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NON-SPLIT ALMOST COMPLEX
AND NON-SPLIT RIEMANNIAN SUPERMANIFOLDS

Matthias Kalus

Abstract. Non-split almost complex supermanifolds and non-split Riemann-
ian supermanifolds are studied. The first obstacle for a splitting is parametrized
by group orbits on an infinite dimensional vector space. For almost complex
structures, the existence of a splitting is equivalent to the existence of local
coordinates in which the almost complex structure can be represented by a
purely numerical matrix, i.e. containing no Grassmann variables. For Rie-
mannian metrics, terms up to degree 2 are allowed in such a local matrix
representation, in order to preserve non-degeneracy. It is further shown that
non-split structures appear in the almost complex case as deformations of a
split reduction and in the Riemannian case as the deformation of an underlying
metric. In contrast to non-split deformations of complex supermanifolds, these
deformations can be restricted by cut-off functions to local deformations. A
class of examples of nowhere split structures constructed from almost complex
manifolds of dimension 6 and higher, is provided for both cases.

Even almost complex structures and Riemannian metrics define global tensor
fields on real supermanifolds. Denoting a real supermanifold by M = (M, C∞M)
and the global super vector fields on M by VM, the tensors lie in End(VM)0̄, resp.
Hom(VM,V∗M)0̄. We fix a Batchelor model M→ (M,Γ∞ΛE∗) with vector bundle
E → M (see [1]). Then the Z-degree zero part JR of an even almost complex
structure J ∈ End(VM)0̄ is again an almost complex structure on M. This raises
the question, whether there is a Batchelor model, such that J equals its reduction
JR. In the case of a positive answer we call the tensor split. The analogous question
can be formulated for even Riemannian metrics where the reduction gR of a metric
g ∈ Hom(VM,V∗M)0̄ is given by the Riemannian metric gR = g0 + g2.

For complex structures being integrable almost complex structures, existence
of a splitting was studied in [6], [13] and [16]: there exist non-split complex super-
manifolds, all of them being deformations of split complex supermanifolds. The
parameter spaces of deformations are given by orbits of the automorphism group
of the associated Batchelor bundle on a certain non-abelian first cohomology. Here
the existence of local complex coordinates makes the splitting problem a problem of
global cohomology. The splitting question for even symplectic supermanifolds was
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answered in [14] by identifying the symplectic supermanifold with an underlying
symplectic manifold and a Batchelor bundle with metric and connection. It is
shown that all terms of degree higher than 2 in a symplectic form can be erased
by the choice of a Batchelor model. Hence all symplectic supermanifolds are split
in the above sense. Results on the splitting problem for homogeneous complex
supermanifolds are proved in [18], while the splitting problem for supermoduli
spaces of super Riemannian surfaces is considered in [5].

In this paper the existence of a splitting for even almost complex structures as
well as even Riemannian metrics is studied. It is shown that all almost complex
structures appear as deformations of split structures and all Riemannian metrics
appear as deformations of underlying metrics. In both cases but in contrast to the
complex case mentioned above, these deformations can be restricted by smooth
cut-off functions to local deformations. For almost complex structures the splitting
problem stated above can be expressed as: what is the obstacle for having local
coordinates near any point such that the almost complex structure is represented
by a purely numerical matrix. In the Riemannian case (similar to the symplectic
case in [14]), the reduction is asked to be a purely numerical matrix on V⊗2

M,−1 and
to have matrix entries of degree less or equal to 2 on the three remaining blocks of
(VM,0⊕VM,−1)⊗2. The first obstacle for a splitting is described for both problems.
It appears in degrees of nilpotency 2k, . . . , 4k − 2 for a k ∈ N and is well-defined
as soon as all candidates for obstacles in the lower even degrees 2l, 1 ≤ l < k
vanish. For the complex case involving global cohomologies, a similar behavior
of the obstacles appears (see [5] and [13]). Finally explicit examples of non-split
almost complex structures, resp. Riemannian metrics are given. The results and
the applied methods are summarized in the following.
Contents. In the first section an almost complex structure is decomposed via the
finite log series into its reduction (the degree zero term) and its degree increasing
term. With respect to these components the lowest degree obstacle for isomorphy
of almost complex supermanifolds is deduced. For a fixed reduction, these obstacles
are parametrized by group orbits on a quotient of tensor spaces. The group is a
quotient of the transformations that are almost holomorphic with respect to the
reduction up to a certain degree.

The second section deals with Riemannian metrics in a similar way producing
results analogous to those in the almost complex case. Here the isometries of the
reduction play the role of the almost holomorphic transformations. However the
more complicated action of the automorphism group of the supermanifold on a
metric and the fact that the reduction has no pure degree, require an adjustment
of the techniques.

Finally the third section contains a class of non-split examples for almost complex
structures and Riemannian metrics. These are constructed on the supermanifold of
differential forms on an arbitrary almost complex manifold of dimension higher than
4. In the almost complex and in the Riemannian case, the constructed non-split
tensors are nowhere split, i.e. at no point of the manifold the matrix elements of
the respective tensors satisfy the respective properties mentioned above.
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Introductory references. For an introduction to the theory of supermanifolds
see e.g. [3], [4], [7], [9], and [17]. For the relation of the differing approaches to
supermanifolds and for the associated vector bundle for the construction of a
Batchelor model see [1] and [2].

1. Non-split almost complex supermanifolds

Let (M, J) be an almost complex supermanifold (see e.g. [12]) with sheaf of
superfunctions C∞M. Denote the C∞M(M)-module of global superderivations of C∞M
by VM = VM,0̄ ⊕ VM,1̄. Furthermore fix a Batchelor model M → (M,Γ∞ΛE∗)
yielding Z-gradings (denoted by lower indeces) and filtrations (denoted by upper
indeces in brackets) on C∞M, VM and End(VM), the last denoting C∞M(M)-linear
maps. The even automorphism of C∞M(M)-modules J ∈ End(VM)0̄ can be uniquely
decomposed into J = JR(Id +JN ) with invertible JR = J0 and nilpotent JN . The
finite exp and log series yield a unique representation Id +JN = exp(Y ) with
Y ∈ End(2)(VM)0̄.

Lemma 1.1. The tensor J is an almost complex structure if and only if JR is an
almost complex structure and Y JR + JRY = 0.

Proof. From J2 = − Id we obtain J2
R = − Id and exp(Y )JR exp(Y ) = JR. For

reasons of degree Y2JR+JRY2 = 0. Assume that Y2kJR+JRY2k = 0 holds for all k <
n. Set Y[2k] :=

∑k
j=1 Y2j . We have exp(Y ) ≡ exp(Y[2n−2])+Y2n up to terms of degree

> 2n. Hence exp(Y )JR exp(Y ) ≡ exp(Y[2n−2]) exp(−Y[2n−2])JR + Y2nJR + JRY2n
up to terms of degree > 2n. This completes the induction. The converse implication
follows directly. �

We call JR the reduction of J , deforming JR by t 7→ JR exp(tY ). In particular
JR yields an almost complex structure on M and an almost complex structure on
the vector bundle E →M . Hence even and odd dimension of M are even. Further
topological conditions on M and E for the existence of an almost complex structure
can be obtained from [10] and e.g. [15]. Adapted to our considerations the almost
complex supermanifold (M, J) is split if there is a Batchelor model, such that
the almost complex structure J has nilpotent component Y = 0. Note that this
problem is completely local since Lemma 1.1 allows cutting off the nilpotent Y in
J = JR exp(Y ).

Let Φ = (ϕ,ϕ∗) be an automorphism of the supermanifold M. The global
even isomorphism of superalgebras ϕ∗ ∈ Aut

(
C∞M(M)

)
0̄ over ϕ is decompo-

sable into ϕ∗ = exp(ζ)ϕ∗0 with ζ ∈ V(2)
M,0̄ and ϕ∗0 preserving the Z-degree in-

duced by the Batchelor model (see e.g. [13]). Denote by Aut(E∗) the bundle
automorphisms over arbitrary diffeomorphisms of M , then ϕ∗0 is induced by an
element ϕ0 ∈ Aut(E∗) over ϕ. The automorphism ϕ∗ transforms J into ϕ∗.J
given by (ϕ∗.J)(χ) := ϕ∗(J((ϕ∗)−1χϕ∗))(ϕ∗)−1. Denoting ad(ζ) := [ζ, ·], assu-
ming ζ ∈ V(2k)

M,0̄ and applying ϕ∗ ≡ (Id +ζ)ϕ∗0 up to terms in V(4k)
M,0̄, we have

ϕ∗.J ≡ ϕ∗0.J + [ad(ζ), ϕ∗0.J ] up to terms in End(4k)(VM)0̄. Comparing both sides
with respect to the degree yields:
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Proposition 1.2. The almost complex supermanifolds (M, J) and (M, J ′) with
structures J = JR exp(Y ), J ′ = J ′R exp(Y ′), Y , Y ′ ∈ End(2k)(VM)0̄ are isomorphic
up to error terms in End(4k)(VM)0̄ via an automorphism ϕ∗ with ϕ∗(ϕ∗0)−1 ∈
exp(V(2k)

M,0̄) if and only if there exist ϕ0 ∈ Aut(E∗) and ζ ∈ V(2k)
M,0̄ such that J ′R =

ϕ∗0.JR and:

Y ′2j = ϕ∗0.Y2j − ad(ζ2j)− J ′R ad(ζ2j)J ′R , k ≤ j < 2k .

From now on we fix the reduction JR and hence assume that for an automorphism
ψ∗ of M, the map ψ∗0 is pseudo-holomorphic with respect to JR, denoted ψ∗0 ∈
Hol(M, JR). Let Hol(M, JR, 2k) be the automorphisms ψ∗ = exp(ξ)ψ∗0 of M such
that JR ≡ ψ∗.JR up to terms in End(2k)(VM)0̄. Note that ψ∗ ∈ Hol(M, JR, 2k)
includes ψ∗0 ∈ Hol(M, JR) and that exp(V(2k)

M,0̄) ⊂ Hol(M, JR, 2k) is a normal
subgroup.

Define on the endomorphisms of real vector spaces EndR(VM) the C∞M(M)-linear
Z-degree preserving map:

FJR : EndR(VM)→ EndR(VM) , FJR(γ) := γ + JRγJR .

The set FJR
(

End(2k)(VM)
)

is by Lemma 1.1 exactly the nilpotent parts Y of
almost complex structures J = JR exp(Y ) deforming JR in degree 2k and higher.
Note further that FJR(ad(VM)) ⊂ End(VM) and more precisely FJR

(
ad(V(2k)

M,0̄)
)
⊂

End(2k)(VM)0̄.

Definition 1.3. Let the upper index 2k ∈ 2N in curly brackets denote the sum of
terms of Z-degree 2k up to 4k−2. For J = JR exp(Y ), Y ∈ End(2k)(VM)0̄ we call the
class [Y {2k}] in the quotient of vector spaces FJR(End{2k}(VM)0̄)/FJR

(
ad(V{2k}M,0̄ )

)
the 2k-th split obstruction class of J .

The Hol(M, JR, 2k)-action on FJR
(

End(2k)(VM)0̄
)

is given up to terms in
End(4k)(VM)0̄ by (ϕ∗, Y ) 7→ JR(JR − ϕ∗.JR) + ϕ∗.Y . Since ϕ∗.FJR

(
ad(V{2k}M,0̄ )

)
⊂

FJR
(

ad(V{2k}M,0̄ )
)
, it is well-defined on FJR

(
End{2k}(VM)0̄

)
/FJR

(
ad(V{2k}M,0̄ )

)
.

By Proposition 1.2 it induces an action of P Hol(M, JR, 2k) := Hol(M, JR, 2k)/
exp(V(2k)

M,0̄) on FJR
(

End{2k}(VM)0̄
)
/FJR

(
ad(V{2k}M,0̄ )

)
. It follows that for an almost

complex supermanifold that is split up to terms of degree 2k and higher, the 2k-th
split obstruction class is well-defined up to the P Hol(M, JR, 2k)-action. Note
that for a given almost complex structure J = JR exp(Y ) the obstructions can
be checked starting with j = 1 iteratively: if Y2j = ad(ζ2j) + JR ad(ζ2j)JR can be
solved for a ζ2j ∈ VM,2j then there is an automorphism of the supermanifold M
such that J = JR exp(Y ′) with Y ′ ∈ End(2(j+1))(VM)0̄. In the non-split case this
procedure ends with a well-defined 2k and associated orbit of 2k-th split obstruction
classes. We note as a special case:

Proposition 1.4. Let (M, JR) be a split almost complex supermanifold of odd
dimension 2(2m+r), m ≥ 0, r ∈ {0, 1}. The almost complex supermanifolds (M, J)
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with reduction JR that are split up to terms of degree (2m+r)+1 and higher, corres-
pond bijectively to the P Hol(M, JR, 2(m+ 1))-orbits on FJR

(
End(2(m+1))(VM)0̄

)
/

FJR
(

ad(V(2(m+1))
M,0̄ )

)
.

As a technical tool for application in Section 3, we note an identification for the
quotient appearing in the split obstruction classes. Denote by E1

M = E1
M,0̄ ⊕ E

1
M,1̄

the global super-1-forms on M and by dM the de Rham operator on the algebra
EM of superforms. Observe End(VM) = VM⊗C∞M(M) E1

M. Further for homogeneous
components of χ⊗ dMf ∈ VM ⊗C∞M(M) E1

M we have the decomposition:

χ⊗ dMf = (−1)|f ||χ|
(
f · ad(χ)− ad(fχ)

)
(1)
We can follow:

Proposition 1.5. For all k, the map

ΘJR : FJR
(
VM ⊗C∞M(M) E1

M
)(2k)

0̄ −→ FJR
(

End(2k)(VM)0̄
)
/FJR

(
ad(V(2k)

M,0̄)
)

locally for homogeneous arguments defined by

FJR(χ⊗ dMf) 7−→ (−1)|f | |χ|f · FJR
(

ad(χ)
)

+ FJR
(

ad(V(2k)
M,0̄)

)
is a well-defined, surjective morphism of Z-filtered super vector spaces. For any
element ψ∗ ∈ Hol(M, JR, 2k) and [ψ∗] ∈ P Hol(M, JR, 2k) we have ΘJR(ψ∗.Z) =
[ψ∗].

(
ΘJR(Z)

)
.

2. Non-Split Riemannian supermanifolds

Let (M, g) be a Riemannian supermanifold with even non-degenerate super-
symmetric form g ∈ Hom(VM ⊗C∞M(M) VM, C∞M(M))0̄. Here we will mostly re-
gard g as an isomorphism of C∞M-modules g ∈ Hom(VM,V∗M)0̄ with g(X)(Y ) =
(−1)|X| |Y |g(Y )(X) for homogeneous arguments. The context will fix which point
of view is used. For a given Batchelor model M → (M,Γ∞ΛE∗) decompose g =
gR(Id +gN ) with invertible gR = g0 + g2 and nilpotent gN ∈ End(2)(VM)0̄ such
that g0gN ∈ Hom(4)(VM,V∗M)0̄. With the finite log and exp series we write
g = gR exp(W ) with W ∈ End(2)

g0
(VM)0̄, where End(2k)

g0
(VM)0̄ denotes those

W ∈ End(2k)(VM)0̄ such that g0W ∈ Hom(2k+2)(VM,V∗M)0̄.

Lemma 2.1. If the tensor g = gR exp(W ), W ∈ End(2k)
g0

(VM)0̄ is a Riemannian
metric then gR is a Riemannian metric and gR

(
W (·), ·

)
≡ gR

(
·,W (·)

)
up to terms

of degree 4k + 2 and higher.

Proof. Due to supersymmetry gR
(

exp(W )(·), ·
)

= gR
(
·, exp(W )(·)

)
. The approxi-

mation exp(W ) ≡ 1 +W holds up to terms of degree 4k with error term 1
2W

2
2k in

degree 4k. Since W ∈ End(2k)
g0

(VM)0̄ we have gRW 2
2k ∈ Hom(4k+2)(VM,V∗M)0̄. �

We call gR the reduction of g. Here the metric g appears as a deformation of
the underlying Riemannian metric g0 on M via t 7→ (g0 + t · g2) exp(

∑∞
j=1 t

jW2j).
Note that gR also yields a non-degenerate alternating form on the bundle E. So
in contrast to the non-graded case there is a true condition for the existence of a
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Riemannian metric: the existence of a nowhere vanishing section of E ∧E →M . In
particular the odd dimension of M has to be even. A Riemannian supermanifold
(M, g) is split, if there is a Batchelor model, such that the Riemannian metric g has
nilpotent component W = 0. Again the appearing deformations are essentially local
via cutting off gR exp(W ) by (g0 + f · g2) exp(

∑∞
j=1 f

jW2j) with cut-off function f .

As before let Φ = (ϕ,ϕ∗), ϕ∗ = exp(ζ)ϕ∗0 be an automorphism of the superma-
nifoldM. We obtain ϕ∗.g given by (ϕ∗.g)(χ, χ′) = ϕ∗

(
g((ϕ∗)−1χϕ∗, (ϕ∗)−1χ′ϕ∗)

)
.

Assuming ζ ∈ V(2k)
M,0̄ this yields:

(2) ϕ∗.g ≡ ϕ∗0.g − (ϕ∗0.g)(ad(ζ)⊗ Id + Id⊗ ad(ζ)) + ζ(ϕ∗0.g)

in Hom(VM,V∗M)0̄ up to terms in Hom(4k)(VM,V∗M)0̄. Note that for the term
ζ(ϕ∗0.g), the metric is regarded as an element in Hom(VM ⊗C∞M(M) VM, C∞M(M))0̄.
Define V(2k)

M,g0,0̄
to be the elements in ζ ∈ V(2k)

M,0̄ satisfying g0
(

ad(ζ)⊗Id + Id⊗ad(ζ)
)
+

ζg0 ∈ Hom(2k+2)(VM,V∗M)0̄. Comparing the terms in (2) with respect to the degree
yields:

Proposition 2.2. The Riemannian supermanifolds (M, g) and (M, g′) with
Riemannian metrics g = gR exp(W ), g′ = g′R exp(W ′), W ∈ End(2k)

g0
(VM)0̄,

W ′ ∈ End(2k)
g′0

(VM)0̄ are isomorphic up to error terms in Hom(4k)(VM,V∗M)0̄

via an automorphism ϕ∗ with ϕ∗(ϕ∗0)−1 ∈ exp(V(2k)
M,g′0,0̄

) if and only if there exist

ϕ0 ∈ Aut(E∗) and ζ ∈ V(2k)
M,g′0,0̄

such that g′R = ϕ∗0.gR and:

W ′2j = ϕ∗0.W2j − ad(ζ2j)−
(
(g′R)−1(ad∗(ζ)− ζ)g′R

)
2j , k ≤ j < 2k .

Here ϕ∗0.W is defined by (ϕ∗0.W )(χ) := ϕ∗0
(
W ((ϕ∗0)−1χϕ∗0)

)
(ϕ∗0)−1, the homomor-

phism ad∗ : VM → EndR
(

EndR(VM, C∞M(M))
)

denotes the representation dual to
ad, and finally

(
(ζg′R)(X)

)
(Y ) = ζ

(
g′R(X,Y )

)
.

Fix gR from now on and denote by Iso(M, gR, 2k + 2) the automorphisms
ψ∗ = exp(ξ)ψ∗0 of M such that gR ≡ ψ∗.gR up to a term S := gR − ψ∗.gR ∈
Hom(2k+2)(VM,V∗M)0̄. Note that this forces g0g

−1
R S ∈ Hom(2k+2)(VM,V∗M)0̄. Fur-

ther exp(V(2k)
M,g0,0̄

) ⊂ Iso(M, gR, 2k + 2) is a normal subgroup.

Parallel to the analysis of the almost complex structures we define the maps

FgR : End(VM)→ End(VM) , FgR(γ) := γ + g−1
R γ∗gR

GgR : VM → End(VM) , GgR(ζ) := ad(ζ) + g−1
R

(
ad∗(ζ)− ζ

)
gR

denoting by γ∗ the induced element in End(V∗M) and ad∗ as above. By Lemma 2.1
the elements in FgR(End(2k)

g0
(VM)0̄) are up to degree ≥ 4k + 2 the appearing W s

in Riemannian metrics g = gR exp(W ) that are split up to degree ≥ 2k. Further
GgR(V(2k)

M,g0,0̄
) lies in FgR

(
End(2k)

g0
(VM)0̄

)
.
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Definition 2.3. For g = gR exp(W ) with W ∈ End(2k)(VM)0̄ we call the class
[W {2k}] in the quotient of vector spaces FgR(End(2k)

g0
(VM)0̄){2k}/GgR(V(2k)

M,g0,0̄
){2k}

the 2k-th split obstruction class of g.

The Iso(M, gR, 2k + 2)-action on FgR
(

End(2k)
g0

(VM)0̄
)

is given up to terms in
End(4k)(VM)0̄ by (ψ∗,W ) 7→ g−1

R (ψ∗.gR−gR)+ψ∗.W . We have ψ∗.GgR(V(2k)
M,g0,0̄

) ⊂
GgR(V(2k)

M,g0,0̄
) by direct calculation. Analog to the almost complex case using

Proposition 2.2, the action of Iso(M, gR, 2k+ 2) induces a P Iso(M, gR, 2k+ 2) :=
Iso(M, gR, 2k + 2)/ exp(V(2k)

M,g0,0̄
)-action on the quotient FgR(End(2k)

g0
(VM)0̄){2k}/

GgR(V(2k)
M,g0,0̄

){2k}. Hence the 2k-th split obstruction class is well-defined up to the
P Iso(M, gR, 2k + 2)-action for a Riemannian supermanifold that is split up to
terms of degree 2k+ 2 and higher. We have in particular analogously to the almost
complex case:

Proposition 2.4. Let (M, gR) be a split Riemannian supermanifold of odd dimen-
sion 2(2m+ r), m ≥ 0, r ∈ {0, 1}. The Riemannian supermanifolds (M, g) with
reduction gR that are split up to terms of degree (2m+ r) + 3 and higher, corres-
pond bijectively to the Iso

(
M, gR, 2(m+ 2)

)
-orbits on FgR

(
End(2(m+1))(VM)0̄

)
/

GgR(V(2(m+1))
M,g0,0̄

).

In an analogy to Proposition 1.5 and for later use in Section 3, it follows:

Proposition 2.5. The map

ΘgR : FgR
(

End(2k)
g0

(VM)0̄
)
−→ FgR

(
End(2k)

g0
(VM)0̄

)
/GgR(V(2k)

M,g0,0̄
)

locally defined by

FgR(χ⊗ dMf) 7−→ (−1)|f | |χ|f ·GgR(χ) +GgR(V(2k)
M,g0,0̄

)

is a well-defined surjective morphism of Z-filtered vector spaces. For any element
ψ∗ in Iso(M, gR, 2k + 2) and [ψ∗] ∈ P Iso(M, gR, 2k + 2) we have ΘgR(ψ∗.Z) =
[ψ∗].

(
ΘgR(Z)

)
.

Proof. Apply FgR to (1) and add fχ−fχ in the bracket. This yields a well-defined
map FgR(End(2k)

g0
(VM)0̄)→ FgR(End(2k)(VM)0̄)/GgR(V(2k)

M,0̄). Since χ⊗ dMf is in
End(2k)

g0
(VM)0̄, its degree 2k term is of the form

∑
f̃i

∂
∂ξi
⊗ dMf̂i for an odd

coordinate system (ξi). This forces fχ ∈ V(2k)
M,g0,0̄

by direct calculation. �

3. Examples of global nowhere split structures

Here explicit examples of non-split almost complex structures, resp. non-split
Riemannian metrics are given. The constructed tensors are nowhere split.

Let (M,JM ) be an almost complex manifold of dimension 2n and let M be the
supermanifold defined by differential forms, i.e. C∞M = EM . The vector fields in
VM act on C∞M by Lie derivation. Let further π : VM → VM be the odd C∞M-linear
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operator well-defined by π2 = Id and π(χ)(ω) := ιχω for χ ∈ VM ⊂ VM,0̄ and
ω ∈ C∞M.

By [11, Prop. 4.1] there exist non-degenerate 2-forms η ∈ C∞M compatible with
JM . We fix one and denote by g′ the JM -invariant Riemannian metric η(·, JM (·))
on M . Furthermore we embed

End(VM ) ∼= (VM ⊗C∞
M

(M) E1
M ) ↪→ VM by χ⊗ α 7→ ξχ⊗α := α · χ

and obtain ξId, ξJM ∈ VM,1 and π(ξId), π(ξJM ) ∈ VM,0.
We define on M by C∞M-linear continuation to End(VM), resp. Hom(VM,V∗M):

(i) the split almost complex structure JR by JM ⊕ (π ◦JM ◦π) ∈ EndC∞
M

(VM ⊕
π(VM ));

(ii) the split Riemannian metric gR by g′ +
(
η ◦ (π ⊗ π)

)
∈ HomC∞

M
(V⊗2
M ⊕

π(VM )⊗2, C∞M ) and gR
(
VM ⊗ π(VM )

)
= 0.

Note the following technical lemma for later application:

Lemma 3.1. Let f , g ∈ End(VM ), ω ∈ C∞M,2. Then:
(a) π(ξf )(ω) = 1

2
(
ω(f(·), ·) + ω(·, f(·))

)
;

(b) [π(ξf ), π(ξg)] = −π(ξ[f,g]);
(c) JR(ξJM ) = −ξId and JR

(
π(ξJM )

)
= −π(ξId).

Further fix in the almost complex, resp. Riemannian case the tensors:
(i) J = JR exp(η · Yη) with Yη ∈ End(2)(VM)0̄ by Yη = FJR(π(ξJM )⊗ dMη);
(ii) g = gR exp(η ·Wη) with Wη ∈ End(2)(VM)0̄ by Wη = FgR(π(ξJM )⊗ dMη).

We prove:

Lemma 3.2. Assume that n > 1. The endomorphisms Yη and Wη are nowhere
vanishing. In particular

(
Yη(π(ξJM ))

)
(η) = η2 ≡

(
Wη(π(ξJM ))

)
(η) up to terms of

degree 6 and higher.

Proof. With Lemma 3.1 (c) follows Yη = π(ξJM )⊗ dMη − π(ξId)⊗
(
(dMη) ◦ JR

)
.

Applying
(
Yη(π(ξJM ))

)
(η) we obtain

(
π(ξJM )(η)

)2+
(
π(ξId)(η)

)2. By Lemma 3.1 (a)
we have π(ξJM )(η) = 0 since η is compatible with JM , and

(
Yη(π(ξJM ))

)
(η) = η2.

So Yη is nowhere vanishing.
For the second statement note Wη = π(ξJM )⊗ dMη + g−1

R (dMη) · gR
(
π(ξJM )

)
.

Further
(
Wη(π(ξJM ))

)
(η) =

(
π(ξJM )(η)

)2+
(
g−1
R (dMη)

)
(η)·η(ξJM , ξJM ). Due to the

compatibility of η and JM , we have η(ξJM , ξJM ) = η and as before, π(ξJM )(η) = 0.
Further a calculation yields

(
g−1
R (dMη)

)
(η) ≡ gR

(
g−1
R (dMη), g−1

R (dMη)
)
≡ η up to

terms of degree 4 and higher. Hence
(
Wη(π(ξJM ))

)
(η) ≡ η2 up to terms of degree

6 and higher. So Wη is nowhere vanishing. �

Finally it follows:

Theorem 3.3. Assume that n > 2. The almost complex structure J = JR exp(η·Yη)
and the Riemannian metric g = gR exp(η ·Wη) on M are nowhere split.
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Proof. For ψ∗ = exp(ξ)ψ∗0 ∈ Hol(M, JR, 4) we obtain [ad(ξ2), JR] = 0. With the
identity exp(ξ2).JR = exp

(
ad(ξ2)

)
JR exp

(
ad(ξ2)

)
= exp([ad(ξ2), ·])(JR) = JR

it follows that ψ∗ maps Y ∈ FJR
(

End{4}(VM)0̄
)

to FJR
(

ad(ξ4)
)

+ ψ∗0 .Y up to
terms of degree ≥ 6. Hence FJR

(
ad(V{4}M,0̄)

)
is in a P Hol(M, JR, 4)-orbit up to

terms of degree ≥ 6. Using Proposition 1.5 and ηYη = FJR
(
ηπ(ξJM ) ⊗ dMη

)
it is sufficient to check that ηFJR

(
ad(ηπ(ξJM ))

)
does not vanish in degree 4.

Following (1), FJR
(

ad(ηπ(ξJM ))
)

= η · FJR
(

ad(π(ξJM ))
)
− Yη. Now Lemma 3.1

(b) and (c) yield that FJR
(

ad(π(ξJM ))
)(
π(ξJM )

)
= 0. Using this we obtain

FJR
(

ad(ηπ(ξJM ))
)(
π(ξJM )

)
(η) = −Yη

(
π(ξJM )

)
(η) which is η2 following Lemma 3.2.

This proves the first statement.
We have by direct calculation ηWη ∈ End(4)

g0
(VM)0̄. Let ψ∗ = exp(ξ)ψ∗0 ∈

Iso(M, gR, 6), then the degree 4 term of ψ∗.g vanishes while the degree 6 term
is ψ∗0 .(g2W4 + g0W6) + (ψ∗.gR)6. Further (1 + ξ2)ψ∗0 preserves gR and so does
exp(ξ2)ψ∗0 . The term

(
exp(ξ4 + ξ6).gR

)
6 equals

(
gR(ad(ξ4 + ξ6)⊗ Id + Id⊗ ad(ξ4 +

ξ6))−(ξ4+ξ6)gR
)

6. So ψ∗ maps W ∈ End(4)
g0

(VM)0̄ to GgR(ξ4)+ψ∗0(W4) up to terms
of degree ≥ 6. Since ψ∗ preserves the vanishing degree four term of gR, it follows
that ξ4 ∈ V{4}M,g0,0̄

. Hence GgR(V{4}M,g0,0̄
) is in a P Iso(M, gR, 6)-orbit up to terms

of degree ≥ 6. In analogy to the almost complex case and following Proposition
2.5 it is sufficient to show that ηGgR(ηπ(ξJM )) is nowhere vanishing. We have the
identity GgR

(
ηπ(ξJM )

)
= η ·GgR

(
π(ξJM )

)
−Wη. Note that for α ∈ V∗M it follows

(g−1
R (α))(η) = α(g−1

R (dMη)) and g−1
R (dMη) ≡ π(ξId) up to terms of degree two

and higher. Using these details, Lemma 3.1 (b), and the definition of gR, one
obtains GgR

(
π(ξJM )

)(
π(ξJM )

)
(η) ≡ −π(ξJM )

(
η(π(ξId), π(ξJM ))

)
up to terms of

degree four and higher. A direct calculation using the graded Leibniz rule and
JM -invariance of η shows that GgR

(
π(ξJM )

)(
π(ξJM )

)
(η) vanishes up to terms of

degree four and higher. Hence GgR
(
ηπ(ξJM )

)(
π(ξJM )

)
(η) ≡ −Wη

(
π(ξJM )

)
(η) up

to terms of degree 6 and higher. Following Lemma 3.2, the degree 4 term of this
expression is η2. This proves the second statement. �

Following [8], connections on supermanifolds are in direct correspondence to
splittings. The present results in particular show that e.g. the Levi-Civita connection
of a metric does not in general yield a splitting that reduces the metric in the
above sense.
Acknowledgement. The author gratefully acknowledges the support of the
SFB/TR 12, Symmetry and Universality in Mesoscopic Systems, of the Deutsche
Forschungsgemeinschaft.
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