 1 ≤ 0- cfZ0
A∗ =

0- cfXα0
A0. We divide Case 3 into two subcases.

Case 3-1. 0- cfZ0
A∗ ≥ ω.

In this case, Claim 11 and Lemma 2.1 show ω = 0- cfX A = 0- cfZ0
A∗ =

0- cfXα0
A0.

Claim 12. A0 6= Xα0
.

Proof: Assume A0 = Xα0
. Then 0- cfXα0

Xα0
= 0- cfXα0

A0 = ω shows

α0 ∈ J+. Assume α0 = β0 + 1 for some ordinal β0. Then β0 < α0 = I shows
bβ0
∈ B. Now from bβ0

↾ α0 = bβ0
↾ (β0 + 1) = y0 ↾ (β0 + 1) = y0 ↾ α0, we have

bβ0
(α0) ∈ B0 = Xα0

\ A0, a contradiction. Thus we see that α0 = 0 or α0 is
limit, that is, [l(α0), α0) = ∅. Now the condition (2ci) shows 0- cfXα0

Xα0
6= ω,

a contradiction. �
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Claim 13. A0 is closed in Xα0
.

Proof: When B0 has no minimal element, obviously A0 is closed. So assume
that B0 has a minimal element, say u = minB0. It suffices to find a neighborhood
of u disjoint from A0. The facts A∗ = (←, y0

∧〈u〉)Z0
and 0- cfZ0

A∗ = ω show
α0 + 1 ∈ L+, therefore minL+ ≤ α0 + 1. The condition (2b) ensures J− ⊂
minL+ ≤ α0 + 1, so J− ⊂ [0, α0]. Therefore Xα has a minimal element for
every α > α0. Let b = y0

∧〈u〉∧〈minXα : α0 < α〉. Since b ∈ B (= X \ A)

and A is closed in X , there is b∗ ∈ X̂ such that b∗ < b and (b∗, b)
X̂
∩ A = ∅.

Set β0 = min{β < γ : b∗(β) 6= b(β)}, then obviously β0 ≤ α0. If β0 < α0 were
true, we have aβ0

∈ (b∗, b)
X̂
∩ A, a contradiction. Thus we have β0 = α0, so

b∗ ↾ α0 = y0 and b∗(α0) < u. If there were v ∈ (b∗(α0),→)X∗
α0
∩ A0, then

v < u shows y0
∧〈v〉∧〈minXα : α0 < α〉 ∈ (b∗, b) ∩ A, a contradiction. Therefore

(b∗(α0),→)X∗
α0
∩Xα0

is a neighborhood of u disjoint from A0. �

These claims above show that A0 is a bounded closed 0-segment of Xα0
. Now

the condition (2a) shows 0- cfXα0
A0 6= ω, a contradiction.

Case 3-1. 0- cfZ0
A∗ = 1.

Since A = A∗ × Z1, A
∗ has a maximal element but A has no maximal ele-

ment, we see that Z1 has no maximal element. Therefore Xα has no maximal
element for some α > α0, in particular (α0, γ) 6= ∅. Let α1 = min{α > α0 :
Xα has no maximal element}. Then we have α0 < α1 ∈ J+ and (α0, α1)∩J+ = ∅.
As A = A∗×Z1 = A∗×

(∏
α0<α≤α1

Xα×
∏

α1<α Xα

)
=

(
A∗×

∏
α0<α≤α1

Xα

)
×∏

α1<α Xα and A∗ ×
∏

α0<α≤α1
Xα is a 0-segment in

∏
α≤α1

Xα with no max-

imal element, Lemma 2.1 shows ω = 0- cfX A = 0- cf
(
A∗ ×

∏
α0<α≤α1

Xα

)
=

0- cfXα1
Xα1

(that {y0∧〈maxA0〉∧〈maxXα : α0 < α < α1〉} ×Xα1
is unbounded

in the 0-segment A∗ ×
∏

α0<α≤α1
Xα witnesses the last equality).

Claim 14. Let l(α1) ≤ α0 and J+ ∩ [l(α1), α0] 6= ∅ hold, in particular J+ ∩
[l(α1), α1) 6= ∅.

Proof: First assume α0 < l(α1). Then J+ ∩ [l(α1), α1) ⊂ J+ ∩ (α0, α1) = ∅
and the condition (2ci) show 0- cfXα1

Xα1
6= ω, a contradiction. Thus we have

l(α1) ≤ α0.
Next assume J+ ∩ [l(α1), α0] = ∅, then we have J+ ∩ [l(α1), α1) = ∅ because

of J+ ∩ (α0, α1) = ∅. Therefore the condition (2ci) shows 0- cfXα1
Xα1

6= ω,

a contradiction. Thus J+ ∩ [l(α1), α0] 6= ∅. �

Using the above claim, set α2 = max(J+ ∩ [l(α1), α1)). Note 0 ≤ l(α1) ≤ α2 ≤
α0 < α1 and J+ ∩ (α2, α1) = ∅.

Claim 15. B0 has a minimal element.

Proof: First we check B0 6= ∅, so assume B0 = ∅, i.e., A0 = Xα0
. The equations

1 = 0- cfZ0
A∗ = 0- cfXα0

A0 = 0- cfXα0
Xα0

show α0 /∈ J+. Also α2 ≤ α0 and

α2 ∈ J+ show 0 ≤ α2 < α0. Assume that α0 = β0 + 1 for some ordinal β0, then
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by β0 < α0 = I, we have bβ0
∈ B and bβ0

↾ α0 = bβ0
↾ (β0 + 1) = y0 ↾ (β0 + 1) =

y0 ↾ α0. Therefore we have bβ0
(α0) ∈ B0, a contradiction. So we have 0 < α0 and

α0 is limit, therefore α0 ≤ l(α1) ≤ α2, which contradicts α2 < α0. We have seen
B0 6= ∅.

Next we check that B0 has a minimal element. Assume that B0 has no minimal
element, then maxA0 witnesses α0 ∈ [α2, α1)∩K+. The definition of α2 and the
condition (2ciii) show 0- cfXα1

Xα1
6= ω, a contradiction. �

Now since B has no minimal element, by the claim above, there is α > α0 such
that Xα has no minimal element. So let α3 = min{α > α0 : Xα has no minimal
element}. Then we have α0 < α3 ∈ J−. When ω ≤ γ, Lemma 3.2 and the
condition (2b) show J− ⊂ minL+ ≤ ω. When γ < ω, obviously J− ⊂ ω. So in
any case we have J− ⊂ ω. Therefore l(α1) ≤ α0 < α3 ∈ ω so we have α1 ∈ ω.

Claim 16. α3 ≤ α1.

Proof: Assume α1 < α3, then Xα has a minimal element for every α ∈ (α0, α1].
So let y = y0

∧〈minB0〉∧〈minXα : α0 < α ≤ α1〉. Note y ∈
∏

α≤α1
Xα and con-

sider the interval (←, y) in
∏

α≤α1
Xα. The definition of α2 and α2 ≤ α0 show that

Xα has a maximal element for every α ∈ (α0, α1). Since {y0∧〈maxA0〉∧〈maxXα :
α0 < α < α1〉} × Xα1

is unbounded in (←, y), we have 0- cf(←, y) =
0- cfXα1

Xα1
= ω. Thus y witnesses α1 + 1 ∈ L+. The condition (2b) ensures

J− ⊂ minL+ ≤ α1 + 1, thus α3 ∈ J− ⊂ [0, α1], a contradiction. Now we have
α3 ≤ α1. �

Now α3 ∈ (α0, α1] ∩ J− ⊂ (α2, α1] ∩ J−, α2 = max(J+ ∩ [l(α1), α1)) and the
condition (2cii) show 0- cfXα1

Xα1
6= ω, a contradiction. This completes the proof

of the theorem. �

Analogously we can see:

Theorem 3.4. Let X =
∏

α<γ Xα be a lexicographic product of GO-spaces.
Then the following are equivalent:

(1) the product X is countably 1-compact;
(2) the following clauses hold:

(a) Xα is boundedly countably 1-compact for every α < γ;
(b) if L− 6= ∅, then J+ ⊂ minL−;
(c) for every α < γ, if any one of the following cases bellow holds; then

1- cfXα
Xα 6= ω holds;

(i) J− ∩ [l(α), α) = ∅;
(ii) J− ∩ [l(α), α) 6= ∅ and (α0, α]∩J+ 6= ∅, where α0 = max(J− ∩

[l(α), α));
(iii) J−∩ [l(α), α) 6= ∅ and [α0, α)∩K− 6= ∅, where α0 = max(J−∩

[l(α), α)).
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4. Applications

In this section, we apply the theorems in the previous section

Corollary 4.1. Let X =
∏

α<γ Xα be a lexicographic product of GO-spaces.
Then the following hold:

(1) if X is countably 0-compact, then J− ⊂ ω;
(2) if X is countably 1-compact, then J+ ⊂ ω;
(3) if X is countably 0-compact, then for every δ < γ, the lexicographic

product
∏

α<δ Xα is countably 0-compact, in particular X0 is countably
0-compact;

(4) if X is countably 1-compact, then for every δ < γ, the lexicographic
product

∏
α<δ Xα is countably 1-compact, in particular X0 is countably

1-compact.

Proof: Lemma 3.2 and the condition (2b) in Theorem 3.3 show (1). (3) obviously
follows from Theorem 3.3 or Lemma 2.2 directly. The remaining is similar. �

Corollary 4.2. Let X be a GO-space. Then the lexicographic product Xω+1 is
countably compact if and only if X is countably compact and has both a minimal
and a maximal element.

Proof: That Xω+1 is countably compact implies that X is countably compact
and has both a minimal and a maximal element follows from the corollary above.
The other implication follows from the theorems in the previous section because
of J+ = J− = ∅. �

Corollary 4.3. Let X =
∏

α<γ Xα be a lexicographic product of countably
compact GO-spaces. Then the following are equivalent:

(1) the product X is countably compact;
(2) the following clauses hold:

(a) if L+ 6= ∅, then J− ⊂ minL+;
(b) if L− 6= ∅, then J+ ⊂ minL−.

Proof: Since all Xα’s are countably compact, (2a)+(2c) in Theorems 3.3 and 3.4
of the previous section are true. �

Example 4.4. Let [0, 1)R denote the unit half open interval in the real line R

with the usual order. Let X be the lexicographic product [0, 1)R × ω1. Since
[0, 1)R is not countably 0-compact, Corollary 4.1 shows that X is not countably 0-
compact. Both [0, 1)R and ω1 are countably 1-compact. Considering X0 = [0, 1)R
and X1 = ω1, we see 1 ∈ L− (0 in [0, 1)R witnesses this) therefore 1 = minL−.
Moreover by 1 ∈ J+, (2b) in Theorem 3.4 does not hold. Therefore X is neither
countably 0-compact nor countably 1-compact. Note that X is not paracompact,
see [7, Example 4.6].
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Example 4.5. Let X be the lexicographic product ω1 × [0, 1)R. Checking all
clauses in the theorems in the previous section, we see that X is countably com-
pact. Since it is not compact, it is not paracompact. The lexicographic product
ω1 × [0, 1)R is called the long line of length ω1 and denoted by L(ω1).

Example 4.6. Let S be the Sorgenfrey line, where half open intervals [a, b)R’s are
declared to be open. Then it is known that ω1 × S is paracompact but S× ω1 is
not paracompact, see [7]. On the other hand, both lexicographic products ω1× S

and S × ω1 are not countably compact, because S is not boundedly countably
0-compact.

Example 4.7. Let X be the lexicographic product ω1× [0, 1)R×ω1, and consider
as X0 = ω1, X1 = [0, 1)R and X2 = ω1. Then 1- cfω1×[0,1)R(〈0, 0〉,→) = ω shows

2 ∈ L−. Since 0, 1 /∈ L−, we have minL− = 2. Now 2 ∈ J+ implies J+ 6⊂ minL−.
Thus Theorem 3.4 shows thatX is not countably (1-)compact. On the other hand,
we will later see that the lexicographic product ω1×ω×ω1 is countably compact.

Corollary 4.8. There is a countably compact LOTS X whose lexicographic
square X2 is not countably compact.

Proof: X = L(ω1) is such an example, because L(ω1)
2 = (ω1 × [0, 1)R × ω1) ×

[0, 1)R (use Example 4.7). We will later see that the lexicographic productX = ωω
1

is also such an example. �

In the rest of the paper, we consider countable compactness of lexicographic
products whose all factors have minimal elements. In the following, apply theo-
rems with J− = ∅.

Corollary 4.9. Let X =
∏

α<γ Xα be a lexicographic product of GO-spaces. If
all Xα’s have minimal elements, then the following are equivalent:

(1) the product X is countably 0-compact;
(2) the following clauses hold:

(a) Xα is boundedly countably 0-compact for every α < γ;
(b) for every α < γ, if either one of the following cases holds, then

0- cfXα
Xα 6= ω holds:

(i) J+ ∩ [l(α), α) = ∅;
(ii) J+∩ [l(α), α) 6= ∅ and [α0, α)∩K+ 6= ∅, where α0 = max(J+∩

[l(α), α)).

Corollary 4.10. Let X =
∏

α<γ Xα be a lexicographic product of GO-spaces.
If all Xα’s have minimal elements, then the following are equivalent:

(1) the product X is countably 1-compact;
(2) the following clauses hold:

(a) Xα is (boundedly) countably 1-compact for every α < γ;
(b) if L− 6= ∅, then J+ ⊂ minL−.

Now we consider the case that all factors are subspaces of ordinals. First let X
be a subspace of an ordinal. Since X is well-ordered, the following hold:
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◦ the GO-space X is countably 1-compact;
◦ the GO-space X has a minimal element;
◦ for every u ∈ X with (u,→) 6= ∅, (u,→) has a minimal element;
◦ there is u ∈ X such that (←, u) is nonempty and has no maximal element
if and only if the order type of X is greater than ω.

Note that a subspace X of ω1 is countably compact if and only if it is closed
in ω1, and also note that the subspace X = {α < ω2 : cf α ≤ ω} is countably
compact but not closed in ω2.

Next let Xα be a subspace of an ordinal for every α < γ and X =
∏

α<γ Xα

be a lexicographic product. Then using the notation in Section 3, we see:

◦ J− = ∅;
◦ K+ = ∅;
◦ α ∈ K− if and only if the order type of Xα is greater than ω.

Remarking these facts with corollaries above, we see:

Corollary 4.11. Let X =
∏

α<γ Xα be a lexicographic product. If all Xα’s are
subspaces of ordinals, then the following are equivalent:

(1) the product X is countably 0-compact;
(2) the following clauses hold:

(a) Xα is boundedly countably 0-compact for every α < γ;
(b) for every α < γ with J+ ∩ [l(α), α) = ∅, 0- cfXα

Xα 6= ω holds.

Corollary 4.12. Let X =
∏

α<γ Xα be a lexicographic product. If all Xα’s are
subspaces of ordinals, then the following are equivalent:

(1) the product X is countably 1-compact;
(2) J+ ⊂ ω.

Proof: (1) ⇒ (2) Assume that X is countably 1-compact. By Corollary 4.10,
if L− 6= ∅, then J+ ⊂ minL−. When γ ≥ ω, because of ω ∈ L−, we see
J+ ⊂ minL− ≤ ω. When γ < ω, obviously we see J+ ⊂ γ < ω.

(2)⇒ (1) Assume J+ ⊂ ω. It suffices to check (2a) and (2b) in Corollary 4.10.
(2a) is obvious. To see (2b), let L− 6= ∅. Now assume ω ∩ L− 6= ∅, and take
n ∈ ω ∩ L−. Then we can take u ∈

∏
m<nXm with 1- cf(u,→) = ω. But this

is a contradiction, because a lexicographic product of finite length of subspaces
of ordinals are also a subspace of ordinal, see [7, Lemma 4.3]. Therefore we have
ω ∩ L− = ∅. L− 6= ∅ and Lemma 3.2 show J+ ⊂ ω = minL−. �

If X is an ordinal, then it is boundedly countably 0-compact and 0- cfX X =
cf X . Therefore we have:

Corollary 4.13. Let X =
∏

α<γ Xα be a lexicographic product of ordinals. Then
the following are equivalent:
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(1) the product X is countably compact;
(2) the following clauses hold:

(a) if J+ 6= ∅, then cfXminJ+ ≥ ω1;
(b) J+ ⊂ ω.

Corollary 4.14 ([4]). The following clauses hold:

(1) the lexicographic product ωγ
1 is countably 0-compact for every ordinal γ;

(2) the lexicographic product ωγ
1 is countably (1-)compact if and only if

γ ≤ ω.

Example 4.15. Using Corollary 4.13, we see:

(1) lexicographic products ω2
1 , ω1×ω, (ω+1)× (ω1+1)×ω1×ω, ω1×ω×ω1,

ω1×ω×ω1×ω× · · · , ω1× ωω, ω1× ωω × (ω+1), ωω
1 , ω

ω
1 × (ω1 +1) and∏

n∈ω ωn+1 are countably compact;
(2) lexicographic products ω×ω1, (ω+1)×(ω1+1)×ω×ω1, ω×ω1×ω×ω1×· · · ,

ω×ωω
1 , ω1×ωω×ω1, ω

ω
1 ×ω,

∏
n∈ω ωn and

∏
n≤ω ωn+1 are not countably

compact;
(3) let X = ωω

1 , then the lexicographic product X2 is not countably compact
because of X2 = ωω

1 × ωω
1 = ωω+ω

1 , so this shows also Corollary 4.8.

For a GO-space X = 〈X,<X , τX〉, −X denotes the reverse of X , that is, the
GO-space 〈X,>X , τX〉, see [7]. Note that X and −X are topologically homeo-
morphic.

Example 4.16. As above, the lexicographic product ω2
1 was countably compact.

But the lexicographic product ω1 × (−ω1) is not countably compact. Indeed,
let X = ω1 × (−ω1), X0 = ω1 and X1 = −ω1. The element ω ∈ X0 with
0- cfX0

(←, ω) = cf ω = ω witnesses 1 ∈ L+, therefore minL+ = 1. On the
other hand −ω1 has no minimal element, so we have 1 ∈ J−. Therefore (2b) of
Theorem 3.3 does not hold, thus X is not countably (0-)compact.

Also note that (−ω1) × (−ω1) is countably compact but (−ω1) × ω1 is not
countably compact, because (−ω1) × (−ω1) and (−ω1) × ω1 are topologically
homeomorphic to ω2

1 and ω1 × (−ω1), respectively, see [7].
Moreover ω1×(−ω) is directly shown not to be countably (1-)compact, because

the 1-order preserving sequence {〈0, n〉 : n ∈ ω} has no cluster point in ω1× (−ω).
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