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Abstract. Let N be the set of positive integers and let s ∈ N. We denote by ds the
arithmetic function given by ds(n) = (d(n))s, where d(n) is the number of positive divisors
of n. Moreover, for every l, m ∈ N we denote by δs,l,m(n) the sequence

d
s(ds(. . . ds(ds(n) + l) + l . . .) + l)

︸ ︷︷ ︸

m-times

=







ds(n) for m = 1,

ds(ds(n) + l) for m = 2,

ds(ds(ds(n) + l) + l) for m = 3,

...

We present classical and nonclassical notes on the sequence (δs,l,m(n))m>1, where l, n, s
are understood as parameters.
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1. Introduction

In the present article we apply nonstandard analysis in the field of number theory.

On this topic, we refer to [2], [3], [4], [9]. Here we study a modified repeated divi-

sor operator, with the aim to derive some bounds on growth based on permanence

principles of nonstandard analysis.
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Let as usual d(n) denote the number of positive divisors of n. It is well known

that d is multiplicative, we can write down an explicit formula for d(n) in terms of

the prime powers that exactly divide n. Let

n = qα1

1 qα2

2 . . . qαr

r ,

where q1, q2, . . . , qr are distinct primes, then

(1.1) d(n) = (α1 + 1)(α2 + 1) . . . (αr + 1).

For the proof of (1.1), see [18], page 67.

We are interested in problems involving a sequence formed by iterating a divisors

operator. That is, problems which are related to the iteration of powers of d(n).

There seem to exist only a few results in the literature on this subject. First, we

would like to have a brief introduction into the history of the subject.

From the wealth of problems involving the divisor function d(n) we shall con-

centrate on some problems connected with the work of Erdős. We begin with the

iterations of d(n). Thus let for m ∈ N fixed,

(1.2) d(1)(n) = d(n), d(m)(n) = d(d(m−1)(n)) for m > 2

be the mth iteration of d(n). We note that d(m)(n) is sometimes called the m-fold

iterated of d(n). Already d(2)(n) is not multiplicative; this fact makes the problems

involving d(m)(n) and iterates of other multiplicative functions quite difficult.

In 1915, Ramanujan [13] proved that

d(2)(n) > 4
√
2 log n/ log logn

for an infinity of values of n. This lower bound of d(2)(n) was obtained by considering

integers of the form

21 · 32 · 54 · . . . · ppm−1
m ,

where pi is the ith prime number.

Important results on the order of d(m)(n) were obtained in 1967 by Erdős and

Kátai [8]. They studied the growth of the sequence d(m)(n) using the mth element

of the Fibonacci sequence and gave an upper bound for all sufficiently large n and

a lower bound for an infinity of values of n. In fact, let lm denote the mth Fibonacci

number given by the recurrence relation

l−1 = 0, l0 = 1, lm = lm−1 + lm−2 (m > 1).
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Then the result of Erdős and Kátai says that

(1.3) d(m)(n) < exp(logn)1/lm+ε

for all positive ε and all sufficiently large values of n. Further for every ε > 0,

d(m)(n) > exp(logn)1/lm−ε

for an infinity of values of n.

Let l, s be positive integers. Generalizing (1.2), we define a new sequence, denoted

by δs,l,m(n), and we give it an upper bound as in (1.3). We show further the existence

of the maximal order, that is, the existence of the smallest positive integer m0 such

that δs,l,m(n) is fixed for every m > m0. Before launching to explain exactly the

problems that we want to solve, we present the following notation.

Notation 1.1. For every positive integer s, ds denotes the arithmetic function

given by ds(n) = (d(n))s for n > 1. Moreover for every l,m ∈ N we denote by

δs,l,m(n) the sequence

(1.4) ds(ds(. . . ds(ds(n) + l) + l . . .) + l)
︸ ︷︷ ︸

m-times

=







ds(n) for m = 1,

ds(ds(n) + l) for m = 2,

ds(ds(ds(n) + l) + l) for m = 3,

...

We note that δs,l,1(n) = δs,1,1(n) = ds(n).

In this paper, we study distribution behaviour and growth problems for δs,l,m(n).

Moreover, we will continue the research from [1] on the sequence δ1,l,m(n). In fact,

let k be a positive integer and let Wk denote the set of positive integers n for which

the number of distinct prime factors of n is larger or equal to k. In [1], the author

proved some inequalities for an infinity of values of n ∈ Wk. Similarly, in this

paper we present a property of δ1,l,m(n) for an infinity of values of n ∈ Wk. In the

framework of internal set theory, see [12], [15], some nonclassical properties on the

upper bound of δs,l,m(n) are given.

We end this introduction with an outline of the paper. Section 2 contains pre-

liminaries and auxiliary results that we need in the rest of the paper. Moreover,

we present a nonstandard version of the theorem (see [11], pages 225–226) which

says that for multiplicative functions to converge to 0 it is only needed that they

converge to 0 for prime powers; this nonstandard version is needed for our main

theorem. In Section 3, we prove that for every n > 1 there exists an order m such
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that δ1,1,m(n) = 2 or 3. Next, in the equation δ1,1,m(n) = 2, we show that the

order m can be arbitrarily given for an infinity of values of n. This is obtained by

using Dirichlet’s Theorem about primes in an arithmetic progression [17]. In Sub-

section 3.1, we give some examples to illustrate the results stated in Proposition 3.1,

Remark 3.1 and Theorem 3.1, where we consider only l = 1 and s is odd. In the end

of this section, we will use the theorem from Section 2 to prove our main theorem

which deals with the upper bound of δs,l,m(n).

2. Basic tools

First of all, we summarize a few auxiliary results about arithmetic functions and

internal set theory that we need. One can refer to [5], [11], [12], [15], [17].

Definition 2.1. A prime power is a positive integer power of a single prime

number. The first prime powers are

2, 3, 22, 5, 7, 23, 32, 11, 13, 24, 17, 19, 23, 52, 33, . . .

The following classical theorem links the convergence of a sequence with the con-

vergence along prime powers. Below we give a nonstandard proof, using the equiv-

alent nonstandard version given in Theorem 2.3; this nonstandard version is needed

in the proof of Theorem 3.2.

Theorem 2.1 ([11], page 225). Let f be an arbitrary multiplicative function.

If lim
qα→∞

f(qα) = 0 as qα runs through the sequence of all prime powers, then

lim
n→∞

f(n) = 0.

Notation 2.1. If n = qα1

1 qα2

2 . . . qαr
r is the factorization of n as a product of

powers of distinct primes, then

set(n) = {q1, q2, . . . , qr} and |set(n)| = r.

We recall Dirichlet’s Theorem, which will be needed in our proofs.

Theorem 2.2 (Dirichlet’s Theorem, [11], page 347). If a and b are relatively

prime integers with a > 1, the polynomial f(n) = an+ b represents infinitely many

primes.

Historically, Leibniz, Euler and Cauchy are among the first who began the use

of infinitely small quantities. In order to use better this notion, Robinson proposed
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in 1961 another approach, namely, the nonstandard analysis. In 1977, Nelson pro-

vided another presentation of the nonstandard analysis, called IST (Internal Set The-

ory), based on ZFC to which is added a new unary predicate called “standard”. The

use of this predicate is governed by the following three axioms: Transfer principle,

Idealization principle, and Standardization principle. For details, see [7], pages 7–33,

[12], [14].

Any real number that can be characterized in the unique classical way is necessarily

standard. Thus, 0, 1, . . . , 100100, . . . are standard. But not all integers are standard.

A real number ω is called unlimited, or infinitely large if its absolute value |ω| is
larger than any standard integer n. So a nonstandard integer ω is also an unlimited

real number; ω+
√
3 is an example of an unlimited real number that is not an integer.

A real number ε is called infinitesimal, or infinitely small, if its absolute value |ε| is
smaller than 1/n for any standard n. Of course, 0 is infinitesimal but (fortunately) it

is not the only one: ε = 1/ω is infinitesimal, provided ω is unlimited. A real number r

is called limited if it is not unlimited and appreciable if it is neither unlimited nor

infinitesimal. Finally, two real numbers x and y are equivalent or infinitely close

(written x ≃ y) if their difference x− y is infinitesimal. For details, see [6], page 2–4.

In mathematics, we describe as internal a formula which is expressible in the clas-

sical language (ZFC) and as external a formula of the nonstandard language (IST)

which involves the new predicate “standard” or one of its derivatives such as “in-

finitesimal” or “limited”, see [10]. For example, the formula [x < ε2+1 ⇒ x−1 < ε2]

is internal whereas the formula [x ≃ ∞ ⇒ x/2 + 1 ≃ ∞] is external. On the other

hand, since sets are defined by using the formulas, we have two types of sets: in-

ternal sets and external sets. For example, {x ∈ R : |x| 6 ε} is internal whereas
{x ∈ R : x ≃ 0} is external. Observe that a set defined by means of an external for-
mula is not necessarily external. For example, the set {x ∈ R : st(x) and x ≃ 0}
which is equal to the singleton {0}, is not only internal but standard (see [6],
pages 5–7). We recognize that in nonstandard literature we find several points of

view to define an external set (see [10], [16]) and this reflects the problematic posed

by this notion. In this article, we opt for the following definition.

Definition 2.2 ([10]). We call internal any set defined by means of an internal

formula and we call external any subset of an internal set defined by means of an

external formula, which is not (reduced to) an internal set.

Based on the above facts, we qualify mathematical objects as internal or external.

For example, we say that a function is internal or external if its graph is, respectively,

internal or external, and so on.

Definition 2.3 (see [6], page 20). Let X be a standard set, and let (Ax)x∈X be

an internal family of sets.
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(a) A union of the form G =
⋃

stx∈X

Ax is called a pregalaxy; if it is external G is

called a galaxy.

(b) An intersection of the form H =
⋂

stx∈X

Ax is called a prehalo; if it is external H

is called a halo.

Example 2.1 (for details, see [2]). We have:

(1) The set of limited positive integers Nσ is a galaxy.

(2) The set hal(0) = {x ∈ R : x ≃ 0} is a halo.

The following principles are important for the proof of our nonclassical notes.

Principle 2.1 (Cauchy’s Principle, [6], page 19). No external set is internal.

Principle 2.2 (Fehrele’s Principle, [6], page 20). No halo is a galaxy.

In addition, we recall the following notation which is related to internal set theory.

The symbols Φ and $ are used, respectively, for an arbitrary infinitesimal and an

arbitrary limited number (see [6], page 3). Let x, y be two real numbers where x is

unlimited. We write y ≪ x when x− y is unlimited positive.

We end this section with a nonstandard version and the proof of Theorem 2.1.

Theorem 2.3 (Nonstandard version of Theorem 2.1). Let f be a standard mul-

tiplicative function. If f(qα) ≃ 0 as qα runs through the sequence of all unlimited

prime powers, then f(n) ≃ 0 for every unlimited n.

P r o o f. Let n be an unlimited positive integer such that f(qα) ≃ 0 whenever qα

runs through the sequence of all unlimited prime powers. We put n = qα1

1 qα2

2 . . . qαs
s ,

where q1 < q2 < . . . < qs are primes and αi > 1 for i = 1, 2, . . . , s. It follows that

f(n) =
s∏

i=1

f(qαi

i ),

because f is multiplicative. Since q1, q2, . . . , qs are mutually distinct primes, the

numbers qα1

1 , qα2

2 , . . . , qαs
s are also mutually distinct, which we can order as follows

q
αi1

i1
< q

αi2

i2
< . . . < q

αis

is
,

where ij ∈ {1, 2, . . . , s} for j = 1, 2, . . . , s. We distinguish two cases.

Case 1 : For every j = 1, 2, . . . , s, q
αij

ij
is unlimited. In this case, from the hypoth-

esis we get f(q
αij

ij
) ≃ 0 for j = 1, 2, . . . , s. Consequently,

f(n) =

s∏

j=1

f
(
q
αij

ij

)
≃ 0.
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Case 2 : Some of the numbers
(
q
αij

ij

)

16j6s
are unlimited and some are not. We

also distinguish two cases.

Subcase 2.1 : Only the first m numbers q
αi1

i1
< q

αi2

i2
< . . . < q

αim

im
are standard,

where m is standard and 1 6 m < s. In this case, f(q
αi1

i1
)f(q

αi2

i2
) . . . f(q

αim

im
) is

standard. Since q
αij

ij
≃ ∞ for j = m+ 1,m+ 2, . . . , s,

s∏

j=m+1

f
(
q
αij

ij

)
≃ 0.

Consequently,

f(n) =
m∏

j=1

f
(
q
αij

ij

)
×

s∏

j=m+1

f
(
q
αij

ij

)
≃ 0.

Subcase 2.2 : For every standard j > 1, q
αij

ij
is standard. In this case, the set

T =

{

a ∈ N : ∀ t, 1 6 t 6 a ⇒
t∏

j=1

f
(
q
αij

ij

)
× f

(
q
αis

is

)
≃ 0

}

is a prehalo containing the galaxy N
σ. In fact, let a ∈ N

σ. Since f(q
αis

is
) ≃ 0 and

t∏

j=1

f
(
q
αij

ij

)
is standard for all t 6 a, also

t∏

j=1

f(q
αij

ij
)× f

(
q
αis

is

)
≃ 0.

That is, a ∈ T . Therefore, T contains Nσ strictly according to the principle of

Cauchy if it is internal or the principle of Fehrele if it is external. Let ω ∈ T be

unlimited, then

f(n) =

ω∏

j=1

f
(
q
αij

ij

)
×

s∏

j=ω+1

f(q
αij

ij
) =

ω∏

j=1

f
(
q
αij

ij

)
× f

(
q
αis

is

)
×

s−1∏

j=ω+1

f
(
q
αij

ij

)
≃ 0

because f
(
q
αi1

i1

)
f
(
q
αi2

i2

)
. . . f

(
q
αiω

iω

)
× f

(
q
αis

is

)
≃ 0, and f

(
q
αij

ij

)
≃ 0 for j = ω + 1,

ω + 2, . . . , s − 1, since q
αij

ij
are unlimited for these indexes. Hence the proof of

Theorem 2.3 is complete. �

Remark 2.1. Note that Theorem 2.3 is the nonstandard version of Theo-

rem 2.1 in the following sense: Let f be a multiplicative function. By Theorem 2.1,

lim
qα→∞

f(qα) = 0 as qα runs through the sequence of all prime powers is the sufficient

condition for lim
n→∞

f(n) = 0, whereas by Theorem 2.3, for standard f , the condition

that f(qα) ≃ 0 as qα runs through the sequence of all unlimited prime powers is suf-

ficient for f(n) ≃ 0 whenever n ≃ ∞; the latter is the nonstandard characterization
of a sequence having the limit equal to 0.
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3. Main results

It is well-known (see, for example [18], page 67) that for every positive integer

n > 2 there is an order m such that d(m)(n) = 2. Indeed, we see that d(2) = 2 and

for n > 3 with n = qα1

1 qα2

2 . . . qαr
r we have

d(n) =

r∏

i=1

(αi + 1) < qα1

1 qα2

2 . . . qαr

r = n.

Thus, d(2)(n) < d(n) whenever d(n) > 3, and d(3)(n) < d(2)(n) whenever d(2)(n) > 3,

and so on. Moreover, we note that for anym > 1 there exists a positive integer n such

that d(m)(n) = 2. In the first result of the present section we prove that δ1,1,m(n) has

the same properties as those appearing for d(m)(n), where the values that we reach

after m-fold iterations are 2 or 3. In Theorem 3.1 and Corollary 3.2, we show for

infinitely many n that the order m can be arbitrarily given for which δ1,1,m(n) = 2

and δ1,1,m(n) = 3, respectively. Moreover, we deal with problems involving the

growth of δs,l,m(n), where s, l are limited. In particular, if d(n) is unlimited, we will

prove that δs,l,1(n) − δs,l,m(n) and δs,l,1(n)/δs,l,m(n) are also unlimited for every

m > 2.

Proposition 3.1. Let n > 1. There exists a positive integer m0 such that for

every m > m0, one has

(3.1) δ1,1,m(n) = 2 or 3.

P r o o f. First, we will show that for every n > 2,

(3.2) δ1,1,2(n) 6 δ1,1,1(n) = d(n).

Obviously the last inequality holds when n is prime. In the case when n is composite,

we distinguish two cases.

Case 1 : Assume that d(n) + 1 = p, where p > 5 is prime (because if p = 2 or

p = 3, then d(n) = 1 or d(n) = 2, respectively, meaning that n = 1 or n is prime).

Then

δ1,1,2(n) = 2 < p− 1 = d(n).

Case 2 : Assume that d(n) + 1 is composite. We put d(n) + 1 = ab with 1 < a 6 b

and consider three cases:

Subcase 2.1 : a 6= 2 and b 6= 2. We have

a2(b− d(b)) + b2(a− d(a)) > a+ b,
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because both a− d(a) and b− d(b) are positive. It follows that

(3.3) a2d(b) + b2d(a) < (a+ b)(ab− 1) = (a+ b)d(n).

Therefore,

(3.4) δ1,1,2(n) = d(ab) =
ad(ab) + bd(ab)

a+ b
<

a2d(b) + b2d(a)

a+ b
< d(n),

where the right-hand side of (3.4) holds by (3.3) and the left hand side because

d(ab) 6 d(a)d(b), d(a) < a and d(b) < b.

Subcase 2.2 : a = 2 and (2, b) = 1. Since b > 3, we obtain

d(ab) = d(2b) = 2d(b) < 2b.

Thus,

δ1,1,2(n) = d(ab) 6 2b− 1 = d(n).

Subcase 2.3 : a = 2 and (2, b) 6= 1 with b > 2. We can put 2b = 2Nb′, where

N > 2, b′ > 1 and (2N , b′) = 1. It follows that

(3.5) d(ab) = d(2Nb′) = (N + 1)d(b′) < 2Nb′,

because t+ 1 < 2t for every t > 2 and d(b′) 6 b′. Therefore,

(3.6) δ1,1,2(n) = d(ab) 6 2Nb′ − 1 = d(n).

This proves (3.2).

We are now ready to prove (3.1). For n = 1, d(1) + 1 = 2. Then for every

m > m0 = 2, we have

δ1,1,m(n) = 2.

It is the same when n is prime, where m0 = 1. Assume that n is composite with

n > 4, that is, d(n) > 3. Note that if d(n) = 3, then δ1,1,m(n) = 3 for every m > 1.

If d(n) > 4, then by applying (3.2) repeatedly we obtain for every m > 1

(3.7) 2 6 δ1,1,m(n) 6 . . . 6 δ1,1,3(n) 6 δ1,1,2(n) 6 δ1,1,1(n) = d(n),

noting that d(t) > 2 whenever t > 2. For every i > 2 we will prove that one of the

statements:

(3.8) δ1,1,i+1(n) = 2,

δ1,1,i+1(n) = 3,

δ1,1,i+1(n) < δ1,1,i(n),

δ1,1,i+2(n) < δ1,1,i+1(n)

holds. Let i > 2. There are two cases:
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Case 1 : δ1,1,i(n) + 1 is prime. Then

(3.9) δ1,1,i+1(n) = δ1,1,i+2(n) = . . . = 2.

Case 2 : δ1,1,i(n) + 1 is composite. We also consider three cases as in the proof

of (3.2).

Subcase 2.1 : δ1,1,i(n) + 1 = xy with x 6= 2 and y 6= 2. Using (3.4), we get

(3.10) d(δ1,1,i(n) + 1) = δ1,1,i+1(n) < δ1,1,i(n).

Subcase 2.2 : δ1,1,i(n)+1 = 2y with (2, y) = 1 and y > 3. In this case, assume that

y = qα1

1 qα2

2 . . . qαr
r , where q1, q2, . . . , qr are distinct prime numbers and α1, α2, . . . , αr

are positive integers. Since qj > 3 for j = 1, 2, . . . , r,

αj + 1 < q
αj

j for j = 1, 2, . . . , r,

and so

2(αj + 1) < 2q
αj

j − 1 for j = 1, 2, . . . , r.

Therefore,

d(2y) = 2

r∏

j=1

(αj + 1) < 2qα1

1 qα2

2 . . . qαr

r − 1 = 2y − 1.

It follows that

(3.11) d(δ1,1,i(n) + 1) = δ1,1,i+1(n) < δ1,1,i(n).

Subcase 2.3 : δ1,1,i(n) + 1 = 2My with M > 2, (2M , y) = 1 and y > 1. As in (3.5)

and (3.6), we have d(δ1,1,i(n) + 1) = δ1,1,i+1(n) 6 2My − 1. If

(3.12) δ1,1,i+1(n) < 2My − 1 = δ1,1,i(n),

we obtain the desired inequality. Otherwise, δ1,1,i+1(n) = 2My − 1. In this case, we

see that

d(δ1,1,i+1(n) + 1) = δ1,1,i+2(n) = (M + 1)d(y),

where by (3.7), (M + 1)d(y) 6 2My − 1. If (M + 1)d(y) < 2My − 1, we have

(3.13) δ1,1,i+2(n) = (M + 1)d(y) < 2My − 1 = δ1,1,i+1(n),

which is the inequality we need. In the remaining case, (M + 1)d(y) = 2My − 1.

Here we distinguish two cases, y = 1 and y > 2.
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Assume that y = 1. That is M + 1 = 2M − 1. Obviously the last equality holds if

and only if M = 2. Hence δ1,1,i+1(n) = 3 and by (3.12),

(3.14) δ1,1,i(n) = δ1,1,i+1(n) = . . . = 3.

But, when M > 3, we have

(3.15) δ1,1,i+2(n) < δ1,1,i+1(n),

since M + 1 < 2M − 1.

Assume that y = pα1

1 pα2

2 . . . pαr
r > 2, where p1, p2, . . . , pr are distinct prime num-

bers and α1, α2, . . . , αr are positive integers. Since M + 1 < 2M and αj + 1 6 q
αj

j

for j = 1, 2, . . . , r, it follows for M = 2 that

(3.16) 2My − 1− (M + 1)d(y) = 4pα1

1 pα2

2 . . . pαr

r − 3

r∏

j=1

(αj + 1)− 1 > 1,

which is impossible. For M > 3, we also see that

(3.17) 2My − 1− (M + 1)d(y) > (2M − (M + 1))
r∏

j=1

(αj + 1)− 1 > 7,

which is impossible as well. Then one has (M+1)d(y) < 2My−1 when y > 2. Hence

by (3.13), (3.16) and (3.17),

(3.18) δ1,1,i+2(n) < δ1,1,i+1(n).

Combining (3.9)–(3.18), we obtain (3.8). Since there exists no infinite descending

chain on the natural numbers, as every chain of natural numbers has a minimal

element, we obtain δ1,1,m(n) = 2 or 3 for some m > 1. This completes the proof. �

Let k be a positive integer and let Wk be the subset given by

Wk = {n ∈ N : ω(n) > k},

where ω(n) denotes the number of distinct prime factors of n. In [1] some inequalities

were studied for infinitely many n ∈ Wk. In the next theorem we show with respect

to the equation δ1,1,m(n) = 2 that the order m can be arbitrarily given for infinitely

many n ∈ Wk. This is obtained by using Dirichlet’s Theorem about primes in an

arithmetic progression.

Theorem 3.1. Let M0 be a positive integer with M0 > 2. There are infinitely

many n ∈ Wk such that for every m > M0,

(3.19) δ1,1,m(n) = δ1,1,M0(n).
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P r o o f. We divide the proof into two parts:

(i) We putm0 = M0−1. It suffices to prove that there are infinitely many primes p

such that

(3.20) p = δ1,1,m0(n) + 1,

where n ∈ Wk. Indeed, by Dirichlet’s Theorem, the arithmetic progression 2
k−1t+1;

t > 1 contains infinitely many primes. We denote Θ = 2k−1. Let p, q1, q2 be distinct

primes of the form Θt+1. Then Θ divides both p− 1 and qa1q
b
2− 1 for every a, b > 1.

Let (l1, l2, . . . , lk) be an arbitrary k-tuple of distinct primes.

In the case when m0 = 1, we put

n = l1l2 . . . lk−1 × l
(p−1)/Θ−1
k ∈ Wk.

It follows that d(n) + 1 = p. Thus, (3.19) is true for every m > 2.

In the case when m0 > 2, we can put







s1 =
qΘ−1
1 qs22 − 1

Θ
− 1,

s2 =
qΘ−1
1 qs32 − 1

Θ
− 1,

...

sm0−1 =
qΘ−1
1 q

sm0

2 − 1

Θ
− 1,

sm0
=

p− 1

Θ
− 1.

From now on we denote Ψ = qΘ−1
1 and

Ξ =
Ψq

Ψq
.. .

Ψq

Ψq

p− 1

Θ
− 1

2 − 1

Θ
− 1

2 − 1

Θ
− 1

2 − 1

Θ
− 1

2 − 1

Θ
− 1.

Let n = l1l2 . . . lk−1 × ls1k ∈ Wk, or, equivalently,

(3.21) n = l1l2 . . . lk−1l
Ξ
k ,
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where the first exponentiation contains m0 − 1 fractions involving q1 and q2. This

written in the form of towering storeys allows to calculate successively δ1,1,1(n),

δ1,1,2(n), . . . , δ1,1,M0(n). Indeed, for each such integer n, it follows from the definition

of d that

δ1,1,1(n) + 1 = Ξ + 1,

where the first exponentiation of q2 contains m0 − 2 fractions involving q1 and q2.

By repeating these steps we can reach the top of (3.21) as follows:

δ1,1,m0−1(n) + 1 = Ψq
(p−1)/Θ−1
2 ,

and so

(3.22) δ1,1,m0(n) + 1 = p.

This ends the proof of Part (i).

(ii) Now, from (3.22) we obtain δ1,1,m0+1(n) = δ1,1,M0(n) = 2, and therefore (3.19)

is true for every m > M0. This completes the proof of Theorem 3.1. �

Corollary 3.1. For any positive integer m, there are infinitely many n such that

δ1,1,m(n) = 2.

P r o o f. Let m > 1. If m = 1, then δ1,1,1(p) = d(p) = 2 for any prime p. If

m > 2, it follows from the proof of (3.20) that there exist infinitely many n ∈ Wk

such that δ1,1,m−1(n) + 1 is prime. Therefore,

δ1,1,m(n) = d(δ1,1,m−1(n) + 1) = 2.

This completes the proof. �

Corollary 3.2. For any positive integer m, there are infinitely many n such that

δ1,1,m(n) = 3.

P r o o f. Let m > 1, and let p be an odd prime. Assume that m = 1, and put

n = p2. Then δ1,1,m(n) = 3. Assume that m > 2, and define the positive integer

n = pp
p
...pp

2
−2

−2

−2−2

which contains m exponentiations involving the prime number p. As in the proof of

Theorem 3.1, we obtain

δ1,1,1(n) = pp
...p

p2−2−2
−2 − 1,
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which contains (m− 1) exponentiations involving the prime number p. In this way,

we successively compute δ1,1,2(n), δ1,1,3(n), . . .. At the end, we obtain






δ1,1,m−2(n) = pp
2−2 − 1,

δ1,1,m−1(n) = p2 − 1,

δ1,1,m(n) = 3.

This completes the proof. �

Remark 3.1. It seems very likely that Proposition 3.1 can be generalized. Com-

putation suggests that for every n > 1 there exists an order m such that

(3.23)







δ3,1,m(n) = 64 or 512,

δ9,1,m(n) = 68719476736 or 18014398509481984,

δ10,1,m(n) = 1048576 or 61917364224.

See also Example 3.2 below.

Following the same idea as in the proof of Theorem 3.1, we want to present a prop-

erty of the growth of δ1,l,m(n) for an infinity of values of n ∈ Wk.

Proposition 3.2. Let a,m0, k, l be positive integers with a odd and 2
k dividing l.

There are infinitely many n ∈ Wk such that d(δ
1,l,m0(n) + a+ l) = 2.

P r o o f. Since (Θ, a) = 1, by Dirichlet’s Theorem there are infinitely many

primes of the form Θt + a. Let b be the odd positive integer given by b = l/Θ+ 1,

and let p be a prime number of the form Θt+ a, where (p− a)/Θ > b. We study the

following two cases.

In the first case, we assume that m0 = 1. For

n = l1l2 . . . lk−1 × l
(p−a)/Θ−b
k ∈ Wk,

where l1, l2, . . . , lk are distinct primes, it follows that d(n) = δ1,l,1(n) = p − a − l.

Thus, d(δ1,l,1(n) + a+ l) = 2.

In the second case, we assume that m0 > 2. Similarly, let q1, q2 be two distinct

primes of the form Θt+ b, since (Θ, b) = 1. We denote

Υ =
Ψq

Ψq
.. .

Ψq

Ψq

p− a

Θ
− b

2

Θ
− b

2

Θ
− b

2

Θ
− b

2

Θ
− b.
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Consider the positive integer of the form

n = l1l2 . . . lk−1 × lΥk ,

where the first exponentiation contains m0 − 1 fractions involving q1 and q2 and

l1, l2, . . . , lk are also distinct primes. Since l = Θ(b− 1), it follows that

δ1,l,1(n) + l = Υ+ b,

where the first exponentiation of q2 contains m0 − 2 fractions involving q1 and q2.

Repeating the process as in the proof of Theorem 3.1 and Corollary 3.2, we obtain







δ1,l,m0−1(n) + l = Ψq
(p−a)/Θ−b
2 ,

δ1,l,m0(n) + l = p− a,

d(δ1,l,m0(n) + a+ l) = 2.

This completes the proof. �

Now, we present some examples to illustrate the results stated in Proposition 3.1,

Remark 3.1 and Theorem 3.1, respectively.

3.1. Examples.

Example 3.1. With respect to the result of Proposition 3.1, the following table

shows the first value of m for which δ1,1,m(n) = 2 or 3, for different values of n.

n m δ1,1,m(n) n m δ1,1,m(n) n m δ1,1,m(n)

1 2 2 22
10

3 2 3 1 2

2 1 2 2
2
50

4 2 33 2 2

22 1 3 22
100

4 3 325 3 2

22
2

3 2 2
2
150

4 2 3847 288 609 441 4 2

22
3

3 2 22
200

3 3 33
847 288 609 441−2 5 2

22
4

3 2 22
220

4 3 32 1 3

22
5

3 2 22
250

4 2 37 2 3

22
6

3 3 22
300

4 3 32185 3 3

22
7

3 3 22
350

3 2 33
2185−2 4 3

22
8

3 3 22
380

3 2 33
3
2185

−2−2 5 3

The above values are obtained by hand and also by using a program in Maple as fol-

lows: Let N be a positive integer with N /∈ {3, 4}. We can verify that δ1,1,m(N) = 2

or 3 for some m > 1. In fact, we have the following algorithm.
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Algorithm 3.1

> n := N :

u := n:

k := 0:

while u 6= 4 and u 6= 3 do

k := k + 1:

u := tau(u) + 1:

od:

print(“m-fold”= k, “δ {̂1, 1,m}(n)”= u− 1);

Note that this program solves the equality δ1,1,m(n) = 2 or 3 for some m > 1,

provided only that n /∈ {3, 4}. If n = 3 or n = 4, then the program gives

(m-fold, δ1,1,m(n)) = (0, 2) or (m-fold, δ1,1,m(n)) = (0, 3), respectively. However,

we can check by hand again that δ1,1,m(3) = 2 and δ1,1,m(4) = 3 for any m > 1.

In the next example we give two positive integers n and n′ which have the same

distinct prime factors and satisfy the first equation of (3.23), and this after 4-fold

iterations. That is, set(n) = set(n′), δ3,1,m(n) = 64 and δ3,1,m(n′) = 512 for every

m > 4.

Example 3.2. Let (q1, q2, . . . , q13) be an arbitrary 13-tuple of distinct primes.

We put

n = q251 × q222 × q153 × q704 × q115 × q156 × q137 × q8 × q9 × q10 × q11 × q1512 × q1013 ,

n′ = q20001 × q3022 × q1053 × q7004 × q1015 × q156 × q137 × q8 × q9 × q10 × q11 × q150012 × q99913 .

It is clear that n and n′ have the same distinct prime factors, where |set(n)| =

|set(n′)| = 13. By computation, we see that δ3,1,m(n) = 64 and δ3,1,m(n′) = 512 for

every m > 4:

δ3,1,1(n) = 135 964 112 015 285 579 850 731 807 751 719 092 224

δ3,1,2(n) = 56 623 104

δ3,1,3(n) = 4096

δ3,1,4(n) = 64,

and
δ3,1,1(n′) = 24239597317319323329353379310137013

δ3,1,2(n′) = 2097 152

δ3,1,3(n′) = 1728

δ3,1,4(n′) = 512.

As an application of Theorem 3.1, the following example gives the smallest positive

integer x ∈ W3 in the form (3.21) such that δ
1,1,4(x) = 2.
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Example 3.3. In view of Theorem 3.1, assume that k = 3 and M0 = 4. Then

the positive integer

x = 5× 3× 2511 528 924 107 551 574 707 030 ∈ W3

is the smallest number that satisfies (3.20) and (3.21). Indeed, we see that

δ1,1,1(x) + 1 = 2046 115 696 430 206 298 828 125 = 530133.

Therefore, we have
δ1,1,2(x) + 1 = 125 = 53,

δ1,1,3(x) + 1 = 5,

δ1,1,4(x) = 2.

On the other hand, we can write

x = 5× 3× 2

132
3−1−1 × 5

52
3−1−1 × 13

5− 1

23−1
− 1

− 1

23−1
− 1

− 1

23−1
− 1

.

Thus we have shown that x is the smallest one, since the numbers 5 and 13 are

chosen to be the smallest distinct primes satisfying the properties of p, q1 and q2

which are stated in the proof of Theorem 3.1.

To prove our main theorem, we will make use of the following lemma.

Lemma 3.1. Let n be an unlimited positive integer and let γ ∈ R
∗
+. If γ is

standard, then
d(n)

nγ
≃ 0.

P r o o f. Let q be a prime number and α > 1 such that qα is unlimited. We see

that

(3.24)
d(qα)

qαγ
=

α+ 1

qαγ
=

α+ 1

qαγ/2
1

qαγ/2
6

α+ 1

2αγ/2
1

qαγ/2
.

Observing that αγ is either standard or unlimited, we obtain from (3.24) that

d(qα)

qαγ
6

{

£ · Φ ≃ 0, if α is limited,

Φ · Φ ≃ 0, otherwise.

Therefore, d(qα)/qαγ ≃ 0. Since t 7→ d(t)/tγ is multiplicative and standard, it follows

from Theorem 2.3 that for every unlimited n, d(n)/nγ ≃ 0. This proves Lemma 3.1.

�
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Our main result below gives an upper bound for δs,l,m(n), where m > 2 and l, s

are limited.

Theorem 3.2 (Main Theorem). Let l, s be limited positive integers and let n > 1.

There exists a positive constant An such that for every limited m > 2, we have

δs,l,m(n) ≪ An.

P r o o f. We distinguish two cases.

(a) Assume that d(n) is unlimited. We will show that for every limited m > 2, we

have

(3.25) δs,l,m(n) ≪ δs,l,1(n) = ds(n).

This means that, An = ds(n). First, it suffices to prove that if δs,l,i(n) ≃ ∞ for some
i > 1 (for example i = 1), then

(3.26) δs,l,i+1(n) ≪ δs,l,i(n).

In fact, since s is limited, it follows from Lemma 3.1 that

δs,l,i+1(n)

δs,l,i(n) + l
=

( d(δs,l,i(n) + l)

(δs,l,i(n) + l)1/s

)s

=
(d(t)

t1/s

)s

≃ 0,

where t = δs,l,i(n) + l ≃ ∞ and 1/s is not infinitesimal. Thus,

δs,l,i+1(n) ≪ δs,l,i(n) + l.

That is, (3.26) is satisfied because l is limited.

Next, let m > 2 be limited. We see that

δs,l,1(n)− δs,l,m(n) =

m−1∑

j=1

{δs,l,j(n)− δs,l,j+1(n)}.

In view of (3.26), δs,l,1(n) − δs,l,2(n) ≃ ∞ because d(n) ≃ ∞. Moreover, for every
j = 2, 3, . . . ,m− 1, the difference

δs,l,j(n)− δs,l,j+1(n)

is either unlimited positive, limited positive or limited negative. This proves (3.25).

(b) Assume that d(n) is limited. Since l, s are limited, hence for every limited

m > 1, so is δs,l,m(n). Let ω be an unlimited positive integer, then the result of our

theorem in fact follows immediately with An = ω.

This completes the proof of Theorem 3.2. �
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We close this paper by the following corollary.

Corollary 3.3. Let l, s be limited positive integers and let n > 1. If d(n) is

unlimited, then

(3.27) δs,l,m(n) ≪ ds(n)

holds for any m > 2. However, if d(n) is limited, then δs,l,m(n) is also limited for

any m > 1.

P r o o f. By (3.26), the terms of (1.4) are decreasing when they are unlimited.

If we take d(n) unlimited, then (3.27) holds for every m > 2 whenever δs,l,m(n) is

limited or unlimited.

Assume that d(n) is limited. Due to the second case of the proof of Theorem 3.2,

it suffices to show that δs,l,m(n) is limited for every unlimited m. Assume, by

way of contradiction, that there exists an unlimited positive integer m0 such that

δs,l,m0(n) ≃ ∞. Define the set

(3.28) T ′ = {t ∈ {1, 2, . . . ,m0 − 1} : δs,l,t(n) < δs,l,m0(n)},

which is internal and containing Nσ. In fact, since d(n), s, l are limited, the num-

ber δs,l,t(n) is also limited for every t ∈ N
σ. Therefore, Nσ ⊂ T ′. By Cauchy’s

principle, there exists an unlimited positive integer t0 that satisfies (3.28), where

t0 < m0 and δs,l,t0(n) is unlimited. This is a contradiction because (3.26) gives the

inequality

δs,l,m0(n) ≪ δs,l,t0(n).

Thus, δs,l,m(n) is limited for any m > 1. This completes the proof. �
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