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RECOGNIZABILITY OF FINITE GROUPS BY SUZUKI GROUP

Alireza Khalili Asboei and Seyed Sadegh Salehi Amiri

Abstract. Let G be a finite group. The main supergraph S(G) is a graph
with vertex set G in which two vertices x and y are adjacent if and only if
o(x) | o(y) or o(y) | o(x). In this paper, we will show that G ∼= Sz(q) if and
only if S(G) ∼= S(Sz(q)), where q = 22m+1 ≥ 8.

1. Introduction

Let G be a finite group and x ∈ G. The order of x is denoted by o(x). The set of
all element orders of G is denoted by πe(G) and the set of all prime factors of |G| is
denoted by π(G). It is clear that πe(G) is determined by the subset µ(G) of maximal
element orders with respect to divisibility. We set mi = mi(G) = |{g ∈ G|o(g) = i}|.

The main supergraph S(G) is the graph whose vertices are the group elements
and two elements x and y are connected if either o(x) | o(y) or o(y) | o(x). We also
denote the subgraph of S(G) with the identity removed by S∗(G) [4]. We write
x ∼ y when two vertices x and y are adjacent.

For each finite group G and each integer d ≥ 1, let G(d) = {x ∈ G|xd = 1}. We
say that the groups G1 and G2 are of the same order type if |G1(d)| = |G2(d)|, for
all d ∈ N. By the definition of the main supergraph, it is clear that if G1 and G2 are
groups with the same order type, then S(G1) ∼= S(G2). The example G1 = Z4×Z4
and G2 = Z4 × Z2 × Z2 shows that the converse statement is not true in general.

In 1987, J.G. Thompson [9, Problem 12.37] posed the following Problem:
Thompson’s Problem. Suppose that G1 and G2 are two groups of the same
order type. If G1 is solvable, is it true that G2 is also necessarily solvable?

In [5], the set of mi (also known as nse) was used to prove no solvable group
has the same order type as Sz(22m+1), where 22m+1 − 1 is a prime power. In this
paper we use instead the supergraph to remove the requirement that 22m+1− 1 is a
prime power. As two groups having the same order type implies their supergraphs
coincide, if a solvable group is uniquely determined by S(G), then Thompson’s
conjecture holds for G. In [7, 8, 10], the authors proved that alternating groups of
degree p, p+ 1 and p+ 2, the symmetric groups of degree p, the small Ree groups
2G2(32n+1) and PSL2(q), where q is a prime power are uniquely determined by
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their main supergraph. Furthermore, in [6], it was also proven for sporadic simple
groups and for PSL2(q) and PGL2(p), where p is a prime. Our main theorem is as
follows:

Main Theorem. Let S(G) ∼= S(Sz(q)), where q = 22m+1 ≥ 8. Then G ∼= Sz(q).

We construct the prime graph of G, which is denoted by Γ(G), as follows: the
vertex set is π(G) and two distinct vertices p and q are joined by an edge if and only
if G has an element of order pq. Let t(G) be the number of connected components of
Γ(G) and let π1, π2, . . . , πt(G) be the connected components of Γ(G). If 2 ∈ π(G),
then we always suppose 2 ∈ π1. Throughout this paper, we denote by φ the Euler’s
totient function.

2. Preliminary results

In this section, we present some preliminary results which will turn out to be
useful in what follows. First, we quote some known results about Frobenius group
and 2-Frobenius group, which are useful in the sequel.

Lemma 2.1 ([2]). Let G be a 2-Frobenius group of even order, i.e., G is a finite
group and has a normal series 1 �H �K �G such that K and G/H are Frobenius
groups with kernels H and K/H, respectively. Then:
(a) t(G) = 2, π1 = π(G/K) ∪ π(H) and π2 = π(K/H);
(b) G/K and K/H are cyclic, |G/K| | (|K/H| − 1), (|G/K|, |K/H|) = 1 and
G/K . Aut(K/H).

Lemma 2.2 ([2]). Suppose that G is a Frobenius group of even order and H, K
are the Frobenius kernel and the Frobenius complement of G, respectively. Then
t(G) = 2, T (G) = {π(H), π(K)}.

Lemma 2.3 ([12]). If G is a finite group such that t(G) ≥ 2, then G has one of
the following structures:
(a) G is a Frobenius group or a 2-Frobenius group;
(b) G has a normal series 1�H�K�G such that π(H)∪π(G/K) ⊆ π1 and K/H
is a non-abelian simple group. In particular, H is nilpotent, G/K . Out(K/H)
and the odd order components of G are the odd order components of K/H.

Lemma 2.4 ([3]). The Suzuki groups are only non-abelian simple groups of order
prime to 3.

Lemma 2.5 ([1, 11]). Let S = Sz(q) with q = 22m+1 ≥ 8, m ≥ 1. Then m2(S) =
(q − 1)(q2 + 1), m4(S) = (q2 − q)(q2 + 1) and m2r = 0 for r ≥ 3.

3. Proof of the Main Theorem

Now we are ready to prove the main theorem of this paper.
Proof of the main theorem. It is well known that Sz(q) has no elements of
order 2r with r an odd number (see [11]). Therefore, by Lemma 2.5, S∗(Sz(q)) has
a complete component consisting of the (q2 + 1)(q2 − 1) elements whose order is
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a power of 2. Let K1 denote this component in S∗(G). Since K1 is complete, it
follows that K1 contains only elements of prime power order for a fixed prime p.
Moreover, as 2 divides the number of elements who order is a power of p (by pairing
g and g−1) but does not divide (q2 + 1)(q2 − 1), it follows that p = 2. Therefore, 2
is an isolated vertex in the prime graph Γ(G).

If G is a Frobenius group with complement H, then by Lemma 2.2 |H| = q2

or (q2 + 1)(q − 1). However |H| | |G|/|H| − 1 which gives a contradiction. While,
if G is a 2-Frobenius group with series 1 � H � K � G as in Lemma 2.1, then
(q2 + 1)(q − 1) = |K/H| | |H| − 1 = 2t − 1 for some t which is a contradiction.
Thus by Lemma 2.3 G has a normal series 1 �H �K � G, with K/H ∼= Sz(q′)
for some q′ < q as 3 - |G| by Lemma 2.4. Furthermore, Lemma 2.3 implies H and
G/K are 2-groups and therefore (q2 + 1)(q − 1) | (q′2 + 1)(q′ − 1) showing that
q
′ = q, K = G and H = 1. In particular, G ∼= Sz(q). �
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