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SOME ALGEBRAIC AND HOMOLOGICAL PROPERTIES

OF LIPSCHITZ ALGEBRAS AND THEIR SECOND DUALS

F. Abtahi, E. Byabani, and A. Rejali

Abstract. Let (X, d) be a metric space and α > 0. We study homological
properties and different types of amenability of Lipschitz algebras LipαX
and their second duals. Precisely, we first provide some basic properties of
Lipschitz algebras, which are important for metric geometry to know how
metric properties are reflected in simple properties of Lipschitz functions.
Then we show that all of these properties are equivalent to either uniform
discreteness or finiteness of X. Finally, some results concerning the character
space and Arens regularity of Lipschitz algebras are provided.

1. Introduction

Let (X, d) be a metric space and B(X) (resp. Cb(X)) indicates the Banach
space, consisting of all bounded (resp. continuous and bounded) complex valued
functions on X, endowed with the norm

‖f‖∞ = sup
x∈X
|f(x)| (f ∈ Cb(X)) .

Take α ∈ R with α > 0. Then LipαX is the subspace of Cb(X), consisting of all
functions f such that

(1.1) pα(f) := sup
{ |f(x)− f(y)|

d(x, y)α : x, y ∈ X, x 6= y
}
<∞ .

It is known that LipαX, endowed with the norm ‖ · ‖α, given by
‖f‖α = pα(f) + ‖f‖∞ ,

and pointwise product is a unital commutative Banach algebra, called Lipschitz
algebra. Moreover, following [19], lipαX is the subalgebra of LipαX, consisting
of all functions f ∈ LipαX such that for each ε > 0 there exists δ > 0 such

that |f(x)− f(y)|
d(x, y)α < ε, whenever 0 < d(x, y) < δ. Lipschitz algebras were first

considered by Sherbert [19] and then Johnson [11, 10], for 0 < α ≤ 1. But in the
recent works, these algebras were introduced and studied for any α > 0. However,
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in the earlier works, the condition of (1.1), for α > 1, has not been known as a
Lipschitz condition, but a Hölder condition of exponent α.

There are valuable works related to some notions of amenability of Lipschitz
algebras. Let A be a Banach algebra and ∆(A) be the character space of A,
consisting of all nonzero multiplicative functionals on A. Gourdeau [7] proved that
if A is amenable, then ∆(A) is uniformly discrete with respect to norm topology,
induced by A∗; see also Bade, Curtis, and Dales [3] and Zhang [20]. Moreover, Hu,
Monfared, and Traynor investigated character amenability of Lipschitz algebras [9].
They showed that if X is an infinite compact metric space and 0 < α < 1, then
LipαX is not character amenable. Recently, C−character amenability of LipαX
(α > 0), was studied by Dashti, Nasr Isfahani and Soltani [5, Theorem 3.1]. In
fact as a generalization of [9], they showed that for α > 0 and any locally compact
metric space X, LipαX is C−character amenable, for some C > 0, if and only if
X is ε-uniformly discrete, for some ε > 0. Furthermore, in a recent work [1], the
first and third authors joint with Azizi, fully investigated the structure of Lipschitz
algebras and their arbitrary intersections. Also a necessary and sufficient condition
for amenability and character amenability of Lipschitz algebras was provided.

In the present paper, we first study some useful properties of Lipschitz algebras.
Then we continue our study on the more general notions of amenability and
also homological properties of Lipschitz algebras and their second duals. We
study approximate amenability, pseudo-amenability, approximate contractibility,
pseudo-contractibility and (approximate) biprojectivity and biflatness of these
algebras and present some necessary and sufficient conditions. In fact, we show
that all of these properties are equivalent to uniform discreteness or finiteness of X.
Moreover, we study weak amenability of Lipschitz algebras and as a main result
we show that weak amenability of LipαX implies the discreteness of X, whenever
(X, d) is any metric space and 0 < α ≤ 1. This result is in fact a generalization
of [4, Corollary 4.4.33], that in which X is a compact metric space. Finally, some
results related to character space, semisimplicity and Arens regularity of Lipschitz
algebras and their second duals are provided.

2. Basic results

Let X be a metric space and α > 0. It is easily verified that if R is endowed
with usual Euclidean metric and α > 1, then Lipα R is just Cons(R), the space
consisting of all constant functions on R. However, constant functions are not the
only functions which belong to Lipschitz algebras, for the general metric spaces.
For instance, take X to be the subset [0, 1] ∪ {2} of R, endowed with the induced
Euclidean metric. For example consider the function f , defined as

f(x) =
{

1 x ∈ [0, 1]
2 x = 2 .

Then
p2(f) = sup

x∈[0,1]

1
(x− 2)2 = 1 ,
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which implies that f ∈ Lip2X, whereas f is not a constant function. This fact
encourages us to consider Lipschitz algebras for the case where α > 1.

In this section, we present some special and useful properties of Lipschitz algebras,
which will be used in the next sections.

A subalgebra A of Cb(X) is called weakly separating the points of X (or briefly
weakly separating) if for all x ∈ X, there exists f ∈ A such that f(x) 6= 0. Moreover,
A is called strongly separating the points of X (or briefly strongly separating)
if for all x, y ∈ X with x 6= y, there exists f ∈ A such that f(x) 6= f(y). Also
recall that δx represents the Dirac function at x (x ∈ X), belonging to (LipαX)∗,
defined by δx(f) = f(x), for all f ∈ LipαX. We commence this section with the
following result. Note that this result is well known, for the case where α = 1; see
[18, Lemma 3.1].

Proposition 2.1. Let (X, d) be a metric space, and α > 0. Then the following
statements are equivalent:

(i) LipαX is strongly separating the points of X.
(ii) The functionals δx (x ∈ X) are distinct in (LipαX)∗.
(iii) The set {δx : x ∈ X} is linearly independent in (LipαX)∗.

Proof. (i)⇒(iii) First, note that for all x, y ∈ X with x 6= y, there is f ∈ LipαX
such that f(x) = 0 and f(y) 6= 0. Indeed, by the hypothesis there is g ∈ LipαX
such that g(x) 6= g(y). Then the function f defined as f(t) = g(t) − g(x) is the
desired function. Now suppose that x1, x2, . . . , xn ∈ X and α1, α2, · · · , αn ∈ C
such that α1δx1(f) + α2δx2(f) + · · ·+ αnδxn(f) = 0. We show that

α1 = α2 = · · · = αn = 0 .
For all xk (k = 1, . . . , n), there are the functions fk ∈ LipαX such that

fk(x1) 6= 0 and fk(xk) = 0 (k = 2, . . . , n) .
Let f = f1f2 . . . fn. Then f ∈ LipαX such that f(x1) 6= 0 and f(xi) = 0, for all
i = 2, . . . , n. Since

α1δx1(f) + α2δx2(f) + · · ·+ αnδxn(f) = 0 ,
it follows that

α1f(x1) + α2f(x2) + · · ·+ αnf(xn) = 0 ,
which implies α1f(x1) = 0 and so α1 = 0. Similarly one can obtain that

α2 = · · · = αn = 0 .
Consequently the set {δx : x ∈ X} is linearly independent in (LipαX)∗.

(iii)⇒(ii) It is clear.
(ii)⇒(i) Suppose that x, y ∈ X with x 6= y. By (ii) we have δx 6= δy. Consequently,

there exists f ∈ LipαX such that δx(f) 6= δy(f), which implies f(x) 6= f(y).
Therefore LipαX is strongly separating the points of X. �

Corollary 2.2. Let (X, d) be a metric space and α > 0. Then the following
statements are equivalent:
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(i) LipαX is finite dimensional and strongly separating the points of X.
(ii) X is finite.

Proof. (i)⇒(ii) By Proposition 2.1, {δx : x ∈ X} is a linearly independent subset
of the finite dimensional space (LipαX)∗. Thus {δx : x ∈ X} is finite, which
implies the finiteness of X.

(ii)⇒(i) It is obvious. �

Remark 2.3. It is clear that every strongly separating Banach algebra A is also
weakly separating. In fact, suppose that x ∈ X. Take y ∈ X with x 6= y. So there
exists f ∈ A such that f(x) 6= f(y). Define g(z) := f(z) − f(y) (z ∈ X). Thus
g ∈ A and g(x) = f(x) − f(y) 6= 0. The converse of the above statement is not
necessarily valid. For example, take X to be the real line R, endowed with the
usual Euclidean metric. It is not hard to see that Lip2 R = Cons(R). It follows
that Lip2 R is weakly separating, but not strongly separating. Note that for an
arbitrary metric space (X, d) and α > 0, since LipαX and lipαX contain the space
of constant functions on X, denoted by Cons(X), thus both are weakly separating
the points of X.

Examples 2.4. The following examples show that the assumptions, given in
Proposition 2.1 and Corollary 2.2 are necessary.

(1) Take X to be R, with the usual Euclidean metric and α > 1. Then
LipαX = Cons(X) ,

which is finite dimensional, whereas X is not finite. Note that Cons(X) is
not strongly separating.

(2) Let X = R with the usual discrete metric, defined as

d(x, y) =
{

1 x 6= y

0 x = y .

Then Lipα R = B(R), for all α > 0. Thus in this case, all the Lipschitz
spaces LipαX are strongly separating the points of X, but no one is
finite dimensional. Moreover X is not finite. This example shows that in
Corollary 2.2, the condition of being finite dimensional for LipαX can not
be removed.

Recall that X is called ε-uniformly discrete, for some ε > 0, if d(x, y) ≥ ε, for
all x, y ∈ X with x 6= y. We say that X is uniformly discrete, if it is ε-uniformly
discrete, for some ε > 0.

The following lemma is useful in its own right.

Lemma 2.5. Let (X, d) be a metric space and 0 < α, β ≤ 1. Then LipαX =
Lipβ X if and only if either (X, d) is uniformly discrete or α = β.

Proof. Suppose that LipαX = Lipβ X and α < β. By [11, page 1] and [1, Corollary
2.4] we have

Lipβ X ⊆ lipαX ⊆ LipαX .



SOME ALGEBRAIC AND HOMOLOGICAL PROPERTIES 215

It follows that LipαX = lipαX and so X is uniformly discrete, by [11, Lemma 2.5].
Conversely, suppose that X is uniformly discrete. Therefore again by [11, Lemma
2.5], we have LipαX = Lipβ X = B(X). �

Proposition 2.6. Let (X, d) be a metric space and α, β > 0. Then LipαX is a
Banach Lipβ X−bimodule if and only if (X, d) is uniformly discrete or α ≤ β.

Proof. If (X, d) is uniformly discrete, then LipαX = Lipβ X = B(X), by [1,
Proposition 2.1]. It follows that LipαX is a Banach Lipβ X−bimodule. Now suppose
that α ≤ β. Then by [1, Corollary 2.4], Lipβ X ⊆ LipαX and so

LipαX Lipβ X ⊆ LipαX LipαX = LipαX .

It follows that LipαX is a Banach Lipβ X−bimodule. For the converse, suppose
that LipαX is a Banach Lipβ X−bimodule and α > β. Then by [1, Corollary 2.4],
LipαX ⊆ Lipβ X. Moreover, since LipαX Lipβ X ⊆ LipαX, and 1 ∈ LipαX, we
obtain Lipβ X ⊆ LipαX. It follows that Lipβ X = LipαX. Now Lemma 2.5 implies
that (X, d) is uniformly discrete. This completes the proof. �

3. Homological properties and Character space of Lipschitz algebras

In this section, we study some various notions of amenability and homological
properties of Lipschitz algebras. We first provide some preparations.

Let A be a Banach algebra and X be a Banach A-bimodule. A derivation is a
bounded linear map D : A → X such that D(ab) = a ·D(b)+D(a) ·b (a, b ∈ A). For
x ∈ X, the map adx : A → X defined as adx(a) = a · x− x · a (a ∈ A) is clearly a
derivation on A, called an inner derivation. A derivation D is called approximately
inner if there is a net (xα) in X such that D(a) = limα adxα(a), for all a ∈ A.

The groundwork for amenability of Banach algebras was laid by Johnson in
[10]. In fact a Banach algebra A is called contractible (or super amenable) if for
each Banach A-bimodule X, every continuous derivation D : A → X is inner.
Also A is called (approximately) amenable if, for each Banach A-bimodule X,
every continuous derivation D : A → X∗ is (approximately) inner. Note that X∗
is the dual space of X. Moreover A is called weakly amenable if every derivation
D : A → A∗ is inner.

To confirm or rule out whether or not a given Banach algebra is amenable, it
is often difficult to use the above definitions of amenability and contractibility.
Following [6], A is amenable (resp. pseudo-amenable) if and only if it has a
bounded (resp. not necessarily bounded) approximate diagonal, i.e., a net (mλ)
in the projective tensor product A⊗̂A such that ‖amλ − mλa‖A⊗̂A →λ 0 and
‖aπA(mλ)− a‖A →λ 0, for each a ∈ A. Here and in the sequel, πA always denotes
the product morphism from A⊗̂A into A, specified by πA(a⊗ b) = ab. Similarly,
A is contractible (resp. pseudo-contractible) if and only if it has a diagonal (resp.
a central approximate diagonal), i.e., an element m ∈ A⊗̂A for which am = ma
and πA(m)a = a, (resp. an approximate diagonal (mλ), satisfying amλ = mλa) for
all a ∈ A and all mλ. We also refer to [4], for a full information about projective
tensor product of Banach algebras.
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Let φ ∈ ∆(A). The concept of φ-amenability for Banach algebras was introduced
by Kaniuth et al. [13]. Precisely, A is called φ-amenable if there exists a bounded
linear functional m on A∗ satisfying

m(φ) = 1 and m(f · a) = m(f)φ(a) ,

for all a ∈ A and f ∈ A∗, where f · a ∈ A∗ is defined by (f · a)(b) = f(ab), for
all b ∈ A. Any such m is called a φ-mean. Moreover, for some C > 0, A is called
C − φ-amenable if there exists a φ-mean bounded by C; see Hu, Monfared, and
Traynor [9]. The notion of (right) character amenability was introduced and studied
by Monfared [15]. In fact, character amenability of A is equivalent to A being
ϕ-amenable, for all ϕ ∈ ∆(A), and A having a bounded right approximate identity.
The concept of C−character amenability is defined similarly; see [9] for more details
in this field.

We also recall the definitions and basic relationships of the standard homological
properties. We refer to [8], as a standard reference in this field. Following this
reference, we say that A is biprojective if there is a bounded A-bimodule map
ξ : A → A⊗̂A such that πA ◦ ξ = idA. Also A is called biflat if there is a bounded
A-bimodule map θ : (A⊗̂A)∗ → A∗ such that θ ◦ πA∗ = idA∗ . We also remind
from [20] that A is approximately biprojective if there exists a net (ξλ) of bounded
A-bimodule morphisms from A into A⊗̂A such that ‖πA ◦ ξλ(a)− a‖A →λ 0, for
each a ∈ A. Furthermore, A is called approximately biflat if there exists a net
θδ : (A⊗̂A)∗ → A∗, (δ ∈ ∆), of bounded A-bimodule morphisms such that

W ∗OT − lim
δ

θδ ◦ πA∗ = idA∗ ,

where (W ∗OT ) is the weak∗ operator topology on B(A∗). Recall that the weak∗
operator topology (W ∗OT ) on B(A∗) is the locally convex topology, determined
by the seminorms {pa,g : a ∈ A, g ∈ A∗}, where pa,g(T ) = |〈g, T (a)〉|, for all a ∈ A
and g ∈ A∗; see [17].

We also recall the first and second Arens products 2 and ♦ on A∗∗, as follows.
Let a, b ∈ A, f ∈ A∗ and F , G ∈ A∗∗. Then the functionals f · a and a · f and also
F · f and f · F are defined as

f · a(b) = f(ab) and a · f(b) = f(ba) (b ∈ A)

and

f · F (a) = F (a · f) and F · f(a) = F (f · a) (a ∈ A) .

Finally

F2G(g) = F (G · g) and F♦G(g) = G(g · F ) (g ∈ A∗) .

Then by [4, Theorem 2.6.15], A∗∗ is a Banach algebra under both Arens products
2 and ♦, containing A as a closed subalgebra. Moreover by [4, Definition 2.6.16],
A is said to be Arens regular, if these two multiplications coincide.
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3.1. Amenability, biprojectivity and biflatness. Let (X, d) be a locally com-
pact metric space. Since B(X) and Cb(X) and so their second duals are unital,
then by [16, Section 4, Exercises 4.1.1, 4.3.1], B(X) (resp. B(X), Cb(X)∗∗ and
Cb(X)) is biprojective if and only if B(X) (resp. B(X), Cb(X)∗∗ and Cb(X)) is
contractible. Also for the unital Banach algebras, the concept of contractibility and
pseudo-contractibility are equivalent; see [6, Theorem 2.4]. Furthermore, for all
Banach algebras, pseudo-contractibility and approximate biprojectivity are equiva-
lent. Moreover, since these Banach algebras are commutative, B(X)∗∗ (resp. B(X),
Cb(X)∗∗ and Cb(X)) is contractible if and only if B(X) (resp. B(X), Cb(X)∗∗ and
Cb(X)) is finite dimensional; see [16, Corollary 4.1.3]. In this situation, since the set
{δx : x ∈ X} is strongly separating the points of B(X), thus the same arguments
similar to that, given in the proof of Proposition 2.1 and Corollary 2.2 imply that
X is finite. These observations provide the following proposition.

Proposition 3.1. Let X be a locally compact metric space. Then the following
statements are equivalent.

(i) B(X)∗∗ is biprojective (resp. approximate biprojective).
(ii) B(X)∗∗ is contractible (resp. pseudo-contractible).
(ii) Cb(X)∗∗ is biprojective (resp. approximate biprojective).
(iv) Cb(X)∗∗ is contractible (resp. pseudo-contractible).
(v) B(X) is biprojective (resp. approximate biprojective).
(vi) B(X) is contractible (resp. pseudo-contractible).
(vii) Cb(X) is biprojective (resp. approximate biprojective).
(viii) Cb(X) is contractible (resp. pseudo-contractible).
(ix) X is finite.

Now we investigate Proposition 3.1 for Lipschitz algebras. Since LipαX and
so (LipαX)∗∗ are unital, by [16, Corollary 4.1.3], (LipαX)∗∗ (resp. LipαX) is
biprojective if and only if (LipαX)∗∗ (resp. LipαX) is contractible. Moreover,
since these Banach algebras are commutative, then by [16, Section 4, Exercises
4.1.1, 4.3.1], (LipαX)∗∗ (resp. LipαX) is contractible if and only if (LipαX)∗∗
(resp. LipαX) is finite dimensional. Now we obtain the following result from
Proposition 2.1 and Corollary 2.2.

Theorem 3.2. Let (X, d) be a metric space and α > 0. Then the following
statements are equivalent.

(i) (LipαX)∗∗ is contractible.
(ii) (LipαX)∗∗ is pseudo-contractible.
(iii) (LipαX)∗∗ is biprojective.
(iv) (LipαX)∗∗ is approximately biprojective.
(v) LipαX is contractible.
(vi) LipαX is pseudo-contractible.
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(vii) LipαX is biprojective.
(viii) LipαX is approximately biprojective.

Moreover, if LipαX is strongly separating, then all of the above statements are
equivalent to the finiteness of X.

Note that by [16], a Banach algebra is amenable if and only if it is biflat and it
has a bounded approximate identity. It follows that for the unital Banach algebras,
the concept of amenability and biflatness are equivalent. Also by [6, Theorem
3.1], the concept of approximate amenability and approximate contractibility of
Banach algebras are equivalent. Moreover, Propositions 3.2 and 3.8 of [6] mention
that for the unital Banach algebras, pseudo-amenability and approximate ame-
nability are equivalent. In addition, for the unital Banach algebras, the concept
of pseudo-amenability and character amenability are equivalent; see [2, Theorem
1.1]. Furthermore, by [17, Theorem 2.4], every unital approximately biflat Banach
algebra is pseudo-amenable and so character amenable. We also in [1], provided
a necessary and sufficient condition for C−character amenability of Lipschitz al-
gebras, for the case where LipαX is strongly separating the points of X. In fact,
we proved that LipαX is amenable if and only if it is C-character amenable, for
some C > 0, if and only if (X, d) is ε-uniformly discrete, for some ε > 0. Thus the
following result is immediately obtained.

Theorem 3.3. Let (X, d) be a metric space and α > 0 such that LipαX is strongly
separating the points of X. Then the following statements are equivalent;

(i) LipαX is amenable.
(ii) LipαX is character amenable.
(iii) LipαX is pseudo-amenable.
(iv) LipαX is approximately amenable.
(v) LipαX is approximately contractible.
(vi) LipαX is approximately biflat.
(vii) LipαX is biflat.
(viii) X is ε−uniformly discrete, for some ε > 0.

3.2. Weak amenability of Lipschitz algebras. LetA be a commutative Banach
algebra and φ ∈ ∆(A). A non-zero linear functional dφ on A is called a point
derivation at φ if

dφ(ab) = φ(a)dφ(b) + φ(b)dφ(a) (a, b ∈ A) .
By [4, Theorem 2.8.63], A is weakly amenable if and only if there are no non zero
point derivation on A; i.e. dφ = 0, for all φ ∈ ∆(A).

In this section, we study weak amenability of Lipschitz algebras. By the prece-
ding explanations, we should investigate point derivations on LipαX. The next
elementary lemma will be used in the further results.

Lemma 3.4. Let (X, d) be a metric space and α > 0. Then the characteristic
function χ{x} at x ∈ X belongs to LipαX if and only if x is an isolated point of X.
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Proof. First suppose that x is an isolated point of X. Thus inft6=x d(x, t) > 0 and
so

pα(χ{x}) = sup
s6=t

|χ{x}(t)− χ{x}(s)|
d(s, t)α = sup

x6=t

1
d(x, t)α = 1

inft 6=x d(x, t)α <∞ ,

which implies χ{x} ∈ LipαX. The converse is obvious. �

The following corollary is immediately obtained from Lemma 3.4.
Corollary 3.5. Let (X, d) be a metric space and α > 0. Then X is discrete if and
only if all the characteristic functions χ{x} (x ∈ X) belong to LipαX.

The following result has been proved in [19, Proposition 9.2].
Proposition 3.6. Let (X, d) be a metric space and 0 < α ≤ 1. If x is a cluster
point of X, then there is a non-zero point derivation at δx on LipαX.
Corollary 3.7. Let (X, d) be a metric space and 0 < α ≤ 1. If LipαX is weakly
amenable, then X is discrete.
Corollary 3.8. Let (X, d) be a compact metric space and 0 < α 6 1. Then LipαX
is weakly amenable if and only if X is finite.
Proof. If LipαX is weakly amenable, then by Corollary 3.7, X is discrete and
since X is compact, it follows that X is finite. Conversely, if X is finite then
LipαX = Cb(X), and so it is amenable and consequently weakly amenable. �

Remark 3.9.
(i) Note that Corollary 3.7 is not necessarily valid, whenever α > 1. For

example consider R endowed with the usual Euclidean metric. It is easily
verified that Lipα R = Cons(R), which is homeomorphic to C. Thus Lipα R
is amenable and so weakly amenable, whereas R is not discrete.

(ii) By [6, Corollary 3.7], any pseudo-amenable commutative Banach algebra is
weakly amenable. Now Theorem 3.3 implies that if X is uniformly discrete,
then LipαX is always weakly amenable. In fact, in this case all the spaces
LipαX, Cb(X) and B(X) coincide.

Regarding to the converse of Corollary 3.7, the following partial useful results are
obtained. Note that these results have been proved for the case where 0 < α ≤ 1;
see [19, Proposition 8.5].
Proposition 3.10. Let (X, d) be a metric space and α > 0. If a ∈ X is an isolated
point of X, then every point derivation at δa on LipαX is zero.
Proof. Suppose that dδa : LipαX → C is a point derivation at δa. Then for all f ,
g ∈ LipαX

dδa(fg) = dδa(f)δa(g) + dδa(g)δa(f) = dδa(f)g(a) + dδa(g)f(a) .
In particular,

dδa(fχ{a}) = dδa(f)δa(χ{a}) + dδa(χ{a})δa(f) (f ∈ LipαX) .
It follows that f(a)dδa(χ{a}) = dδa(f) + dδa(χ{a})f(a), which implies dδa(f) = 0.
Therefore dδa = 0. �
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Corollary 3.11. Let (X, d) be a discrete metric space and α > 0. Then every
point derivation at δx (x ∈ X) on LipαX is zero

Remark 3.12. In [3] and also [4], there are valuable results about amenability
and weak amenability of lipαX, for the case where (X, d) is a compact metric
space and 0 < α ≤ 1. For example by [3, Theorem 3.9], lipαX is not amenable, for
any infinite, compact metric space X and 0 < α < 1. Also by [3, Theorem 3.10],
for each compact metric space X and 0 < α <

1
2 , lipαX is weakly amenable. Also

for the unit circle T with the usual metric, lipα T is weakly amenable if and only if
0 < α ≤ 1

2 ; see [3, Theorem 3.14].

3.3. Character space of Lipschitz algebras. Let A be a commutative Banach
algebra. We endow ∆(A) with the weakest topology with respect to which all the
functions

∆(A)→ C , ϕ 7→ ϕ(x) (x ∈ A)

are continuous. A neighborhood basis at ϕ0 ∈ ∆(A) is then given by the collection
of sets

U(ϕ0, x1, . . . , xn, ε) = {ϕ ∈ ∆(A) : |ϕ(xi)− ϕ0(xi)| < ε, 1 ≤ i ≤ n} ,

where ε > 0, n ∈ N, and x1, . . . , xn are arbitrary elements of A. This topology on
∆(A) is called the Gelfand topology. The Gelfand topology obviously coincides
with the relative w∗-topology of A∗ on ∆(A).

In this section, the character space of Lipschitz algebras will be introduced. It
requires some preliminaries.

Following [14], an algebra of functions, defined on a set X is called inverse-closed
if for every function in the algebra satisfying |f(x)| > ε > 0, for all x ∈ X and
some ε > 0, the inverse 1

f
is also in the algebra. In [19, Proposition 1.7], it has been

proved that Lip1X and lip1X are both inverse-closed. By using similar arguments,
we generalize this result for each α > 0.

Lemma 3.13. Let (X, d) be a metric space and α > 0. Then LipαX and lipαX
are inverse-closed.

Proof. Suppose that f ∈ LipαX and there is ε > 0 such that for all x ∈ X,
|f(x)| > ε. Then for all x, y ∈ X with x 6= y

(3.1)

∣∣∣∣ 1f (x)− 1
f

(y)
∣∣∣∣

d(x, y)α = |f(x)− f(y)|
|f(x)||f(y)|d(x, y)α 6

1
ε2 ·
|f(x)− f(y)|
d(x, y)α .

Consequently

pα( 1
f

) ≤ 1
ε2 pα(f) <∞ ,
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which implies that 1
f
∈ LipαX. It follows that LipαX is inverse-closed. Moreover

by (3.1), if f ∈ lipαX, then ∣∣∣∣ 1f (x)− 1
f

(y)
∣∣∣∣

d(x, y)α → 0 ,

whenever d(x, y) → 0. It follows that 1
f
∈ lipαX. Therefore lipαX is also

inverse-closed. �

By the lemma and corollary given in [14, page 55], if A is a weakly separating,
self-adjoint and inverse-closed algebra of continuous complex-valued functions on a
compact space X, then ∆(A) = δX , where

δX = {δx : x ∈ X} .

Moreover in the case where X is not necessarily compact then δX is dense in ∆(A).
Now let Lα(X) (resp. lα(X)) be the closure of the set {δx : x ∈ X} in the

weak∗-topology of (LipαX)∗ (resp. (lipαX)∗). Thus the following result is obtained,
by the above discussion. Note that this result is known for the case where 0 < α ≤ 1;
see [19].

Theorem 3.14. Let (X, d) be a metric space and α > 0. Then

(3.2) ∆(LipαX) = Lα(X) and ∆(lipαX) = lα(X) .

Moreover if (X, d) is non-empty and compact and 0 < α ≤ 1, then

(3.3) ∆(LipαX) = ∆(lipαX) = ∆((lipαX)∗∗) = δX .

Proof. By the explanations given at the beginning of the second section, LipαX
and lipαX are always weakly separating. Also all the Lipschitz algebras are clearly
self adjoint. Moreover LipαX and lipαX are inverse-closed by Lemma 3.13. Now
[14, Corollary, page 55] implies that δX is dense in ∆(LipαX) and ∆(lipαX), in
the respective Gelfand topology. Thus the equation of (3.2) is obtained. In the case
where X is compact, then

(3.4) ∆(LipαX) = ∆(lipαX) = δX ,

by [14, Lemma, page 55]. Moreover by [3, Theorem 3.8], for the non-empty compact
metric space (X, d) and 0 < α ≤ 1, the space (lipαX)∗∗ is isometrically isomorphic
to LipαX. Now [12, Lemma 2.2.12] implies

∆((lipαX)∗∗) = ∆(LipαX) = δX .

Therefore the equations, given in (3.3) are satisfied. �

Remark 3.15. Let (X, d) be a metric space and α > 0. We show that for each
f ∈ ∆(LipαX), f̂ ∈ ∆((LipαX)∗∗), where f̂ is the corresponding element of f
in (LipαX)∗∗∗, defined by f̂(F ) = F (f) (F ∈ (LipαX)∗∗). To that end, take F ,
G ∈ (LipαX)∗∗. By the Goldstein Theorem, there are the nets (aα) and (bβ) in
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LipαX, converging respectively to F and G, in the weak∗-topology of (LipαX)∗∗.
Thus

f̂(F2G) = (F2G)(f) = lim
α

lim
β

(f(aαbβ))

= lim
α

lim
β

(f(aα)f(bβ))

= F (f)G(f) = f̂(F )f̂(G)

and so f̂ ∈ ∆((LipαX)∗∗). It follows that δ̂x ∈ ∆((LipαX)∗∗), for all x ∈ X.
Consequently

(3.5) {δ̂x : x ∈ X)}
w∗

⊆ {f̂ : f ∈ ∆(LipαX)}
w∗

⊆ ∆((LipαX)∗∗) .

But it is unclear to us if the equality holds. In fact, the following natural question
arises:

Question 3.16. For which metric space (X, d) and α > 0, the equality is achieved
in the inclusions (3.5)?

3.4. Arens regularity and semisimplicity of Lipschitz algebras. Let A be a
commutative Banach algebra. Then the radical of A, denoted by rad(A), is defined
by

rad(A) =
⋂

ϕ∈∆(A)

ker(ϕ) .

Clearly, rad(A) is a closed ideal of A. Then A is called semisimple if rad(A) = {0}.
We refer to [12], for more information. We conclude this work with the next theorem,
which contains some results related to Arens regularity and semisimplicity of the
Lipschitz algebras and their second duals.

Theorem 3.17. Let (X, d) be a metric space and α > 0. Then the following
statements hold;

(i) LipαX and lipαX are semisimple.
(ii) If X is compact and 0 < α ≤ 1, then LipαX, lipαX and also (lipαX)∗∗

are Arens regular.
(iii) If X is compact and 0 < α ≤ 1, then (lipαX)∗∗ is semisimple.

Proof. (i) Since

rad(LipαX) =
⋂

f∈∆(LipαX)

ker(f) ⊆
⋂
x∈X

ker(δx) = {0} ,

it follows that rad(LipαX) = {0} and so LipαX is semisimple. Similarly lipαX is
semisimple.

(ii) By [3, Theorem 3.8], LipαX and (lipαX)∗∗ are isomorphic and Arens regular.
Also by [4, Corollary 2.6.18], the closed subalgebras of any Arens regular Banach
algebra are again Arens regular. It follows that lipαX is also Arens regular.

(iii) It is immediately obtained by [3, Theorem 3.8] and part (i). �
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Remark 3.18. Although for any non-empty compact metric space (X, d) and
0 < α ≤ 1, all the Lipschitz algebras LipαX are semisimple, but their second duals
are not necessarily semisimple. For example take X to be the subset [0, 1] of R,
with the induced Euclidean metric. Then by [4, Proposition 3.6], (Lipα[0, 1])∗∗ is
not semisimple.
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