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Abstract. We determine the finite groups whose poset of conjugacy classes of subgroups
has breaking points. This leads to a new characterization of the generalized quaternion
2-groups. A generalization of this property is also studied.
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1. Introduction

Let G be a finite group and L(G) be the subgroup lattice of G. The starting point

for our discussion is given by [2], where the proper nontrivial subgroups H of G

satisfying the following condition have been studied.

(1) For every X ∈ L(G) we have either X 6 H or H 6 X.

Such a subgroup is called a breaking point for the lattice L(G), and a group G whose

subgroup lattice possesses breaking points is called a BP-group. Clearly, all cyclic

p-groups of order at least p2 and all generalized quaternion 2-groups Q2n = 〈a, b :

a2
n−2

= b2, a2
n−1

= 1, b−1ab = a−1〉, n > 3, are BP-groups. Note that a complete

classification of BP-groups can be found in [2]. Also, we observe that condition (1)

is equivalent to

(2) L(G) = [1, H ] ∪ [H,G],
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where for X,Y ∈ L(G) with X ⊆ Y we denote by [X,Y ] the interval in L(G)

between X and Y . A natural generalization of (2) is

(3) L(G) = [1,M ] ∪ [N,G] with 1 < M, N < G,

and the abelian groups G satisfying (3) have been determined in [1].

The above concepts can be naturally extended to other remarkable posets of

subgroups of G, such as the posets C(G) and C(G) of cyclic subgroups and of

conjugacy classes of cyclic subgroups of G, respectively. We recall here that the

generalized quaternion 2-groups Q2n , n > 3, can be characterized as the unique

finite noncyclic groups G for which C(G) and C(G) have breaking points (see [9]

and [3], respectively).

In the current note, we will focus on the set of conjugacy classes of subgroups of G.

It is defined by

L(G) = {[H ] : H ∈ L(G)}, where [H ] = {Hx : x ∈ G} ∀H ∈ L(G).

Under the ordering relation

[H1] 6 [H2] if and only if H1 ⊆ Hx
2 for some x ∈ G,

this is a poset with the least element [1] = {1} and the greatest element [G] = {G}.

We will prove that the cyclic p-groups of order at least p2 and the generalized quater-

nion 2-groups are the unique finite groups G for which L(G) has breaking points.

The more general problem of finding the finite groups G such that L(G) is a union

of two proper intervals will be also addressed.

Most of our notation is standard and will usually not be repeated here. Elementary

concepts and results on group theory can be found in [4], [7], [8]. For subgroup lattice

notions we refer the reader to [5], [10].

2. Main results

Our main theorem is the following.

Theorem 1. Let G be a finite group and L(G) be the poset of conjugacy classes

of subgroups of G. Then L(G) possesses breaking points if and only if G is either

a cyclic p-group of order at least p2 or a generalized quaternion 2-group.
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P r o o f. Clearly, if G is a cyclic p-group of order at least p2, then L(G) possesses

breaking points. Also, if G is a generalized quaternion 2-group, then G has exactly

one subgroup of order 2 (see e.g. (4.4) of [8]), and the conjugacy class of this subgroup

is a breaking point for L(G).

Conversely, assume that L(G) possesses a breaking point, say [H ]. Then G is

a p-group. Indeed, if the order of G has at least two distinct prime divisors p1

and p2, then by taking P1, P2 6 G with |P1| = p1 and |P2| = p2, we infer that

[P1], [P2] 6 [H ] and so both p1 and p2 divide |H |. Thus H cannot be a p-subgroup.

It follows that [S] 6 [H ] for any Sylow subgroup S of G. This leads to H = G,

a contradiction.

Let |G| = pn and |H | = pm, where p is a prime and 1 6 m 6 n − 1. Then for

every subgroup K 6 G of order pm we have either [K] 6 [H ] or [H ] 6 [K], implying

that [K] = [H ]. This shows that all subgroups of order pm of G are conjugate to H .

On the other hand, since G has a normal subgroup of order pm, we infer that H is in

fact the unique subgroup of order pm of G, i.e. a breaking point for L(G). Thus G is

a BP-group, and by Theorem 1.1 of [2] it follows that G is either a cyclic p-group of

order at least p2 or a generalized quaternion 2-group. This completes the proof. �

The following corollary is obtained directly from Theorem 1.

Corollary 2. The generalized quaternion 2-groups are the unique finite noncyclic

groups whose poset of conjugacy classes of subgroups has breaking points.

By bringing together Theorem 1 and the main results of [2], [3], [9], one obtains:

Corollary 3. Let G be a finite group and L(G), L(G), C(G), C(G) be the posets

of subgroups, of conjugacy classes of subgroups, of cyclic subgroups, and of conjugacy

classes of cyclic subgroups of G, respectively. Then the following conditions are

equivalent:

(a) L(G) has breaking points,

(b) L(G) has breaking points,

(c) C(G) has breaking points,

(d) C(G) has breaking points.

In what follows we will denote by C the class of finite groups G satisfying

(4) L(G) = [[1], [M ]] ∪ [[N ], [G]] with 1 < M, N < G.

Clearly, (4) is equivalent with (3) for abelian groups G because in this case we have

L(G) = L(G). Then all finite abelian groups satisfying (3) belong to C. So, we may

restrict our attention only to finite nonabelian groups contained in C. By Theorem 1,
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we know that the generalized quaternion 2-groups Q2n , n > 3, have this property.

We also observe that there are many examples of groups of small order contained

in C, such as the symmetric group S3 (for which we can choose M = 〈(1 2)〉 and

N = 〈(1 2 3)〉), the dihedral group D10 = 〈x, y : x5 = y2 = 1, xy = x−1〉 (for which

we can choose M = 〈x〉 and N = 〈y〉), and the alternating group A4 (for which we

can choose M = {(1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} and N = 〈(1 2 3)〉).

First of all, we will focus on the finite p-groups G contained in C. Observe that we

can take M to be a maximal subgroup of G and N to be a minimal subgroup of G.

Then M contains any minimal subgroup different from N , while N is contained in

any maximal subgroup different from M . These remarks lead to

(1) Ω1(G) ⊆ M ;

(2) N ⊆ Φ(G) (and in particular, N ⊆ M).

An example of such a group is given by the following proposition.

Proposition 4. The modular p-group

M(pn) = 〈x, y : xpn−1

= yp = 1, xy = xpn−2
+1〉

belongs to C.

P r o o f. It is well-known that M(pn)′ = 〈xq〉, where q = pn−2. Moreover,

M(pn)/M(pn)′ ∼= Zp × Zpn−2 . We also have

Ω1(M(pn)) = 〈xq, y〉 ∼= Zp × Zp and Φ(M(pn)) = 〈xp〉.

Then M(pn) contains p + 1 minimal subgroups and the join of any two distinct

such subgroups includes M(pn)′. We infer that L(M(pn)) consist of the interval

[M(pn)′,M(pn)], of p minimal non-normal subgroups, and of the trivial subgroup.

By taking

M = 〈xp, y〉 ⊇ Ω1(M(pn)) and N = 〈xq〉 ⊆ Φ(M(pn)),

it follows that

L(M(pn)) = [[1], [M ]] ∪ [[N ], [M(pn)]],

as desired. �

Our next theorem gives a sufficient condition for a finite solvable group which is

not a p-group to be contained in C.

Theorem 5. Let G be a finite solvable group with |π(G)| > 2. If there is a prime

p ∈ π(G) such that all subgroups of order p of G are conjugate, then G belongs to C.

In particular, if a Sylow subgroup of G is cyclic or a generalized quaternion 2-group,

then G belongs to C.

1084



P r o o f. Let p ∈ π(G) such that all subgroups of order p of G are conjugate.

Pick a subgroup N 6 G of order p, and a p-complement M in G. We will prove that

L(G) = [[1], [M ]] ∪ [[N ], [G]].

Letm = |M |. Then p ∤ m, any two subgroups of orderm of G are conjugate, and any

subgroup of G of order dividingm is contained in a subgroup of orderm. Let H 6 G.

If |H | | m, then H is contained in a conjugate of M , that is, [H ] 6 [M ]. If |H | ∤ m,

then p | |H | and so H contains a subgroup of order p of G. By hypothesis, there is

x ∈ G such that Nx ⊆ H , or equivalently N ⊆ Hx−1

, proving that [N ] 6 [H ]. �

Note that the condition in Theorem 5 is not necessary for a finite solvable group G

to be contained in C: for example, G = Z2
2 × M(33) belongs to C (see Theorem 8

below), but its subgroups of a fixed prime order are not conjugate. Also, we cannot

remove the hypothesis that G is solvable: for example, G = A5 has all subgroups of

order 3 (as well as all subgroups of order 5) conjugate, but it does not belong to C.

An important class of groups contained in C is indicated in the following corollary.

Recall that a finite group is called a ZM-group if all its Sylow subgroups are cyclic.

Corollary 6. Any ZM-group belongs to C.

Also, by using Theorem 5, we are able to determine all finite dihedral groups

contained in C.

Corollary 7. The dihedral group D2n belongs to C if and only if n is not a power

of 2.

P r o o f. First of all, we prove that the dihedral 2-group

D2k = 〈x, y : x2
k−1

= y2 = 1, xy = x−1〉

is not contained in C. Assume that D2k belongs to C and let M , N be two proper

nontrivial subgroups of D2k such that

L(D2k) = [[1], [M ]] ∪ [[N ], [D2k ]]

with M maximal and N minimal. Then Ω1(D2k) ⊆ M . But y, xy ∈ Ω1(D2k),

and so x = (xy)y ∈ Ω1(D2k), implying that Ω1(D2k) = D2k . Thus M = D2k ,

a contradiction.

Next, write n = 2km, where 2 ∤ m. It suffices to show that D2n belongs to C

if m 6= 1. Let p be a prime diving m. Since p is odd, D2n has a unique Sylow

p-subgroup and this is cyclic. Therefore the conclusion follows from Theorem 5. �
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Finally, we remark that for finite nilpotent groups the condition in Theorem 5 can

be weakened.

Theorem 8. Let G be a finite nilpotent group. If there is a prime p ∈ π(G) such

that a Sylow p-subgroup of G belongs to C, then G also belongs to C.

P r o o f. Since a finite nilpotent group is the direct product of its Sylow

p-subgroups, it suffices to prove that if G1, G2 are two finite groups of coprime

orders and G1 belongs to C, then G = G1 ×G2 also belongs to C.

Let M and N be two proper nontrivial subgroups of G1 such that

L(G1) = [[1], [M ]] ∪ [[N ], [G1]].

This implies that

L(G) = [[1], [M ×G2]] ∪ [[N × 1], [G]].

Indeed, any subgroup H of G can be written as H = H1×H2 with Hi 6 Gi, i = 1, 2

(see e.g. Lemma 3 of [6] or Lemma 1.6.4 of [5]). We easily infer that if [H1] 6 [M ],

then [H ] 6 [M ×G2], while if [N ] 6 [H1], then [N × 1] 6 [H ], completing the proof.

�

Note that the condition in Theorem 8 is also not necessary for a finite nilpotent

group G to be contained in C: for example, G = Z6 belongs to C, in contrast with

its Sylow subgroups Z2 and Z3.

We end our paper by indicating a natural open problem concerning the above

study.

Open problem. Characterize the finite groups which are contained in the class C.
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