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The reciprocal Dunford–Pettis property

of order p in projective tensor products

Ioana Ghenciu

Abstract. We investigate whether the projective tensor product of two Banach
spaces X and Y has the reciprocal Dunford–Pettis property of order p, 1 ≤

p < ∞, when X and Y have the respective property.

Keywords: reciprocal Dunford–Pettis property; spaces of compact operators

Classification: 46B20, 46B28, 28B05

1. Introduction

The set of all continuous linear transformations from X to Y will be denoted
by L(X,Y ), and the compact operators will be denoted by K(X,Y ).

In [18] we introduced the reciprocal Dunford–Pettis property of order p (RDPp)
for 1 ≤ p < ∞, a property which is intermediate between property (V) and the
reciprocal Dunford–Pettis property (RDP). In [14] and [12] it was studied whether
X⊗π Y has property (V) or the reciprocal Dunford–Pettis property (RDP), when
X and Y have the respective property. In this note we use results about relative
weak compactness in spaces of compact operators to study whether property
RDPp lifts from the Banach spaces X and Y to the projective tensor product
space X ⊗π Y . We prove that in some cases, if X ⊗π Y has property RDPp, then
L(X,Y ∗) = K(X,Y ∗).

2. Definitions and notation

Throughout this paper, X and Y will denote Banach spaces. The unit ball of X
will be denoted by BX and X∗ will denote the continuous linear dual of X . The
space X embeds in Y (in symbols X →֒ Y ) if X is isomorphic to a closed subspace
of Y . An operator T : X → Y will be a continuous and linear function. The set
of all operators, weakly compact operators, and compact operators from X to Y

will be denoted by L(X,Y ), W (X,Y ), and K(X,Y ).
A subset S of X is said to be weakly precompact provided that every sequence

from S has a weakly Cauchy subsequence. An operator T : X → Y is called weakly

precompact (or almost weakly compact) if T (BX) is weakly precompact.
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An operator T : X → Y is called completely continuous (or Dunford–Pettis)
if T maps weakly convergent sequences to norm convergent sequences. The set of
all completely continuous operators from X to Y is denoted by CC(X,Y ).

For 1 ≤ p < ∞, p∗ denotes the conjugate of p. If p = 1, lp∗ plays the role
of c0. The unit vector basis of lp will be denoted by (en). Let 1 ≤ p < ∞. A se-
quence (xn) in X is called (strongly) p-summable if (‖xn‖) ∈ lp, see [8, page 32],
[7, page 59]. Let lp(X)strong denote the set of all p-summable sequences in X with
the norm

‖(xn)‖strongp =

( ∞
∑

n=1

‖xn‖
p

)1/p

.

Let 1 ≤ p ≤ ∞. A sequence (xn) in X is called weakly p-summable if
(x∗(xn)) ∈ lp for each x∗ ∈ X∗ [8, page 32]. Let lwp (X) denote the set of all
weakly p-summable sequences in X . The space lwp (X) is a Banach space with the
norm

‖(xn)‖wp = sup

{( ∞
∑

n=1

|〈x∗, xn〉|
p

)1/p

: x∗ ∈ BX∗

}

.

We recall the following isometries: L(lp∗ , X) ≃ lwp (X) for 1 < p < ∞;
L(c0, X) ≃ lwp (X) for p = 1; T → (T (en)), see [8, Proposition 2.2, page 36].

A series
∑

xn in X is said to be weakly unconditionally convergent (wuc) if
for every x∗ ∈ X∗, the series

∑

|x∗(xn)| is convergent. An operator T : X → Y

is unconditionally converging if it maps weakly unconditionally convergent series
to unconditionally convergent ones.

Let 1 ≤ p ≤ ∞. An operator T : X → Y is called p-convergent if T maps
weakly p-summable sequences into norm null sequences, see [5]. The set of all
p-convergent operators is denoted by Cp(X,Y ).

The 1-convergent operators are precisely the unconditionally converging op-
erators and the ∞-convergent operators are precisely the completely continuous
operators. If p < q, then Cq(X,Y ) ⊆ Cp(X,Y ).

A bounded subset A of X∗ is called a V -subset of X∗ provided that

sup
x∗∈A

|x∗(xn)| → 0

for each wuc series
∑

xn in X .
A. Pelczyński introduced property (V) in his fundamental paper, see [21]. The

Banach space X has property (V) if every V -subset of X∗ is relatively weakly
compact. The following results were also established in [21]: reflexive Banach
spaces and C(K) spaces have property (V); the Banach space X has property (V)
if and only if every unconditionally converging operator T from X to any Banach
space Y is weakly compact; every quotient space of a Banach space with property
(V) has property (V); if X has property (V), then X∗ is weakly sequentially
complete.

The bounded subset A of X∗ is called an L-subset of X∗ if each weakly null
sequence (xn) in X tends to 0 uniformly on A.
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The Banach space X has the reciprocal Dunford–Pettis (RDP) property if ev-
ery completely continuous operator T from X to any Banach space Y is weakly
compact. The space X has the RDP property if and only if every L-subset
of X∗ is relatively weakly compact, see [19]. Banach spaces with property (V)
of A. Pe lczyński, in particular reflexive spaces and C(K) spaces, have the RDP
property, see [21]. A Banach space X does not contain l1 if and only if every
L-subset of X∗ is relatively compact, see [10].

Let 1 ≤ p < ∞. A bounded subset A of X∗ is called a weakly-p-L-set , see [18],
if for all weakly p-summable sequences (xn) in X ,

sup
x∗∈A

|x∗(xn)| → 0.

The weakly-1-L-subsets of X∗ are precisely the V -subsets. If p < q, then
a weakly-q-L-set is a weakly-p-L-set, since lwp (X) ⊆ lwq (X).

Let 1 ≤ p < ∞. A Banach space X has the reciprocal Dunford–Pettis property

of order p or RDPp (or the weak reciprocal Dunford–Pettis property of order p or
wRDPp) if every weakly-p-L-subset of X∗ is relatively weakly compact (or weakly
precompact, respectively), see [18].

If p < q and X has the RDPp property, then X has the RDPq property. If
X has property (V), then X has property RDPp, see [18]. If X has the RDPp

property, then X has the RDP property (since any L-subset of X∗ is a weakly-p-
L-set).

A Banach space X has the RDPp (or wRDPp) property if and only if every
p-convergent operator T : X → Y has a weakly compact (or weakly precompact,
respectively) adjoint, see [18].

Suppose that 1 ≤ p < ∞. An operator T : X → Y is called p-summing (or
absolutely p-summing) if there is a constant c ≥ 0 such that for any m ∈ N and
any x1, x2, · · · , xm in X ,

( m
∑

i=1

‖T (xi)‖
p

)1/p

≤ c sup

{( m
∑

i=1

|〈x∗, xi〉|
p

)1/p

: x∗ ∈ BX∗

}

.

The least c for which the previous inequality always holds is denoted by πp(T ),
see [8, page 31]. The set of all p-summing operators from X to Y is denoted
by Πp(X,Y ). The operator T : X → Y is p-summing if and only if (Txn) ∈
lp(Y )strong whenever (xn) ∈ lwp (X), see [8, page 34], [7, page 59].

A topological space S is called dispersed (or scattered) if every nonempty closed
subset of S has an isolated point. A compact Hausdorff space K is dispersed if
and only if l1 6 →֒ C(K), see [23].

The Banach space X has the Dunford–Pettis property (DPP) if every weakly
compact operator T : X → Y is completely continuous. Equivalently, X has the
DPP if and only if x∗

n(xn) → 0 whenever (x∗

n) is weakly null in X∗ and (xn) is
weakly null in X [6, Theorem 1]. If X is a C(K) space or an L1-space, then X

has the DPP. The reader can check [7], [6], and [9] for results related to the DPP.
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The Banach-Mazur distance d(E,F ) between two isomorphic Banach spaces E
and F is defined by inf(‖T ‖‖T−1‖), where the infinum is taken over all isomor-
phisms T from E onto F . A Banach space E is called an L∞-space (or L1-space),
see [4], if there is a λ ≥ 1 so that every finite dimensional subspace of E is con-
tained in another subspace N with d(N, ln

∞
) ≤ λ (or d(N, ln1 ) ≤ λ, respectively)

for some integer n. Complemented subspaces of C(K) spaces (or L1(µ) spaces)
are L∞-spaces (or L1-spaces, respectively), see [4, Proposition 1.26]. The dual
of an L1- space (or L∞-space) is an L∞-space (or L1-space, respectively), see [4,
Proposition 1.27].

The L∞-spaces, L1-spaces, and their duals have the DPP, see [4, Corol-
lary 1.30].

3. Property RDPp in spaces of compact operators

In this section we consider property RDPp in the projective tensor product
X ⊗π Y . We begin by noting that there are examples of Banach spaces X

and Y such that X ⊗π Y has property RDPp. If 1 < q′ < p < ∞, then
L(lp, lq′) = K(lp, lq′) (by a result of Pitt [24], [9, page 247]). If q is the con-
jugate of q′, then lp ⊗π lq is reflexive (by [26, Theorem 4.19], [9, page 248]), and
thus has the RDPp property. Then the spaces X = lp and Y = lq are as desired.

In the proofs of Theorems 4 and 5 we will need the following results.

Theorem 1 ([16]). Suppose that L(X,Y ) = K(X,Y ) and H is a subset of
K(X,Y ) such that:

(i) The set H(x) is relatively weakly compact for all x ∈ X .
(ii) The set H∗(y∗) is relatively weakly compact for all y∗ ∈ Y ∗.

Then H is relatively weakly compact.

Theorem 2 ([16]). Let H be a bounded subset of K(X,Y ) such that:

(i) The set H(x) is weakly precompact for each x ∈ X .
(ii) The set H∗(y∗) is relatively weakly compact for each y∗ ∈ Y ∗.

Then H is weakly precompact.

Lemma 3 ([17]). Let 1 ≤ p < ∞. Suppose that L(X,Y ∗) = Πp(X,Y ∗). If (xn)
is weakly p-summable in X and (yn) is bounded in Y , then (xn ⊗ yn) is weakly
p-summable in X ⊗π Y .

Theorem 4. Let 1 ≤ p < ∞. Suppose that L(X,Y ∗) = K(X,Y ∗) = Πp(X,Y ∗).
If X and Y have property RDPp, then X ⊗π Y has property RDPp.

Proof: Let H be a weakly-p-L-subset of L(X,Y ∗) = K(X,Y ∗) = Πp(X,Y ∗)
and let (Tn) be a sequence in H . We will verify the conditions (i) and (ii) of
Theorem 1. Let x ∈ X . We show that {Tn(x) : n ∈ N} is a weakly-p-L-subset
of Y ∗. Suppose (yn) is weakly p-summable in Y . Let T ∈ L(X,Y ∗) ≃ (X⊗πY )∗,
see [9, page 230]. Since T is weakly compact, T ∗∗(X∗∗) ⊆ Y ∗. If x∗∗ ∈ X∗∗,



The reciprocal Dunford–Pettis property of order p in projective tensor products 355

then
∑

n |〈x
∗∗, T ∗(yn)〉|p =

∑

n |〈T
∗∗(x∗∗), yn〉|

p < ∞. Thus (T ∗(yn)) is weakly
p-summable in X∗. Hence

∑

n

|〈T, x⊗ yn〉|
p =

∑

n

|〈x, T ∗(yn)〉|p < ∞.

Thus (x⊗ yn) is weakly p-summable in X ⊗π Y . Since (Tn) is a weakly-p-L-set,

〈Tn, x⊗ yn〉 = 〈Tn(x), yn〉 → 0.

Therefore {Tn(x) : n ∈ N} is a weakly-p-L-subset of Y ∗, hence relatively weakly
compact.

Let y∗∗ ∈ Y ∗∗. We show that {T ∗

n(y∗∗) : n ∈ N} is a weakly-p-L-subset of X∗.
Suppose (xn) is weakly p-summable in X . For n ∈ N,

〈T ∗

n(y∗∗), xn〉 = 〈y∗∗, Tn(xn)〉 ≤ ‖y∗∗‖ ‖Tn(xn)‖.

We show that ‖Tn(xn)‖ → 0. Suppose that ‖Tn(xn)‖ 6→ 0. Without loss of
generality assume that 〈Tn(xn), yn〉 > ε for some sequence (yn) in BY and some
ε > 0. By Lemma 3, (xn⊗yn) is weakly p-summable in X⊗πY . Since {Tn : n ∈ N}
is a weakly-p-L-set,

〈Tn, xn ⊗ yn〉 = 〈Tn(xn), yn〉 → 0.

This contradiction shows that ‖Tn(xn)‖ → 0. Hence {T ∗

n(y∗∗) : n ∈ N} is a weakly-
p-L-subset of X∗, thus relatively weakly compact. By Theorem 1, H is relatively
weakly compact. �

Theorem 5. Let 1 ≤ p < ∞. Suppose that L(X,Y ∗) = K(X,Y ∗) = Πp(X,Y ∗).
If X has property RDPp and Y has property wRDPp, then X⊗π Y has property
wRDPp.

Proof: Let H be an weakly-p-L-subset of (X ⊗π Y )∗ ≃ L(X,Y ∗) = K(X,Y ∗)
and let (Tn) be a sequence in H . The proof of Theorem 4 shows that {Tn(x) :
n ∈ N} is a weakly-p-L-subset of Y ∗, and thus weakly precompact. Similarly,
{T ∗

n(y∗∗) : n ∈ N} is a weakly-p-L-subset of X∗, thus relatively weakly compact.
By Theorem 2, H is weakly precompact. �

Observation 1. If l1 →֒ X , then X∗ does not have the Schur property (since
l1 →֒ X , L1 →֒ X∗, see [7, page 212]).

Corollary 6. Let 1 ≤ p < ∞. Suppose L(X,Y ∗) = Πp(X,Y ∗), and X and Y

have property RDPp. If X∗ (or Y ∗) has the Schur property, then X ⊗π Y has
property RDPp.

Proof: Let T : X → Y ∗ be an operator. Then T is p-summing, and thus weakly
compact and completely continuous, see [8, Theorem 2.17]. If X∗ has the Schur
property, then l1 6 →֒ X (by Observation 1). Thus T is compact by a result of
Odell, see [25, page 377]. If Y ∗ has the Schur property, then T is compact (since
it is also weakly compact). Then L(X,Y ∗) = K(X,Y ∗). Apply Theorem 4. �
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Observation 2. (i) Let 1 ≤ p ≤ 2. If X is an L∞-space and Y an Lp-space,
then every operator T : X → Y is 2-summing, see [8, Theorem 3.7].

(ii) If X and Y are L∞-spaces, then L(X,Y ∗) = Πp(X,Y ∗), 2 ≤ p < ∞.
Indeed, by (i), every operator T : X → Y ∗ is 2-summing, and thus p-summing,
2 ≤ p < ∞.

Observation 3. If X and Y are infinite dimensional L∞-spaces, then L(X,Y ∗) =
CC(X,Y ∗) by [8, Theorems 3.7 and 2.17].

Corollary 7. Let 2 ≤ p < ∞. Suppose X and Y are L∞-spaces and l1 6 →֒ X (or
l1 6 →֒ Y ). If X and Y have property RDPp, then X ⊗π Y has property RDPp.

Proof: Suppose l1 6 →֒ X . By Observation 2, L(X,Y ∗) = Πp(X,Y ∗). By Ob-
servation 3, L(X,Y ∗) = CC(X,Y ∗). Since l1 6 →֒ X , CC(X,Y ∗) = K(X,Y ∗), see
[25, page 377]. Thus L(X,Y ∗) = K(X,Y ∗) = Πp(X,Y ∗). By Theorem 4, X⊗π Y

has property RDPp.
If l1 6 →֒ Y , then the previous argument shows that Y ⊗πX has property RDPp.

Hence X ⊗π Y ≃ Y ⊗π X has property RDPp. �

Corollary 8. Let 2 ≤ p < ∞. Let X = C(K1), Y = C(K2), where K1 and K2

are infinite compact Hausdorff spaces and K1 (or K2) is dispersed. Then X ⊗π Y

has property RDPp.

Proof: The C(K) spaces are L∞-spaces, see [4, Proposition 1.26], [8, Theo-
rem 3.2]. Since C(K) spaces have property (V), see [21], they have property
RDPp, see [18]. If K1 (or K2) is dispersed, then l1 6 →֒ C(K1) (or l1 6 →֒ C(K2)),
see [23]. Apply Corollary 7. �

Corollary 9. Let 2 ≤ p < ∞. Suppose X and Y are L∞-spaces, l1 6 →֒ Y , and Y

has property RDPp. Then X∗∗ ⊗π Y has property RDPp.

Proof: Since X is an L∞-space, X∗∗ is complemented in some C(K) space, see
[4, Proposition 1.23]. Hence X∗∗ has property (V) (since property (V) is inherited
by quotients, see [21]). Then X∗∗ has property RDPp. Apply Corollary 7. �

Every Lp(µ) space is an Lp-space, 1 ≤ p ≤ ∞, see [8, Theorem 3.2].

Corollary 10. Let 2 ≤ p < ∞. Let X be a C(K) space and Y = lr, r > 2.
Then X ⊗π Y has property RDPp.

Proof: Since X has property (V), it has property RDPp. If q is the conjugate
of r, then 1 < q < 2. Every operator T : C(K) → lq, 1 < q < 2, is compact ([27,
page 100]). By Observation 2, L(X,Y ∗) = Πp(X,Y ∗). Apply Theorem 4. �

The fact that property RDPp is inherited by quotients [18], immediately implies
the following result.

Corollary 11. Let 1 ≤ p < ∞. Suppose that L(X∗, Y ∗) = K(X∗, Y ∗) =
Πp(X∗, Y ∗). If X∗ and Y have property RDPp, then the space N1(X,Y ) of all
nuclear operators from X to Y has property RDPp.



The reciprocal Dunford–Pettis property of order p in projective tensor products 357

Proof: It is known that N1(X,Y ) is a quotient of X∗ ⊗π Y , see [26, page 41].
By Theorem 4, X∗ ⊗π Y has property RDPp. Hence N1(X,Y ) has property
RDPp. �

Lemma 12. Let 1 ≤ p < ∞. If X has property wRDPp, then l1 6
c

→֒ X and
c0 6 →֒ X∗.

Proof: The identity map i : l1 → l1 is completely continuous, thus p-convergent,
and not weakly precompact. (Otherwise i is compact, a contradiction). Suppose
l1 has property wRDPp. Then i∗ is weakly precompact, see [18]. Thus i is weakly
precompact, see [2, Corollary 2], a contradiction. Hence l1 does not have property
wRDPp. Since property wRDPp is inherited by quotients, it follows that if X has

property wRDPp, then l1 6
c

→֒ X , and c0 6 →֒ X∗, see [3]. �

Theorem 13. Let 1 ≤ p < ∞. If X⊗π Y has property RDPp (or wRDPp), then
X and Y have property RDPp (or wRDPp, respectively) and at least one of them
does not contain l1.

Proof: We only prove the result for property RDPp. The other proof is similar.
Suppose that X ⊗π Y has property RDPp. Then X and Y have property RDPp,
since property RDPp is inherited by quotients. We will show that l1 6 →֒ X or
l1 6 →֒ Y . Suppose that l1 →֒ X and l1 →֒ Y . Hence L1 →֒ X∗, see [22], [7,
page 212]. Also, the Rademacher functions span l2 inside of L1, and thus l2 →֒ X∗.
Similarly l2 →֒ Y ∗. Then c0 →֒ K(X,Y ∗), see [13], [20]. This contradiction
concludes the proof. �

Observation 4. If l1 →֒ X and l1 →֒ Y , then l2 →֒ X∗ and l2 →֒ Y ∗, and
c0 →֒ K(X,Y ∗), see [13], [20]. More generally, if l1 →֒ X and lp →֒ Y ∗, p ≥ 2,

then c0 →֒ K(X,Y ∗), see [13], [20]. Thus l1
c
→֒ X ⊗π Y , see [3, Theorem 4], [7,

Theorem 10, page 48]. Hence X ⊗π Y does not have property wRDPp.

Next we present some results about the necessity of the condition L(X,Y ∗) =
K(X,Y ∗).

A separable Banach space X has an unconditional compact expansion of the

identity (u.c.e.i) if there is a sequence (An) of compact operators from X to X

such that
∑

Anx converges unconditionally to x for all x ∈ X , see [15]. In this
case, (An) is called an (u.c.e.i.) of X .

The space X has (Rademacher) cotype q for some 2 ≤ q ≤ ∞ if there is
a constant C such that for every n and every x1, x2, . . . , xn in X ,

( n
∑

i=1

‖xi‖
q

)1/q

≤ C

(
∫ 1

0

‖ri(t)xi‖
q dt

)1/q

,

where (rn) are the Radamacher functions. A Hilbert space has cotype 2, see
[7, page 118]. The dual of C(K), M(K), has cotype 2, see [1, page 142]. The
Lp-spaces have cotype 2, if 1 ≤ p ≤ 2, see [7, page 118].
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Observation 5. If T : Y → X∗ be an operator such that T ∗|X is compact (or
weakly compact), then T is compact (or weakly compact, respectively). To see
this, let T : Y → X∗ be an operator such that T ∗|X is compact (or weakly
compact). Let S = T ∗|X . Suppose x∗∗ ∈ BX∗∗ and choose a net (xα) in BX

which is w∗-convergent to x∗∗. Then (T ∗(xα))
w∗

→ T ∗(x∗∗). Now, (T ∗(xα)) ⊆
S(BX), which is a relatively compact set (or relatively weakly compact). Then

(T ∗(xα)) → T ∗(x∗∗) (or T ∗(xα)
w
→ T ∗(x∗∗), respectively). Hence T ∗(BX∗∗) ⊆

S(BX), which is relatively compact (or relatively weakly compact, respectively).
Therefore T ∗(BX∗∗) is relatively compact (or relatively weakly compact), and thus
T is compact (or weakly compact, respectively). It follows that if L(X,Y ∗) =
K(X,Y ∗), then L(Y,X∗) = K(Y,X∗).

Theorem 14. Let 1 ≤ p < ∞. Assume that one of the following holds:

(i) If T : X → Y ∗ is an operator which is not compact, then there is a se-
quence (Tn) in K(X,Y ∗) such that for each x ∈ X , the series

∑

Tn(x)
converges unconditionally to T (x).

(ii) Either X∗ or Y ∗ has an u.c.e.i.
(iii) The space X is an L∞-space and Y ∗ is an L1-space.
(iv) The space X = C(K), K a compact Hausdorff space, and Y ∗ is a space

with cotype 2.
(v) The space X has the DPP and l1 →֒ Y .

(vi) The spaces X and Y have the DPP.

If X ⊗π Y has property wRDPp, then L(X,Y ∗) = K(X,Y ∗).

Proof: Suppose that X⊗πY has property wRDPp. Then X and Y have property
wRDPp.

(i) Suppose L(X,Y ∗) 6= K(X,Y ∗). Let T : X → Y ∗ be a noncompact op-
erator. Let (Tn) be a sequence as in the hypothesis. By the uniform bound-
edness principle,

{
∑

n∈A Tn : A ⊆ N, A finite
}

is bounded in K(X,Y ∗). Then
∑

Tn is wuc and not unconditionally convergent (since T is noncompact). Hence
c0 →֒ K(X,Y ∗), see [3]. This contradiction shows that L(X,Y ∗) 6= K(X,Y ∗).

(ii) Suppose that Y ∗ has an u.c.e.i. (An). Then An : Y ∗ → X∗ is compact
for each n and

∑

Any converges unconditionally to y for each y ∈ Y ∗. Let
T : X → Y ∗ be a noncompact operator. Hence

∑

AnT (x) converges uncondition-
ally to T (x) for each x ∈ X and AnT ∈ K(X,Y ∗). Then c0 →֒ K(X,Y ∗) (by (i)),
a contradiction.

Similarly, if X∗ has an u.c.e.i. and L(X,Y ∗) 6= K(X,Y ∗), then c0 →֒ K(Y,X∗).
Suppose (iii) or (iv) holds. It is known that any operator T : X → Y ∗ is 2-

absolutely summing, see [7, page 189], hence it factorizes through a Hilbert space.
If L(X,Y ∗) 6= K(X,Y ∗), then c0 →֒ K(X,Y ∗), by [11, Remark 3], a contradic-
tion.

(v) Suppose that X has the DPP and l1 →֒ Y . By Theorem 13, l1 6 →֒ X . Then
X∗ has the Schur property, see [6, Theorem 3]. Let T : Y → X∗ be an operator.
Then T is p-convergent (since X∗ has the Schur property). Since Y has property
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wRDPp, T ∗ is weakly precompact, see [18]. Hence T is weakly precompact, see
[2, Corollary 2]. Then T is compact, and thus L(Y,X∗) = K(Y,X∗). Hence
L(X,Y ∗) = K(X,Y ∗), by Observation 5.

(vi) Suppose that X and Y have the DPP. Then L(X,Y ∗) = K(X,Y ∗), either
by (v) if l1 →֒ Y , or since Y ∗ has the Schur property, see [6], if l1 6 →֒ Y (by an
argument similar to the one in (v)). �

By Theorem 14, if one of the hypotheses (i)–(vi) holds and L(X,Y ∗) 6=
K(X,Y ∗), then X ⊗π Y does not have property wRDPr, 1 ≤ r < ∞. Thus
the space lp⊗ lq, where 1 < p ≤ q′ < ∞ and q and q′ are conjugate, does not have
property wRDPr, since the natural inclusion map i : lp → lq′ is not compact.

The space C(K) ⊗π lp, with K not dispersed and 1 < p ≤ 2 does not have
property wRDPr, 1 ≤ r < ∞ (by Observation 4, since l1 →֒ C(K) and l2 →֒ l∗p).

For 1 < p1, p2 < ∞, Lp1
[0, 1] ⊗π Lp2

[0, 1] does not have property wRDPp,

1 ≤ p < ∞, by Lemma 12, since l1
c
→֒ Lp1

[0, 1]⊗πLp2
[0, 1], see [26, Corollary 2.26].
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