
Czechoslovak Mathematical Journal

Said Manjra
On n-exact categories

Czechoslovak Mathematical Journal, Vol. 69 (2019), No. 4, 1089–1099

Persistent URL: http://dml.cz/dmlcz/147917

Terms of use:
© Institute of Mathematics AS CR, 2019

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147917
http://dml.cz


Czechoslovak Mathematical Journal, 69 (144) (2019), 1089–1099

ON n-EXACT CATEGORIES

Said Manjra, Riyadh

Received February 2, 2018. Published online June 5, 2019.

Abstract. An n-exact category is a pair consisting of an additive category and a class of
sequences with n + 2 terms satisfying certain axioms. We introduce n-weakly idempotent
complete categories. Then we prove that an additive n-weakly idempotent complete cate-
gory together with the class Cn of all contractible sequences with n+2 terms is an n-exact
category. Some properties of the class Cn are also discussed.
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1. Introduction

The notion of n-cluster-tilting subcategories was introduced by Iyama et al. in [8],

and was developed further in the sense of higher dimensional Auslander-Reiten the-

ory by Iyama in [5], [6], [7]. Geiß et al. in [4] introduced (n+2)-angulated categories

and showed that an n-cluster-tilting subcategory (in the sense of Iyama) of a trian-

gulated category which satisfies a certain condition is an (n+2)-angulated category.

This allows them to build a broad class of (n + 2)-angulated categories. Recently,

Jasso in [9] introduced n-exact categories and provided several results and exam-

ples which illustrate the importance of such a class of categories. In particular, he

showed that the n-cluster-tilting subcategories of exact categories are n-exact, and

that the stable category of a Frobenius n-exact category is an (n + 2)-angulated

category. An n-exact category is a pair consisting of an additive category and a class

(called n-exact structure) of sequences with n + 2 terms satisfying certain axioms.

The n-exact categories are higher analogues of exact categories, see [2], [12]. In

this paper, we introduce n-weakly idempotent complete categories; these are both

generalizations (see Corollary 3.5) and higher analogues of the weakly idempotent

complete categories introduced by Thomason in [13] and further investigated by
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Freyd and Neeman in [3] and [11]. We prove that an additive n-weakly idempotent

complete category together with the class Cn of all contractible sequences with n+2

terms is an n-exact category (see Theorem 3.7). As a consequence, the class Cn is

closed under direct sum and direct summand (see Corollary 3.8). In analogy with

the case of n-abelian categories (see [9], Corollary 3.10) we show that the admissible

monomorphisms with respect to two exact structures, on an additive category, with

different orders are split monomorphisms (see Proposition 3.9).

2. Preliminaries

2.1. Notation. Mainly, we follow the notation and definitions of [9]. Through-

out this paper, A denotes an additive category and n denotes a positive integer.

By A(A,B), we denote the class of morphisms A → B in A while 1A denotes the

identity morphism of the object A ∈ A. We will use the symbol Ch(A) to denote

the category of (cochain) complexes in A. We write Chn(A) for the full subcategory

of Ch(A) consisting of all complexes

X0 d0
X

−→ X1 d1
X

−→ . . .
d
n−1

X

−→ Xn dn

X

−→ Xn+1

that are concentrated in degrees 0, 1, . . . , n+ 1.

Definition 2.1.

(D1) A morphism of complexes f ∈ Ch(A)(X,Y ) is said to be homotopic to a mor-

phism g ∈ Ch(A)(X,Y ) if there is a morphism h = (hk : Xk → Y k−1)k∈Z,

called a homotopy, satisfying

fk − gk = dk−1
Y hk + hk+1dkX

for all k ∈ Z. In such a case, we write h : f → g. The “homotopic” relation

gives easily rise to an equivalence relation on Ch(A)(X,Y ).

(D2) A category whose objects are those of Ch(A) and whose morphisms are, up

to homotopy, those of Ch(A), is called the homotopy category of A and is

denoted by H(A).

(D3) A complex X ∈ Ch(A) is said to be contractible if the identity morphism 1X
is homotopic to the zero morphism 0X of X , i.e., 1X = 0X in H(A).

(D4) A weak cokernel of a morphism f ∈ A(A,B) is a morphism g ∈ A(B,C) such

that gf = 0 and for every morphism q ∈ A(B,C′) satisfying qf = 0, there is

a morphism p ∈ A(C,C′) such that q = pg. The notion of the weak kernel is

defined dually.
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(D5) A sequence (d1X , . . . , dnX) of morphisms in the complex

X : X0 d0
X

−→ X1 d1
X

−→ . . .
d
n−1

X

−→ Xn dn

X

−→ Xn+1

is said to be an n-cokernel of a morphism d0X ∈ A(X0, X1) if dnX is a cokernel

of dn−1
X and dkX is a weak cokernel of d

k−1
X for k = 1, . . . , n − 1. In that

case, the complex X is called a right n-exact sequence. The definitions of the

n-kernel of a morphism and that of the left n-exact sequence are given dually.

The terminologies “right n-exact sequence” and “left n-exact sequence” are

borrowed from [10].

(D6) We say that a complex X ∈ Chn(A) is an n-exact sequence if (d1X , . . . , dnX) is

an n-cokernel of d0 and (d0X , . . . , dn−1
X ) is an n-kernel of dnX or, equivalently,

X is both a right n-exact sequence and a left n-exact sequence.

(D7) A morphism f ∈ Chn(A)(X,Y ) is called a weak isomorphism if there is an

integer 0 6 k 6 n+1 (with n+2 := 0) such that fk and fk+1 are isomorphisms.

(D8) We say that a morphism m ∈ A(A,B) is a split monomorphism if there is

a morphism e ∈ A(B,A) such that em = 1A. A split epimorphism is defined

dually.

(D9) The category A is said to be n-weakly idempotent complete if every split

monomorphism has an n-cokernel and every split epimorphism has an

n-kernel. When n = 1, A is called a weakly idempotent category.

(D10) A morphism of complexes f ∈ Chn−1(A)(X,Y )

X

f

��

Y

X0

f0

��

d0
X

// X1

f1

��

d1
X

// . . .
d
n−1

X
// Xn

fn

��

Y 0
d0
Y

// Y1

d1
Y

// . . .
d
n−1

Y
// Y n

is said to be an n-pushout diagram (n-pushout for short) of X along f0 if the

mapping cone C = C(f) of f :

X0 d
−1

C

−→ X1 ⊕ Y 0 d0
C

−→ . . .
d
n−2

C

−→ Xn ⊕ Y n−1 d
n−1

C

−→ Y n

is a right n-exact sequence, where

d−1
C =

[

−d0X
f0

]

and dn−1
C = [ fn dn−1

Y ] ,

and for k = 0, 1, . . . , n− 2,

dkC :=

[

−dk+1
X 0

fk+1 dkY

]

: Xk+1 ⊕ Y k → Xk+2 ⊕ Y k+1.

The definition of n-pullback diagram is given dually.
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Remark 2.2.

(1) It is known and easily verified that a complex X ∈ Ch(A) is contractible if and

only if X is isomorphic to the zero complex in H(A).

(2) The class of n-abelian categories is contained in that of n-weakly idempotent

complete categories, see [9], Definition 3.1.

2.2. n-exact categories. Let X be a class of n-exact sequences in A. The

elements of X are called X -admissible n-exact sequences (X -admissibles for short).

If the sequence

X : X0 d0
X

−→ X1 d1
X

−→ . . .
d
n−1

X

−→ Xn dn

X

−→ Xn+1

is X -admissible, then the morphisms d0X and dnX are called, respectively, an

X -admissible monomorphism and an X -admissible epimorphism. Let MX and EX

denote, respectively the classes of all X -admissible monomorphisms and all X -admis-

sible epimorphisms. The class X is said to be an n-exact structure on A provided

the following axioms hold:

(E0) X is closed under weak isomorphisms of n-exact sequences.

(E1) The zero sequence in Chn(A) is X -admissible.

(E2) The classMX is closed under composition.

(E2)op The class EX is closed under composition.

(E3) For every X -admissible X and every morphism f0 ∈ A(X0, Y 0), there is an

n-pushout f of (d0X , . . . , dn−1
X ) along f0 such that d0Y ∈ MX :

X

f

��

Y

X0

f0

��

d0
X

// X1

��

d1
X

// . . .
d
n−1

X
// Xn

��

Y 0
d0
Y

// Y1

d1
Y

// . . .
d
n−1

Y
// Y n

(E3)op For every X -admissibleX and every morphism gn+1 ∈ A(Y n+1, Xn+1), there

is an n-pullback g of (d1X , . . . , dnX) along gn+1 such that dnY ∈ EX :

X

g

��

Y

Y 1

��

d1
Y

// . . .
d
n−1

Y
// Y n

��

dn

Y
// Y n+1

gn+1

��

X1
d1
X

// . . .
d
n−1

X
// Xn

dn

X
// Xn+1

A pair (A,X ) is said to be an n-exact category if X is an n-exact structure on A.

2.3. Preparatory results. We need the following important results, due to Jasso

in [9], which play the key role in our proofs in the next section:
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Proposition 2.3 ([9], Proposition 2.7). Let f ∈ Chn(A)(X,Y ) be a morphism

of n-exact sequences such that fk and fk+1 are isomorphisms for some 1 6 k 6 n.

Then f induces an isomorphism in H(A).

Combining this proposition with Remark 2.2, we obtain:

Corollary 2.4. Under the assumptions of Proposition 2.3, X is contractible if

and only if Y is.

Proposition 2.5 ([9], Proposition 2.5). Let X,Y ∈ Chn(A) be two isomorphic

n-sequences in H(A). Then the following statements hold.

(1) The complex X is an n-exact sequence if and only if Y is an n-exact sequence.

(2) Every contractible complex in Chn(A) is an n-exact sequence.

Proposition 2.6 ([9], Proposition 2.6). Let X ∈ Chn(A) be a right n-exact

sequence. Then d0X is a split monomorphism if and only if X is a contractible

n-exact sequence.

3. Main results

From now on, Cn will denote the class of all contractible complexes in Ch
n(A). By

Proposition 2.5, every complex in Cn is an n-exact sequence. We start this section

with the following lemma which we will use extensively in the proofs of our results.

This is an adapted form of [9], Comparison-Lemma 2.1.

Lemma 3.1. LetX ∈ Chn(A) be a right n-exact sequence. If f, g∈Chn(A)(X,Y )

are two morphisms of complexes such that f0 = g0, then there exists a homotopy

h : f → g such that h1 = 0 and dnY h
n+1 = fn+1 − gn+1.

P r o o f. Given that dkX is a weak cokernel of d
k−1
X for k = 1, . . . , n, and dn+1

X = 0

is a weak cokernel of the cokernel dnX of d
n−1
X , a construction similar to that in

the proof of [9], Comparison-Lemma 2.1 gives morphisms hk ∈ A(Xk, Y k−1) for all

k 6 n + 2, such that fk − gk = dk−1
Y hk + hk+1dkX for k = 1, . . . , n + 1, and hk = 0

for all k 6 1. Note that hn+2 = 0 simply because Xn+2 = 0. This yields

[(fn+1 − gn+1)− dnY h
n+1]dnX = (fn+1 − gn+1)dnX − dnY (h

n+1dnX)

= dnY (f
n − gn)− dnY (h

n+1dnX)

= dnY (f
n − gn)− dnY [(f

n − gn)− dn−1
Y hn]

= dnY (f
n − gn)− dnY (f

n − gn) + dnY d
n−1
Y hn = 0.
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Therefore,

fn+1 − gn+1 = dnY h
n+1,

since the morphism dnX , being a cokernel of d
n−1
X , is an epimorphism. Writing hk = 0

for all k > n+ 3, we obtain a homotopy h : f → g as required. �

Proposition 3.2. Let X,Y ∈ Chn(A) be two exact sequences and assume that

f ∈ Chn(A)(X,Y ) is a morphism. Then f induces an isomorphism in H(A) provided

one of the following two conditions holds

(1) X is contractible and fn+1 is an isomorphism.

(2) Y is contractible and f0 is an isomorphism.

P r o o f. (1) Assume X is contractible and fn+1 is an isomorphism. Let gn+1

be the inverse of fn+1. According to the dual of Proposition 2.6, dnX is a split

epimorphism. Let dn ∈ A(Xn+1, Xn) be a morphism such that dnXdn = 1Xn+1.

Writing gn = dng
n+1dnY , we get d

n
Xgn = gn+1dnY . It then follows, by the factorization

property of weak kernels, that there exists a complex morphism g ∈ Chn(A)(Y,X)

such that the following diagram is commutative:

Y

g

��

X

Y 0

g0

��

d0
Y

// Y 1

g1

��

d1
Y

// . . . // Y n

gn

��

dn

Y
// Y n+1

gn+1

��

X0
d0
X

// X1
d1
X

// . . . // Xn
dn

X
// Xn+1

The dual of Lemma 3.1 applied to both (gf, 1X) and (fg, 1Y ) implies that gf = 1X
and fg = 1Y in H(A).

(2) Assume Y is contractible and f0 is an isomorphism. Let g0 be the inverse of f0.

By Proposition 2.6, d0Y is a split monomorphism. Let d0 ∈ A(Y 1, Y 0) be a morphism

such that d0d
0
Y = 1Y 0 . Writing g1 = d0Xg0d0, we get d

0
Xg0 = g1d0Y . It then follows,

by the factorization property of weak cokernels, that there exists a complex morphism

g ∈ Chn(A)(Y,X) such that the following diagram is commutative:

Y

g

��

X

Y 0

g0

��

d0
Y

// Y 1

g1

��

d1
Y

// . . . // Y n

gn

��

dn

Y
// Y n+1

gn+1

��

X0
d0
X

// X1
d1
X

// . . . // Xn
dn

X
// Xn+1

The rest of the proof runs as in (1) using Lemma 3.1. �

Corollary 3.3. Let X,Y ∈ Chn(A) be two n-exact sequences and let f ∈

Chn(A)(X,Y ) be a morphism. Assume that f0 and fn+1 are isomorphisms. Then X

is contractible if and only if Y is.

1094



P r o o f. Follows easily from Proposition 3.2 and Remark 2.2. �

The next result states in particular that the contractible n-exact sequences can be

extended to contractible m-exact sequences for all m > n.

Lemma 3.4. Let X ∈ Chn(A) be a right n-exact sequence and m an integer

greater than n. Then,

(1) the following sequence X is a right m-exact sequence

X : X0 d0
X

−→ X1 d1
X

−→ . . .
dn

X

−→ Xn+1 d
n+1

X

−→ 0 −→ 0 −→ . . . −→ 0
dm

X

−→ 0

(2) the sequence X is contractible if X is.

P r o o f. (1) Note that the morphism dnX , being a cokernel of d
n−1
X , is an epimor-

phism. In addition, the morphism dn+1
X is a split epimorphism. By the dual of [1],

Proposition 1.1.7 the morphisms dn+1
X and 10 = dn+2

X are, respectively, the cokernels

of dnX and dn+1
X , and the isomorphism 10 is the cokernel of itself. The rest of the

proof follows from the fact that X is a right n-exact sequence.

(2) Since X is contractible, it follows that d0X is a split monomorphism by Propo-

sition 2.6. By the same proposition, X is contractible, since X is a right m-exact

sequence by (1). �

Corollary 3.5.

(1) If A is weakly idempotent complete, then A is n-weakly idempotent complete

for every n > 2.

(2) The n-sequence X : X0
d0=1

X0

X0 d1

// 0
d2=10

// . . .d
n−2=10

// 0
dn−1=10

// 0 is con-

tractible.

P r o o f. (1) Follows from (1) of Lemma 3.4 and its dual.

(2) Observe that in the sequence X : X0
d0=1

X0

X0 d1

// 0 , the morphism d1 is

a cokernel of the “split monomorphism” 1X0 . By Proposition 2.6, the sequence X is

contractible. Hence, by (2) of Lemma 3.4, the sequence X is contractible. �

Proposition 3.6. The class Cn satisfies axioms (E0), (E1), (E3) and (E3)
op.

P r o o f. (E0) Follows from Corollaries 2.4 and 3.3.

(E1) Follows trivially from Remark 2.2.
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(E3) Let X be Cn-admissible and let f
0 ∈ A(X0, Y 0) be a morphism. We need to

prove that there exists an n-pushout diagram of (d0X , . . . , dn−1
X ) along f0:

X0

f0

��

d0
X

// X1

��

d1
X

// . . .
d
n−1

X
// Xn

��

Y 0
d0
Y

// Y 1
d1
Y

// . . .
d
n−1

Y
// Y n

such that d0Y ∈ MCn
. SinceX is Cn-admissible, the morphism d0X is a split monomor-

phism by Proposition 2.6. Let d ∈ A(X1, X0) be a morphism such that dd0X = 1X0 .

We claim that the following morphism f is an n-pushout diagram of X along f0:

Y

f

��

X

X0

f0

��

d0
X

// X1

f0d

��

d1
X

// X2

��

d2
X

// X3

��

// . . . // Xn−1

��

d
n−1

X
// Xn

dn

X

��

Y 0
1
Y 0

Y 0 // 0 // 0 // . . . // 0 // Xn+1

Equivalently, the mapping cone C = C(f) is a right n-exact sequence:

X0
d
−1

C
=

[

−d0
X

f0

]

// X1 ⊕ Y 0
d0
C
=

[

−d1
X

0

f0d 1
Y 0

]

// X2 ⊕ Y 0
d1
C
=

[

−d2
X

0
0 0

]

// X2 ⊕ 0 // . . .

. . .
d
n−2

C
=

[

−d
n−1

X
0

0 0

]

// Xn ⊕ 0
d
n−1

C
=

[−dn

X
0 ]

// Xn+1

By (2) of Corollary 3.5, the morphism 1Y 0 belongs toMCn
. We shall prove that dkC

is a weak cokernel of dk−1
C for k = 1, . . . , n− 2, and dn−1

C is a kernel of dn−2
C .

Let first [U V ] ∈ A(X1 ⊕ Y 0, Z) be a morphism such that

0 = [U V ] d−1
C = [U V ]

[

−d0X
f0

]

.

This is equivalent to −Ud0X + V f0 = 0. Because dd0X = 1X0 , we have

(−U + V f0d)d0X = −Ud0X + V f0 = 0.

But d1X is a weak cokernel of d
0
X . Hence there exists a morphism W ∈ A(X2, Z)

such that

−U + V f0d = Wd1X ,
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which is equivalent to U = −Wd1X + V f0d. Thus,

[U V ] = [W V ]

[

−d1X 0

f0d 1Y 0

]

= [W V ] d0C .

This shows that d0C is a cokernel of d
−1
C .

Let now [U0 V0] ∈ A(X2 ⊕ Y 1, Z) be a morphism such that

0 = [U0 V0 ] d
0
C = [U0 V0 ]

[

−d1X 0

f0d 1Y 0

]

.

This is equivalent to
{

−U0d
1
X + V0f

0d = 0,

V0 = 10Y V0 = 0.

Hence −U0d
1
X = 0, because V0 = 0. Since −d2X is a weak cokernel of −d1X , there

exists a morphism W0 ∈ A(X2, Z) such that U0 = −W0d
2
X so that

[U0 V0 ] = [U0 0 ] = [W0 0 ]

[

−d2X 0

0 0

]

= [W0 0 ] d1C .

This shows that d1C is a weak cokernel of d
0
C . The proof of the rest of the claim,

i.e., that dk+1
C is a weak cokernel of dkC for k = 1, . . . , n − 3 and dn−1

C is a cokernel

of dn−2
C , follows easily from the fact that X is a right n-exact sequence.

Axiom (E3)op follows from (E3) by duality. This concludes the proof. �

Theorem 3.7. If A is n-weakly idempotent complete, then (A, Cn) is an n-exact

category.

P r o o f. By Proposition 3.6, we only need to prove axiom (E2); axiom (E2)op can

be proved dually using the dual of Proposition 2.6 and the fact that the composite of

two split epimorphisms is also a split epimorphism. Let f and g be two composable

(i.e., the composite fg exists) Cn-admissible monomorphisms in A. By definition,

there exist two Cn-admissible (contractible) n-exact sequences X and Y in Chn(A)

such that d0X = f and d0Y = g. It follows from Proposition 2.6 that the morphisms f

and g are split monomorphisms. Hence, the composite fg is also a split monomor-

phism. Given that A is n-weakly idempotent complete, the morphism fg has an

n-cokernel (d2, d3, . . . , dn). Therefore the sequence ◦
fg
−→ ◦

d1

−→ ◦ . . . ◦
dn−1

−→ ◦
dn

−→ ◦

is contractible by Proposition 2.6. Consequently, fg is an Cn-admissible monomor-

phism. Hence Cn satisfies axiom (E2). �
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The following corollary is a consequence of this theorem and [9], Proposition 4.6,

Proposition 4.12. We point out here that the term “X -admissible” is missing in the

statement “If X ⊕ Y is an n-exact sequence” of [9], Proposition 4.12.

Corollary 3.8. Assume A is n-weakly idempotemt complete. If X1 and X2 are

two complexes in Chn(A), then X1⊕X2 is contractible if and only if both X1 and X2

are contractible.

The last result in this paper shows that the morphims which are admissible

monomorphisms with respect to two exact structures with different orders are split

monomorphisms.

Proposition 3.9. Let m < n be two distinct positive integers and let X and Y

be, respectively, an m-exact structure and an n-exact structure on A. Assume there

exists a morphism d0 ∈ A(Z0, Z1) which is both an X -admissible monomorphism

and an Y-admissible monomorphism. Then d0 is a split monomorphism.

P r o o f. This is an adaptation of the proof of [9], Corollary 3.10. Since d0 is both

an X -admissible monomorphism and an Y-admissible monomorphism, there exist an

X -admissible m-exact sequence X and a Y-admissible n-exact sequence Y so that

d0 = d0X = d0Y . Hence (d
1
X , . . . , dmX) and (d1Y , . . . , d

n
Y ) are, respectively, anm-cokernel

and an n-cokernel of d0. It follows, by the factorization property of weak cokernels,

that there exist two complex morphisms f ∈ Chn(A)(X,Y ) and g ∈ Chn(A)(Y,X)

such that the following diagram is commutative:

X

f

��

Y

g

��

X

X0 d0

// X1
d1
X

// X2

��

d2
X

// . . .
dm

X
// Xm+1

��

d
m+1

X
// Xm+2

��

d
m+2

X
// . . .

dn

X
// Xn+1

fn+1

��

X0 d0

// X1
d1
Y

// Y 2

��

d2
Y

// . . .
dm

Y
// Y m+1

��

// 0

��

// . . . // 0

gn+1

��

X0 d0

X1
d1
X

// X2
d2
X

// . . .
dm

X
// Xm+1

d
m+1

X
// Xm+2

d
m+2

X
// . . .

dn

X
// Xn+1

Since g0f0 = 1X0 , it follows from Lemma 3.1 that there exists a homotopy h :

1X → fg. Hence 1Xn+1 = 1Xn+1 − gn+1fn+1 = dnXhn+1, which means that dnX
is a split epimorphism. Since (d0 = d0X , . . . , dm−1

X ) is an n-kernel dnX , the dual of

Proposition 2.6 implies thatX is contractible. Therefore d0 is a split monomorphism.

This concludes the proof. �
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